— ORACLE

Menu

Topics v Issues v Downloads v

]ava” September 2019

magazine

Unit Test Your Architecture with
ArchUnit

Why Should You Test Your
Architecture?

Preparing to Write Architecture
Tests

Why Choose ArchUnit?
Under the Covers
Getting Started

Inside ArchUnit

What to Keep in Mind When You
Write Tests

Alternatives to ArchUnit and When
to Use Them

Conclusion

Also in This Issue

Unit Test Your Architecture with
ArchUnit

Discover architectural defects at build time.
by Jonas Havers

August 19, 2019

A common problem faced by development organizations is that code
implementations can often diverge from the original design and
architecture. The problem is common enough, especially on large
projects, that a new tool has emerged to help test that a code
implementation is consistent with the originally defined architecture.
ArchUnit is a small, simple, extensible, open source Java testing library
for verifying predefined application architecture characteristics and
architectural constraints. An ArchUnit test is written and runs as a unit
test that gives developers and application architects fast feedback on
their work. It guarantees that a software build will break if an architectural
violation is introduced.

In this article, | explain why you should test your architecture and how to
get started with ArchUnit to do exactly that. You can find the code
snippets from this article as well as further examples on my GitHub
repository.

Why Should You Test Your Architecture?

Software architecture is an important prerequisite for the
comprehensibility and changeability of codebases as well as for
adherence to software quality goals. Three major goals of software
architecture, when it comes to the codebase, are maintainability,
replaceability, and extensibility. Maximizing the ability to achieve them
enables teams to iterate quickly; that is, to add features and fix bugs
quickly when an application grows. To keep a software system
maintainable, replaceable, and extendable, you need to ensure that it is
modular and that interdependencies are as small and correct as possible,
leading to high cohesion and loose coupling.

These goals can be met by introducing certain patterns and code
conventions that are comprehensively documented and communicated
by and for the entire development team that has agreed to them.

An after-the-fact introduction of automated architecture verification is also
suitable for an existing software system that has become hard to
maintain. Tests can guide you to reduce technical debt step by step. In
this way, you can monitor and verify progress towards the target project
architecture.

Preparing to Write Architecture Tests

To test concepts and structures of an application architecture, you must
typically map the architecture model to the technical code first or derive
that from the existing application. When you do this, it is necessary not
only to think about the code structure in advance but also about how
domain concepts and technical concepts are or will be identifiable in the
application code. This includes the identification of technical terms for

Search Java Magazine Q

Subscribe

https://blogs.oracle.com/javamagazine
https://blogs.oracle.com/javamagazine/september-2019
https://blogs.oracle.com/javamagazine/testing-3
https://www.archunit.org/
https://github.com/JonasHavers/archunit-examples
https://oracle.dragonforms.com/ORA6028_Jfnew&pk=JFCM19
https://www.oracle.com/

concrete application components such as “controller” and “service” as
well as domain-specific terms such as “product” and “customer” and their
relationships to each other.

If you have agreed on terms, relationships, and conventions, a system of
static architecture rules can be created that enables developers to write
and modify code that complies with the rules. That means the mental
model can be mapped by implementing the concepts using layers and
packages, class naming schemes, annotations, and so on.

Why Choose ArchUnit?

The ArchUnit library was initially created by Peter Gafert in 2017. It
enables you to import the classes of your application into a special Java
code structure that allows you to test the code and its structures with any
Java unit testing framework. ArchUnit lets you implement rules for the
static properties of application architecture in the form of executable tests
such as the following:

* Package dependency checks

¢ Class dependency checks

¢ Class and package containment checks
¢ Inheritance checks

¢ Annotation checks

* Layer checks

* Cycle checks

Furthermore, you can create custom tests for constructors, methods,
fields, members, and “code units” (that is, a method, constructor, or static
class initializer that can access other code). With these checks, you can
verify both specific architectural constraints as well as coding rules, such
as naming conventions.

There are various tools to test for dependencies between layers and
packages, which is a major concern for architecture verification,
especially for a layered architecture. Although many coding guidelines
(such as the naming of classes and members) can be handled by code
linting tools, these tools have a limited scope and can be only partially
used when the rules become more complex. As a consequence, certain
rules can be enforced only by the combination of multiple tools (and
sometimes not at all). The use of different tools, APIs (such as the Java
Reflection APl and AspectJ), and additional languages (such as Groovy)
in a custom test suite eventually results in an unnecessarily difficult
learning curve, especially for beginners.

In contrast, ArchUnit does not need any special infrastructure or any new
language. Tests that verify the rules can be written in plain Java. ArchUnit
can also handle test code and application code in other languages that
are translated to Java bytecode (such as Kotlin). The rules can be
evaluated with any unit testing tool. However, there is extended support
for writing tests with JUnit 4 and JUnit 5.

In an evolving architecture, implementation rules evolve over time. The
use of built-in, automatically executed tests forces an organization to
consciously accept deviations from predefined rules instead of
accidentally encountering them later in a review or never. ArchUnit can
provide warnings about deviations.

In my experience, once you start to write rules with ArchUnit, you notice
more and more use cases: the incorrect use of third-party libraries that
can be avoided, code smells that can be banned from the project by
testing against these patterns, and so on. The ArchUnit APIs stimulate
creativity and make it easy to come up with new checks or to improve
existing rules in order to increase the overall code quality.

Furthermore, the ArchUnit library provides typical predefined rules.
Because it is difficult for a library to predict all its uses, it is all the more
important that it can be extended. To this end, ArchUnit provides a

convenient way to write custom checks by using a few predefined and
combinable building blocks and interfaces.

Under the Covers

ArchUnit makes use of reflection and Java bytecode analysis. Information
that the library cannot obtain through the Java Reflection API is obtained
at the bytecode level. For example, the Reflection API offers no way to
retrieve information about access to or from a class. However, this
information is contained in the bytecode. So dependencies between two
classes can be obtained only through analysis of the Java bytecode. To
analyze the bytecode, the ArchUnit library uses ASM, an all-purpose
Java bytecode reading, writing, and manipulation framework (for more
information, see previous coverage of ASM in this magazine).

With ASM, you can write tests that look very much like unit tests but
which target architectural constraints. For example, an architectural rule
written with ArchUnit might look like this:

ArchRule rule = ArchRuleDefinition.classes()

.that().resideInAPackage("..domain..")
.should().onlyBeAccessed()
.byAnyPackage("..domain..", "..application..");

Here’s another example:

ArchRule rule = ArchRuleDefinition.methods()
.that().arePublic()
.and().areDeclaredInClassesThat().resideInAPack
.and().areDeclaredInClassesThat().haveSimpleNam
.and().areDeclaredInClassesThat().areAnnotatedwW
.should () .beAnnotatedWith(RequestMapping.class)

ArchUnit is divided into three main API layers: Core, Lang, and the
Library layer, which I'll explore after the following section.

Getting Started

You can obtain the ArchUnit library from Maven Central. You first need to
declare and then pull the dependency with Maven or Gradle. After that,
you are ready to write and execute tests with any Java unit testing
framework you choose. Here is the POM entry for Maven users:

<dependency>
<groupId>com.tngtech.archunit</groupId>
<artifactId>archunit</artifactId>
<version>0.11.0</version>
<scope>test</scope>

</dependency>

And here’s the POM for Gradle users:

dependencies {
testCompile 'com.tngtech.archunit:archunit:0.11

}

For JUnit, ArchUnit provides an ArchUnitRunner that reduces
boilerplate code and caches the imported classes by URL, so classes for
multiple tests do not need to be imported each time. To get the runner
support for JUnit 4, replace the archunit artifact in the dependencies
above with archunit-junit4. For JUnit 5, use the
archunit-junit5-api and archunit-junit5-engine artifacts
instead. The installation guide provides additional information.

https://asm.ow2.io/
https://blogs.oracle.com/javamagazine/real-world-bytecode-handling-with-asm
https://www.archunit.org/userguide/html/000_Index.html#_installation

When you use the ArchUnitRunner with JUnit, ArchRules can be
defined either as static fields or static methods with a single
JavaClasses argument. In both cases, you need to add the
@ArchTest annotation so the classes that are already imported and
cached are reused by the runner and the rules are evaluated against
them, for example:

@RunWith (ArchUnitRunner.class)
@AnalyzeClasses(
packages = "com.company.app",
importOptions =
ImportOption.DoNotIncludeTests.class
)

public class ArchitectureRulesTest {

@ArchTest
public static final ArchRule ruleAsStaticField
ArchRuleDefinition.classes()
.should()...

@ArchTest
public static void ruleAsStaticMethod(JavaClass:
ArchRuleDefinition.classes()
.should()...

With JUnit 5, the runner does not need to be declared. So you can delete
the first line: @RunWith (ArchUnitRunner.class).

As | mentioned before, due to ArchUnit’s nature of writing checks as unit
tests, there is no need to introduce a special step in your continuous
integration (Cl) pipeline. You can incorporate the test suite into any Cl
environment and deployment pipeline.

You can exclude known architectural violations from breaking the tests by
using a file named archunit_ignore patterns.txt in the classpath
root directory. Every line in the file will be interpreted as a regular
expression and checked against reported violations. Violations with a
message matching the pattern will be ignored. To ignore single tests, use
the annotation @ArchIgnore in the test classes. Since v. 0.11.0, you can
also use the FreezingArchRule feature, which stores the current state
of violations when there are way too many rule violations to fix
immediately. Usually, though, ignoring tests is a bad practice. However,
by using these options, you can integrate ArchUnit into existing software
projects that contain known architectural flaws and erosions. The projects
can then be iteratively fixed and migrated to a clean architecture that
aims to satisfy the rules.

There is also a third-party Maven plugin that enables you to easily share
and enforce common architecture rules across different projects instead
of copying them.

Inside ArchUnit

As | mentioned earlier, ArchUnit is divided into three principal APIs: Core,
Lang, and the Library layer.

The Core API. This layer resembles the Reflection API. In addition, it
deals with the basic infrastructure, such as how to import bytecode. To
import compiled Java class files, use the ClassFileImporter. It offers
many ways to import compiled Java classes, but the most convenient is
to declare one or more base packages, as shown below. It allows specific
locations to be filtered out, such as test classes or archives such as
JARs.

JavaClasses classes = new ClassFileImporter()
.withImportOption(ImportOption.Predefined.DO NO'
.withImportOption(ImportOption.Predefined.DO_NO'
.importPackages("com.company.app");

https://github.com/societe-generale/arch-unit-maven-plugin

What you get back from the importer is an instance of JavaClasses,
which represents a collection of elements of type JavaClass. A
JavaClass in turn represents a single imported class file.

Core objects are named after their Reflection API counterparts but with
an additional Java prefix. In addition, there are representational classes
in the Core API such as JavaPackage, JavaMethod, and JavaField.
Developers who have used the Reflection API before will be familiar with
methods such as getName (), getMethods (), getRawType(), Of
getRawParameterTypes (), which have counterparts in the ArchUnit
Core API.

Additional access information from the bytecode can be obtained via
JavaMethodCall, JavaConstructorCall, and JavaFieldAccess.
For example, by calling getAccessesFromSelf () on a JavaClass
instance, you can iterate over and analyze the accesses between this
imported Java class and other imported Java classes. You can perform
similar access checks with the object methods getAccessesTosSelf (),
getFieldAccessesFromSelf (), and getFieldAccessesToSelf ()

The Lang API. A pure use of the core classes for architecture tests is
possible, but expressiveness is missing here. To address this, ArchUnit
offers a higher level of abstraction with the Lang API, which provides a
fluent interface that consists of three central components:

* DescribedPredicate: A predicate for selecting relevant classes

* ArchCondition: A condition that selected classes must fulfill

* ArchRule: A rule to define architectural concepts

Because most parts of the Lang API are also composed as a fluent API,
an IDE can provide valuable suggestions on the APIs to use.

The class ArchRuleDefinition is used as an entry point to define an
ArchRule. With the three APl components mentioned previously, you
can also go beyond the provided predicates and conditions and develop
your own to satisfy your needs.

The following example verifies that domain classes should be accessed
only by other domain classes or application classes:

ArchRule rule = ArchRuleDefinition.classes()

.that().resideInAPackage("..domain..")
.should().onlyBeAccessed()
.byAnyPackage("..domain..", "..application.

This syntax is inspired by Aspectd pointcuts.

The “. .” in the package notation refers to any number of packages. This
syntax is inspired by AspectdJ pointcuts. Thus, in this example, the
ArchRule applies to any class inside the package
com.company.app.domain.model (DescribedPredicate), for
example, and it verifies that it is accessed only by classes in the package
or subpackages of domain or application (ArchCondition).

If the check for an ArchUnit rule fails, it will report a
java.lang.AssertionError that contains the rule text and all
violations, including the class and line number.

You can also negate class rules by starting with
ArchRuleDefinition.noClasses (). In addition to classes, you can
directly test for constructors, methods, fields, members, and code units.
Each of them also has a negation counterpart.

The following is an extended example of the Lang API to show what
more-complex checks can look like. It is focused on the Spring

https://www.eclipse.org/aspectj/doc/released/progguide/language-anatomy.html#pointcuts
https://www.eclipse.org/aspectj/doc/released/progguide/language-anatomy.html#pointcuts

Framework and can be used to check Spring model view controller
(MVC) class methods:

ArchRule rule = ArchRuleDefinition.methods()
.that().arePublic()
.and().areDeclaredInClassesThat()

.resideInAPackage("..adapters.primary.web
.and().areDeclaredInClassesThat()
.haveSimpleNameEndingWith("Controller")
.and().areDeclaredInClassesThat()
.areAnnotatedWith(Controller.class)
.or().areDeclaredInClassesThat()
.areAnnotatedWith(RestController.class)
.should () .beAnnotatedWith(RequestMapping.class)
.orShould().beAnnotatedWith(GetMapping.class)
.orShould().beAnnotatedWith (PostMapping.class)
.orShould() .beAnnotatedWith(PatchMapping.class)
.orShould().beAnnotatedWith(DeleteMapping.class

This rule checks that public methods inside a controller are annotated
with any of Spring MVC’s request mapping annotations, so there is no
public method that is not used for handling a request. The selected
classes have a simple name ending with Controller, are annotated
with a Spring MVC @Controller or @RestController annotation,
and must reside in a package or a subpackage of
..adapters.primary.web. .. With such rules, you can enforce strong
coding conventions at the method level.

Once you compose a rule like the rule above, you need to check it
against the imported Java classes for it to affect the test results:

JavaClasses classes = new ClassFileImporter()
ArchRule rule = ..
rule.check(classes);

The Library APL. This layer contains even more abstract and complex
predefined rules. For example, ArchUnit makes it possible to create
definitions for layered architectures with an instance of
Architectures.LayeredArchitecture and run checks against the
individual layers. You can easily define a layered architecture by defining
its layers, names, and packages. A definition for a ports-and-adapters
architecture that can be expressed as a layered architecture might look
similar to the following:

Architectures.LayeredArchitecture portsAndAdaptersA
Architectures

.layeredArchitecture()

.layer("domain layer")
.definedBy("com.company.app.domain..")

.layer("application layer")
.definedBy("com.company.app.application

.layer ("adapters layer")
.definedBy("com.company.app.adapters..

With this architecture definition, you can now define rules against the
layers. You can either append the rules directly in a single test or append
them on a stored instance variable in separate tests, as shown in the
next example. In both cases, the layer condition is added with the
whereLayer method:

ArchRule applicationLayerRule =
portsAndAdaptersArchitecture
.wherelLayer ("application layer")
.mayOnlyBeAccessedByLayers ("adapters layer"

ArchUnit v 0.11.0 adds a new predefined
Architectures.onionArchitecture() API for verifying the
semantics of an Onion Architecture, as described by Jeffrey Palermo,

https://jeffreypalermo.com/2008/07/the-onion-architecture-part-1/

which is related to the ports-and-adapters architecture. It can be used in
a similar fashion, but you need to define each adapter:

Architectures.OnionArchitecture onionArchitecture =
Architectures.onionArchitecture()
.domainModels ("com.company.app.domain.model
.domainServices("com.company.app.domain.ser
.applicationServices("com.company.app.appli¢
.adapter("cli", "com.company.app.adapters.c
.adapter("web", "com.company.app.adapters.w:

Another ArchUnit library API exists for slices. Slices are basically rule
definitions for subsets of Java classes. Each of these subsets matches a
package infix pattern. A slicesRuleDefinition is used to create the
slices and to run assertions against them. This results in a SliceRule
object from the S1lices API. You can use the SlicesRuleDefinition
builder to create a sliceRule to find cyclic dependencies; that is, to
check that slices should be free of cycles or to evaluate that individual
slices do not depend on each other. For example, these S1iceRules
help to detect transitive dependencies.

SliceRule layersShouldBeFreeOfCycles =
SlicesRuleDefinition.slices()
.matching("com.company.app.(*)..")
.should() .beFreeOfCycles();

SliceRule adaptersShouldNotDependOnEachOther =
SlicesRuleDefinition.slices()
.matching("com.company.app.adapters. (**).."
.should() .notDependOnEachOther();

Again, the matching notation is inspired by AspectJ syntax. The first rule
captures classes in the first package under app and checks that those
slices are cyclic-free. The second rule groups Java classes in all
subpackages of adapters (for example,

. .adapters.primary.web.. and

. .adapters.secondary.mongodb. .) and checks all those slices for
any interdependencies.

For example, if you directly access a MongoDB repository (secondary
adapter) in a web controller (primary adapter), ArchUnit would produce
an error for the second rule above:

java.lang.AssertionError: Architecture Violation [P
Slice primary.web calls Slice secondary.mon

If I had used a single-star capture, the classes would have been grouped
into just two slices, namely primary and secondary, and the error
message would reflect that.

The Library API also contains the GeneralCodingRules class, which
includes predefined and self-describing static coding rules that are
common in many Java projects, for example:

NO CLASSES SHOULD ACCESS STANDARD STREAMS (that is, the
System.out, System.err, and printStackTrace methods:
use a logging library instead)

NO_CLASSES_SHOULD_THROW_GENERIC_EXCEPTIONS (for
example, rather than throwing RuntimeException, use
IllegalArgumentException or better custom exceptions
instead)

® NO_CLASSES_SHOULD_ USE_JAVA UTIL LOGGING (use this
when you want the team to use Log4j or Logback behind SLF4J)

* NO_CLASSES_SHOULD USE_JODATIME (use this when you want
the team use the modern java.time APl instead)

What to Keep in Mind When You Write Tests

If you have a large codebase, you should cache class file imports for your
tests. This step can greatly reduce the tests’ execution time. Caching of
the imported classes, for example, can be achieved with the
ArchUnitRunner when you are using the JUnit support. For small
codebases, the reimport overhead of the classes is negligible.

It is important that you write the concepts being tested as precisely as
possible and that the concepts communicate clearly what the point of a
rule is. For complex rules, it may make sense to use explicit and
descriptive rule text instead of relying on the generated rule text. And
sometimes a long rule definition can be split into multiple short ones that
are easier to understand.

Furthermore, you should not follow the implemented rules blindly.
Likewise, you should not change them to pass the tests quickly without
thinking beforehand. Sometimes new components do not fit the existing
concepts; therefore, existing rules need to be changed or extended. That
is especially true in an evolving architecture. But, as mentioned earlier,
you should not overuse the options to ignore tests that ArchUnit offers.
This is especially true in greenfield projects.

Alternatives to ArchUnit and When to Use Them

At the language level, the Project Jigsaw module system introduced with
Java 9 can be a great help to avoid inadvertently introducing
dependencies across layers, because module dependencies are
explicitly specified. Unfortunately, this feature does not help much with
existing applications, especially those that require Java 8 or earlier.
Furthermore, Jigsaw guarantees only modularity and dependencies
between modules, which is only one of the quality aspects and checks
that can be performed with ArchUnit.

An alternative to ArchUnit is jQAssistant, a tool that analyzes a project
and stores the generated information in a Neo4j graph database.
jQAssistant offers an integration with AsciiDoc, so tests can be
embedded in documentation. This is practical if you are migrating to a
target architecture. There are also commercial products such as
Structure101 Studio, which is frequently used in system and architecture
audits. In addition, there are several static code analysis tools that can
perform subsets of what ArchUnit perform. These include Degraph and
Deptective, among others. Some of these tools can be integrated into
build environments and sometimes even into IDEs.

Conclusion

ArchUnit is a small library that can be used to unit test the architecture
and internal code quality of both small and large applications. With it, you
can quickly, easily, and pragmatically begin to test your code quality
objectives. During the build process, ArchUnit tests can ensure that the
architecture of a Java application complies with the established rules. In
addition to the fluent APIs and well-written Javadoc documentation, the
official guide presents the different options ArchUnit offers you for
checking your codebase.

Also in This Issue

Know for Sure with Property-Based Testing

Arquillian: Easy Jakarta EE Testing

The New Java Magazine

For the Fun of It: Writing Your Own Text Editor, Part 1
Quiz Yourself: Using Collectors (Advanced)

Quiz Yourself: Comparing Loop Constructs (Intermediate)
Quiz Yourself: Threads and Executors (Advanced)

Quiz Yourself: Wrapper Classes (Intermediate)

Book Review: Core Java, 11th Ed. Volumes 1 and 2

Jonas Havers

https://blogs.oracle.com/javamagazine/jonas-havers
https://www.archunit.org/userguide/html/000_Index.html#_controlling_the_rule_text
https://openjdk.java.net/projects/jigsaw/
https://jqassistant.org/
https://structure101.com/
https://github.com/schauder/degraph
https://github.com/moditect/deptective
https://www.archunit.org/userguide/html/000_Index.html#_what_to_check
https://blogs.oracle.com/javamagazine/know-for-sure-with-property-based-testing
https://blogs.oracle.com/javamagazine/arquillian-easy-jakarta-ee-testing
https://blogs.oracle.com/javamagazine/the-new-java-magazine
https://blogs.oracle.com/javamagazine/for-the-fun-of-it-writing-your-own-text-editor-part-1
https://blogs.oracle.com/javamagazine/quiz-advanced-collectors
https://blogs.oracle.com/javamagazine/quiz-intermediate-loop-constructs
https://blogs.oracle.com/javamagazine/quiz-advanced-executor-service
https://blogs.oracle.com/javamagazine/quiz-intermediate-wrapper-classes
https://blogs.oracle.com/javamagazine/core-java-11th-ed-volumes-1-and-2

Jonas Havers (@JonasHavers) is a freelance full-
stack software engineer and lecturer on software
engineering from Germany. He develops web
applications predominantly in ecommerce projects
with a mix of Java, Kotlin, Groovy, TypeScript, and
JavaScript. He is also an advocate for remote work,
and he blogs frequently.

Share this Page

Contact About Us Downloads and Trials News and Events
US Sales: +1.800.633.0738 Careers Java for Developers Acquisitions

Global Contacts Communities Java Runtime Download Blogs
Support Directory Company Information Software Downloads Events

Subscribe to Emails Social Responsibility Emails Try Oracle Cloud Newsroom

oracLe | Integrated Cloud

Applications & Platform Services

© Oracle | Site Map | Terms of Use & Privacy | Cookie Preferences | Ad Choices|

https://blogs.oracle.com/javamagazine/jonas-havers
https://www.oracle.com/corporate/contact/global.html
https://www.oracle.com/support/contact.html
https://go.oracle.com/subscriptions?l_code=en-us&src1=OW:O:FO
https://www.oracle.com/corporate/careers/
https://community.oracle.com/welcome
https://www.oracle.com/corporate/
https://www.oracle.com/corporate/citizenship/
http://www.oracle.com/technetwork/java/javase/downloads/
https://www.java.com/en/download/
https://www.oracle.com/downloads/
https://www.oracle.com/try-it.html?source=:ow:o:h:sb:&intcmp=:ow:o:h:sb:
https://www.oracle.com/corporate/acquisitions/
https://blogs.oracle.com/
https://www.oracle.com/search/events
https://www.oracle.com/corporate/press/
https://www.facebook.com/Oracle/
https://twitter.com/oracle
https://www.linkedin.com/company/oracle/
http://www.youtube.com/oracle/
https://www.oracle.com/legal/copyright.html
https://www.oracle.com/sitemap.html
https://www.oracle.com/legal/privacy/
http://oracle.com/legal/privacy/privacy-policy.html#advertising
https://www.oracle.com/

