Donnerstag Mrz 27, 2014

Ein paar Gedanken zu Single Thread Performance

Eines werde ich immer wieder gefragt: Wie misst man Single Thread Performance ?

So gerne ich auch wollte, die Antwort ist leider nicht so einfach wie die Frage.  Und leider auch ein wenig laenger.

Selbst die Definition von Single Thread Performance ist nicht immer die gleiche, weswegen ich damit anfangen moechte.  In diesem Blog ist Single Thread Performance die Menge an Arbeit die eine Software, die als einzelner Instruktions-Strom ablaeuft, in einer gewissen Zeit erledigt.

Das alles dient natuerlich dazu, die Leistung (schon wieder ein schwammiger Begriff..) eines Computersystems, oder manchmal einer Komponente davon, in Bezug auf die zu erwartende Single Thread Performance zu bewerten.

Genug der Vorrede, was uns jetzt interessiert sind die Moeglichkeiten, Single Thread Performance zu messen und natuerlich zu vergleichen.

Das erste, was einem hierzu einfaellt ist ein kleines Testprogramm.  Irgend etwas, von dem wir wissen dass es single threaded  ist und eine Weile dauert.  Je nachdem, was man im taeglichen Leben so macht, koennte das ein kleines Shell-Skript sein, das von 1 bis 1 Million zaehlt, ein SQL-Loop der Fibonacci-Zahlen berechnet oder ein kleines Programm zur Erzeugung kryptographischer Hashes.  Aber bekommen wir damit, was wir wirklich wollen - ein zuverlaessiges Mass der allgemeinen Single Thread Performance eines Systems?  Immerhin sind die Anforderungen all dieser Micro-Benchmarks sehr unterschiedlich.  Manche bevorzugen grosse Caches um die Memory-Latenz zu verstecken.  Andere brauchen hohen Memory-Durchsatz, wieder andere skalieren einfach mit der CPU-Taktrate.  Wie wuerden wir daher die allgemeine Single Thread Leistung eines Systems fuer diese sehr unterschiedlichen Anforderungen bewerten?  Hier ein Beispiel.  Das Diagram zeigt die Leistung verschiedener Tests einer kleinen Testsuite, die ich auf jedem SPARC-System laufen lasse, das ich in die Finger bekomme.  Was die Tests machen, ist nicht interessant.  Wichtig ist, dass sie alle single threaded laufen und nur CPU-gebunden sind

Folgendes ist dabei wichtig:

  1. Test 1 scheint sehr cache-freundlich zu sein - die 3 CPUs mit Caches groesser als 8MB liegen deutlich vorn.  Auch scheint dieser Test von Cache mehr zu profitieren als von Taktrate, da die 1.8 GHz CPU knapp vor der 2.66 GHz CPU liegt. 
  2. All die anderen Tests skalieren ungefaehr mit der Taktrate, das 3.6 GHz System liegt daher vorn.
  3. Es gibt kein festes Verhaeltnis von Leistung und Taktrate.  In Test 1 liegen alle Ergebnisse sehr nahe beinander, waehrend die Unterschiede in Tests 3 und 4 stark schwanken.

Das alles fuehrt letzten Endes zu der Erkenntnis: Single Thread Performance haengt in erster Linie von der Anwendung und den Daten ab - es gibt keine allein selig machende Antwort.  Das sollte natuerlich keine Ueberraschung sein, letztlich ist das bei jedem Benchmark so.  Bei der Bewertung von Single Thread Performance ist es jedoch besonders wichtig, da hier die Unterschiede besonders stark zu Tage treten.  Ein letzter Blick auf das obige Diagramm:  In Test 1 ist das 2.66 GHz System ca. 1/3 schneller als das 2.85 GHz System, und ungefaehr gleich schnell wie das mit 1.8 GHz.  Gemaess Tests 2 und 3 jedoch ist das 1.8 GHz System deutlich schneller als das 2.66 GHz System, aber alle anderen sind schneller als diese beiden.  Das Problem bei der ganzen Sache ist: Man weiss nie, welchen Fall man mit dem jeweils bevorzugten Testprogramm gerade erwischt.  Egal was man testet, egal wie die Resultate ausfallen, es ist zumindest sehr schwierig, damit Performancevorhersagen zu treffen.

Aber vielleicht helfen ja die "offiziellen" Benchmarks weiter.  Der einzige einigermassen relevante, der sich (noch) mit Single Thread Performance beschaeftigt ist SPECcpu2006.  Der Einfachheit halber beschraenke ich mich in dieser Betrachtung auf CINT2006.  Es gibt zwei Varianten davon, den single threaded SPECint_2006 und die Durchsatzvariante SPECint_rate2006.  Da uns Single Thread Performance interessiert, ist SPECint_2006 die natuerliche Wahl.  Leider gibt es auch hier zwei Probleme:
  1. SPECint_2006 ist nicht wirklich single threaded.  Einige der Teilbenchmarks koennen von modernen Compilern sehr gut parallelisiert werden.  Das wird von den Benchmark-Regeln erlaubt und natuerlich oft benutzt.
  2. Nicht alle Hersteller veroeffentlichen SPECint_2006.  Es gibt sehr viele Veroeffentlichungen von SPECint_rate2006 aber sehr viel weniger Veroeffentlichungen der entsprechenden single thread Variante des gleichen Systems.

Wegen dieser Probleme scheint auch SPEC CPU2006 nicht die Antwort auf unsere Frage zu liefern.  Es gibt jedoch viele die meinen, dieses Problem umgehen zu koennen.  Sie argumentieren ungefaehr so:

"SPECint_rate2006 ist nichts anderes als ein paralleler Lauf vieler Kopien von SPECint_2006 auf einem groesseren System.  Wenn ich also die Single Thread Performance dieses Systems wissen moechte, muss ich einfach nur das SPECint_rate2006 Ergebnis durch die Anzahl der CPU Threads oder evtl. durch die Anzahl der verwendeten Kopien, die in der Veroeffentlichung dokumentiert sind teilen, um das Single Thread Ergebnis zu bekommen."

Das klingt eigentlich ganz einfach.  Aber funktioniert es?  Das laesst sich anhand einiger Beispiele ueberpruefen, bei denen es gluecklicher Weise Ergebnisse fuer SPECint_2006 und SPECint_rate2006 gibt.  Um die Betrachtung einfach zu halten, werde ich hier nur den Sub-Benchmark perlbench betrachten, nicht das Gesamtergebnis.  Wer moechte, kann das gerne mit anderen Sub-Benchmarks ueberpruefen.

System SPECint_2006 perlbench SPECint_rate2006 perlbench Number of copies SPECint_rate2006 perlbench / Anzahl der Kopien
Genauigkeit der Single Thread Schaetzung
M3000 16.4 83.5 8 10.4 64%
Power780 4.14 GHz 28.1 1120 128 8.75 31%
Sun Fire X4-2
(Intel Xeon E5-2697 v2 2.7GHz)
41
894
96 9.3
23%

Alle diese Werte sind von spec.org vom 17. Maerz 2014.  Die jeweiligen Werte sind mit ihren Gesamt-Veroeffentlichungen auf spec.org verlinkt.

Es wird sehr deutlich, dass eine Abschaetzung der Single Thread Performance mit diesem einfachen Vorgehen nicht funktioniert.  Warum nicht?  Weil die heutigen CPUs alle multi-threading CPUs sind.  Sie haben nicht nur alle mehrere Kerne, die sich L2 oder L3 Caches und die Memory-Bandbreite teilen.  Sie haben darueber hinaus mehrere Threads, die sich einen Kern teilen.  Der Sinn dieser Threads liegt in einer hoeheren Kernauslastung:  Ein einzelner Thread ist nicht in der Lage, die modernen, schnell laufenden Kerne auch nur annaehernd auszulasten, hauptsaechlich weil die Memory-Latenz mit der Entwicklung der CPU-Taktraten nicht schrittgehalten hat.  Das bedeutet, dass ein zweiter, dritter oder vierter Thread in der Lage ist, zusaetzliche Arbeit zu verrichten ohne die anderen auf diesem Kern laufenden Threads wesentlich zu beeinflussen.  Natuerlich gibt es den Punkt, ab dem der Kern im Wesentlichen ausgelastet ist und daher die zusaetzliche Arbeit, die durch weitere Threads ausgefuehrt wird, mit zunehmender Threadanzahl abnehmen wird.  Das Diagram rechts stellt diesen Zusammenhang idealisiert dar.  Je nach Charakteristik der Rechenlast variiert die optimale Anzahl von Threads zwischen 1 und 8.  Das ist normal und im taeglichen Betrieb eines Rechenzentrums liefern diese CPUs daher hervorragenden Durchsatz.  Allerdings ist es fuer die Kapazitaetsplanung manchmal eine Herausforderung.  Im Falle einer Benchmark-Konfiguration fuer einen Durchsatz-Benchmark wie SPECint_rate2006 jedoch ist maximaler Durchsatz das einzige Ziel.  Daher sind auch die bspw. 2%, die ein weiterer Thread zum Gesamtergebnis noch beitraegt willkommen.  Durchsatz-Benchmarks wie SPECint_rate2006 oder SAP SD 2 Tier werden fuer maximalen Durchsatz optimiert. 

Das bedeutet jedoch zwingend, dass die durchschnittliche Leistung pro Thread deutlich unter der potentiellen Maximalleistung eines Threads liegt.  Und deswegen kann dieser Durchschnitt nicht zur Bewertung der Single Thread Performance herangezogen werden.

Aber welchen anderen Ausweg gibt es?  Hier hilft eine Rueckbesinnung auf das, was wir wirklich wissen wollen.  Single Thread Performance ist ja kein Wert an sich.  Sie hat einen Zweck.  In den meisten Faellen geht es um die Antwortzeit einer Anwendung - Antwortzeit, die unsere Erwartungen erfuellt oder unterschreitet.  Gluecklicher Weise gibt es einen Benchmark, der genau diese Anforderungen stellt:  SPECjbb2013.  Nun weiss ich natuerlich, dass dieser Benchmark sich speziell mit den Anforderungen an einen Application Server befasst.  Was sich stark von denen an bspw. ein Datawarehouse unterscheidet.  Nichts desto Trotz liefert er uns zuverlaessige Hinweise ueber die Single Thread Performance und, noch wichtiger, liefert er uns Hilfen zum Verstaendnis von Single Thread Performance im Vergleich verschiedener Systeme (wenn denn Ergebnisse vorhanden sind...)

Daher also nun ein kurzer Blick auf SPECjbb2013 und wie dieser Benchmark uns vielleicht helfen kann, unsere Frage zu beantworten:

Die Ergebnisse von SPECjbb2013 werden in zwei Werten gemessen:  max-jOPS und critical-jOPS.  max-jOPS ist dabei ein reiner Durchsatz-Wert, der diese Diskussion nicht weiter bringt.  critical-jOPS hingegen ist "a metric that measures critical throughput under service level agreements (SLAs) specifying response times ranging from 10ms to 500ms." (Zitat aus der Benchmark Beschreibung von SPEC.)  Es wird also Durchsatz unter einer Antwortzeiten-Bedingung gemessen.  Damit entsteht ein hoher Druck sowohl auf das System als auch auf die Benchmark-Teams.  Sie muessen das System fuer die sehr realistische Anforderung optimieren, niedrig-latente Antworten bei gleichzeitig hohem Durchsatz zu liefern.  Wie hilft uns das nun auf unserer Suche nach einem Vergleich der Single Thread Performance weiter?  Nun, angenommen wir haben zwei Systeme mit vergleichbarer Konfiguration und Preis.  System A liefert 10000 max-jOPS und 5000 critical-jOPS.  System B liefert 7500 max-jOPS und 6000 critical-jOPS.  System A schafft also einen hoeheren Durchsatz, allerdings nur, solange wir die Antwortzeiten ignorieren.  Der Durchsatz mit System B ist dagegen nicht so hoch, das System schafft jedoch mehr critical-jOPS als System A.  Das ist fuer uns ein Hinweis, dass die Single Thread Performance von System B besser ist als die von System A - es schafft einen hoeheren Durchsatz unter Antwortzeit-Bedingungen.  Zugegeben, auch das ist nicht die "allein selig machende" Antwort auf die Frage nach der absoluten Single Thread Performance, die wir evtl. gesucht haben.  Eine Aussage der Art "System A hat eine 3x hoehere Single Thread Performance als System B" wird es nicht geben.  Das liegt u.A. daran, dass Durchsatz und die Art und Weise wie ein System skaliert und mit einer hoch skalierenden Last umgeht eine grosse Rolle in diesem Benchmark spielt.  Es ist jedoch ein sehr realistisches Szenario das uns einige belastbare Hinweise gibt, was wir bzgl. der Single Thread Performance von verschiedenen Maschinen erwarten koennen.  Wie mit jedem anderen Benchmark auch, muessen diese Schlussfolgerungen natuerlich spezifisch fuer die jeweilige Anwendung, die verwendeten Daten, die Test-Umstaende und aehnliches sein.  Aber SPECjbb2013 ist ein gutest Beispiel dafuer, wie man Hinweise auf Single Thread Performance bekommen kann.

Eine letzte Bemerkung zu SPECjbb2013:  Die Benchmark Teams der verschiedenen Hersteller fangen gerade erst an, diesen neuen Benchmark zu verstehen.  So gibt es bspw. 3 Resultate fuer die Oracle SPARC T5-2, mit critical-jOPS Werte von 23334 bis 43963.  Das macht deutlich, dass man hier vorsichtig vorgehen sollte, moechte man nicht Aepfel mit Birnen vergleichen.  Der Loewenanteil an diesen Unterschieden ist auf die verwendete Java-Version zurueck zu fuehren.  Das erste Ergebnis wurde mit JDK 7u17 erzielt, das zweite, 1.89x bessere mit dem kuerzlich angekuendigten Java 8 JDK.  Das zeigt nicht nur, dass man bei Vergleichen die Software Version beruecksichtigen muss sondern auch, wie Vorteilhaft es sein kann, eine neue Version einzusetzen.  Gluecklicher Weise gibt es zunehmend mehr Einreichungen fuer diesen Benchmark, so dass es in Zukunft hoffentlich einfacher wird, Vergleiche anzustellen.

Geschafft - das war eine etwas lange Antwort auf eine kurze Frage...  Fuer all diejenigen, die noch mehr wissen moechte, hier noch ein paar Vorschlaege:

Vielen Dank an Ruud van der Pas und Patrick McGehearty fuer Ihre Beitraege zu diesem Eintrag!

Benchmark Disclosures:
SPEC and the benchmark names SPECjbb2013 and SPECint are registered trademarks of the Standard Performance Evaluation Corporation. Results as of March 17, 2014 from www.spec.org

Montag Jun 24, 2013

Das T5-4 TPC-H Ergebnis naeher betrachtet

Inzwischen haben vermutlich viele das neue TPC-H Ergebnis der SPARC T5-4 gesehen, das am 7. Juni bei der TPC eingereicht wurde.  Die wesentlichen Punkte dieses Benchmarks wurden wie gewohnt bereits von unserer Benchmark-Truppe auf  "BestPerf" zusammengefasst.  Es gibt aber noch einiges mehr, das eine naehere Betrachtung lohnt.

Skalierbarkeit

Das TPC raet von einem Vergleich von TPC-H Ergebnissen in unterschiedlichen Groessenklassen ab.  Aber auch innerhalb der 3000GB-Klasse ist es interessant:

  • SPARC T4-4 mit 4 CPUs (32 Cores mit 3.0 GHz) liefert 205,792 QphH.
  • SPARC T5-4 mit 4 CPUs (64 Cores mit 3.6 GHz) liefert 409,721 QphH.

Das ist nicht ganz 100% Skalierbarkeit, wenn man davon ausgeht, dass die doppelte Anzahl Kerne das doppelte Ergebnis liefern sollte.  Etwas anspruchsvoller, koennte man natuerlich auch einen Faktor von 2.4 erwarten, wenn man die hoehere Taktrate mit beruecksichtigt.   Da das TPC keine Schaetzungen und andere Zahlenspielereien erlaubt, ueberlasse ich das dem Leser.  Jetzt jedoch ein Blick auf einige Details, die eine moegliche Erklaerung liefern koennen:

Plattenspeicher

Im Bericht auf BestPerf und auch im Full Disclosure Report der TPC stehen einige interessante Details zum Plattenspeicher und der Konfiguration.   In der Konfiguration der SPARC T4-4 wurden 12 2540-M2 Arrays verwendet, die jeweils ca. 1.5 GB/s Durchsatz liefert, insgesamt also eta 18 GB/s.  Dabei waren die Arrays offensichtlich mit jeweils 2 Kabeln pro Array direkt an die 24 8GBit FC-Ports des Servers angeschlossen.  Mit den 2x 8GBit Ports pro Array koennte man so ein theoretisches Maximum von 2GB/s erreichen.  Tatsaechlich wurden 1.5GB/s geliefert, was so ziemlich dem realistischen Maximum entsprechen duerfte.

Fuer den Lauf mit der SPARC T5-4 wurden doppelt so viele Platten verwendet.  Dafuer wurden die 2540-M2 Arrays mit je einem zusaetzlichen Plattentray erweitert.  Mit dieser Konfiguration wurde dann (laut BestPerf) ein Maximaldurchsatz von 33 GB/s erreicht - nicht ganz das doppelte des SPARC T4-4 Laufs.  Um tatsaechlich den doppelten Durchsatz (36 GB/s) zu liefern, haette jedes der 12 Arrays 3 GB/s ueber seine 4 8GBit Ports liefern muessen.  Im FDR stehen nur 12 dual-port FC HBAs, was die Verwendung der Brocade FC Switches erklaert: Es wurden alle 4 8GBit ports jedes Arrays an die Switches angeschlossen, die die Datenstroeme dann in die 24 16GBit HBA ports des Servers buendelten.  Diese Konfiguration liefert ein theoretisches Maximum von 48x8GBbit FC Bandbreite von den Arrays an die 24 FC Ports des Servers.  Das theoretische Maximum jedes Storage-Arrays waere nun 4 GB/s.  Wenn man jedoch den Protokoll- und "Realitaets"-Overhead mit einrechnet, sind die tatsaechlich gelieferten 2.75 GB/s gar nicht schlecht.  Mit diesen Zahlen im Hinterkopf ist die Verdopplung des SPARC T4-4 Ergebnisses eine gute Leistung - und gleichzeitig eine moegliche Erklaerung, warum nicht bis zum 2.4-fachen skaliert wurde.  Aber natuerlich koennte es auch andere Gruende wie bspw. Software-Skalierbarkeit geben, die hier eine Rolle spielten.

Nebenbei bemerkt: Weder die SPARC T4-4 noch die SPARC T5-4 hatten in der gemessenen Konfiguration irgendwelche Flash-Devices.

Mitbewerb

Seit die T4 Systeme auf dem Markt sind, bemuehen sich unsere Mitbewerber redlich darum, ueberall den Eindruck zu hinterlassen, die Leistung des SPARC CPU-Kerns waere weiterhin mangelhaft.  Auch scheinen sie ueberzeugt zu sein, dass (ueber)grosse Caches und hohe Taktraten die einzigen Schluessel zu echter Server Performance seien.  Wenn ich mir nun jedoch die oeffentlichen TPC-H Ergebnisse ansehe, sehe ich dies:

TPC-H @3000GB, Non-Clustered Systems
System QphH
SPARC T5-4
3.6 GHz SPARC T5
4/64 – 2048 GB
409,721.8
SPARC T4-4
3.0 GHz SPARC T4
4/32 – 1024 GB
205,792.0
IBM Power 780
4.1 GHz POWER7
8/32 – 1024 GB
192,001.1
HP ProLiant DL980 G7
2.27 GHz Intel Xeon X7560
8/64 – 512 GB
162,601.7

Kurz zusammengefasst: Mit 32 Kernen (mit 3 GHz und 4MB L3 Cache), liefert die SPARC T4-4 mehr QphH@3000GB ab als IBM mit ihrer 32 Kern Power7 (bei 4.1 GHz und 32MB L3 Cache) und auch mehr als HP mit einem 64 Kern Intel Xeon System (2.27 GHz und 24MB L3 Cache).  Ich frage mich, wo genau SPARC hier mangelhaft ist?

Nun koennte man natuerlich argumentieren, dass beide Ergebnisse nicht gerade neu sind.  Nun, in Ermangelung neuerer Ergebnisse kann man ja mal ein wenig spekulieren:

IBMs aktueller Performance Report listet die o.g. IBM Power 780 mit einem rPerf Wert von 425.5.  Ein passendes Nachfolgesystem mit Power7+ CPUs waere die Power 780+ mit 64 Kernen, verfuegbar mit 3.72 GHz.  Sie wird mit einem rPerf Wert von  690.1 angegeben, also 1.62x mehr.  Wenn man also annimmt, dass Plattenspeicher nicht der limitierende Faktor ist (IBM hat mit 177 SSDs getestet, sie duerfen das gerne auf 400 erhoehen) und IBMs eigene Leistungsabschaetzung zugrunde legt, waere IBM dennoch nicht in der Lage, die Leistung des Power7 Systems zu verdoppeln.  Und sie wuerden ja mehr als das brauchen, um an die Leistung der T5-4 heran zu kommen.  Das ist insbesondere in der von IBM so geschaetzten "per core" Metric schmerzlich.

In der x86-Welt sieht es nicht besser aus.  Leider gibt es von Intel keine so praktischen rPerf-Tabellen.  Daher muss ich hier fuer eine Schaetzung auf SPECint_rate2006 zurueckgreifen.  (Ich bin kein grosser Fan von solchen Kreuz- und Querschaetzungen.  Insb. SPECcpu ist nicht besonders geeignet, um Datenbank-Leistung abzuschaetzen, da fast kein IO im Spiel ist.)  Das o.g. HP System wird bei SPEC mit 1580 CINT2006_rate gelistet.  Das bis einschl. 2013-06-14 beste Resultat fuer den neuen Intel Xeon E7-4870 mit 8 CPUs ist 2180 CINT2006_rate.  Das ist immerhin 1.38x besser.  (Wenn man nur die Taktrate beruecksichtigen wuerde, waere man bei 1.32x.)  Hier weiter zu rechnen, ist muessig und ich ueberlasse das gern dem Leser.  Die Ergebnisse sind fuer x86 nicht gerade ermutigend...

Natuerlich sind IBM oder HP herzlich eingeladen, diese Werte zu widerlegen.  Aber stand heute warte ich noch auf aktuelle Benchmark Veroffentlichungen in diesem Datensegment.

Was koennen wir also zusammenfassen?

  • Es gibt einige Hinweise, dass der Plattenspeicher der begrenzende Faktor sein koennte, der die SPARC T5-4 daran hinderte, auf jenseits von 2x zu skalieren
  • Der Mythos, dass SPARC Kerne keine Leistung bringen, ist genau das - ein Mythos.  Wie sieht es umgekehrt eigentlich mit einem TPC-H Ergebnis fuer die Power7+ aus?
  • Cache ist nicht der magische Performance-Schalter, fuer den ihn manche Leute offenbar halten.
  • Ein System, eine CPU-Architektur und ein Betriebsystem jenseits einer gewissen Grenze zu skalieren ist schwer.  In der x86-Welt scheint es noch ein wenig schwerer zu sein.

Was fehlt?  Nun, das Thema Preis/Leistung ueberlasse ich gerne den Verkaeufern ;-)

Und zu guter Letzt: Nein, ich habe mich nicht ins Marketing versetzen lassen.  Aber manchmal kann ich mich einfach nicht zurueckhalten...


Disclosure Statements

The views expressed on this blog are my own and do not necessarily reflect the views of Oracle.

TPC-H, QphH, $/QphH are trademarks of Transaction Processing Performance Council (TPC). For more information, see www.tpc.org, results as of 6/7/13. Prices are in USD. SPARC T5-4 409,721.8 QphH@3000GB, $3.94/QphH@3000GB, available 9/24/13, 4 processors, 64 cores, 512 threads; SPARC T4-4 205,792.0 QphH@3000GB, $4.10/QphH@3000GB, available 5/31/12, 4 processors, 32 cores, 256 threads; IBM Power 780 QphH@3000GB, 192,001.1 QphH@3000GB, $6.37/QphH@3000GB, available 11/30/11, 8 processors, 32 cores, 128 threads; HP ProLiant DL980 G7 162,601.7 QphH@3000GB, $2.68/QphH@3000GB available 10/13/10, 8 processors, 64 cores, 128 threads.

SPEC and the benchmark names SPECfp and SPECint are registered trademarks of the Standard Performance Evaluation Corporation. Results as of June 18, 2013 from www.spec.org. HP ProLiant DL980 G7 (2.27 GHz, Intel Xeon X7560): 1580 SPECint_rate2006; HP ProLiant DL980 G7 (2.4 GHz, Intel Xeon E7-4870): 2180 SPECint_rate2006,

Montag Mai 14, 2012

Benchware Test der T4

Es gibt einen recht gruendlichen Leistungsvergleich zwischen M5000 und T4-2, den ich jedem nur empfehlen kann der sich immer noch fragt, ob diese TPC-H Weltrekorde wirklich moeglich sind:

Den Testbericht gibt es auf der Benchware Webseite - dort unter "Benchmarks" nach T4 suchen.

Und hier natuerlich der Link zu den TPC-H Ergebnissen.  Interessant wird es bei 1000GB und 3000GB ;-)

(Nein, ich wurde nichts ins Marketing versetzt.  Ich denke nur, dass dieser Test es verdient hat auf einem Blog erwaehnt zu werden, bei dem es unter Anderem um Performance geht.)

Dienstag Apr 17, 2012

Solaris Zones: Virtualisierung beschleunigt Benchmarks!

Wenn ich mich mit Kunden ueber Virtualisierung unterhalte ist eine der ersten Fragen oft die nach dem Overhead.  Nun wissen wir ja alle, dass Virtualisierung mit Hypervisoren nicht ohne Overhead zu machen ist.  Was wir ebenfalls alle wissen sollten ist, dass es stark vom Lastprofil und dem verwendeten Hypervisor abhaengt, wie gross dieser Overhead jeweils ausfaellt.  Zwar gab es schon einige Versuche, dies in standardisierten Benchmarks zu quantifizieren.  Dennoch bleibt die Antwort auf diese Frage noch immer in den Nebeln von Marketing und Benchmark-Unschaerfe verborgen.  Erstaunen erlebe ich jedoch regelmaessig, wenn ich zu Solaris Zonen (bei Solaris 10 hiessen sie noch Container) als Alternative zur Virtualisierung mit Hypervisoren komme. Solaris Zonen sind, grob vereinfacht, nichts weiter sind als eine Menge von Unix Prozessen, abgegrenzt durch einen Regelsatz der vom Solaris Kernel durchgesetzt wird.  Daher ist es einleuchtend, dass hier nicht besonders viel Overhead anfallen kann.  Dennoch wird die Behauptung von "Zero Overhead" oft angezweifelt, gerade auch weil vielen heute Virtualisierung per Hypervisor sehr nahe ist.  Und so sehr ich die Erklaerung mit technischen Details ueberzeugend finde, so sehr verstehe ich auch, dass sehen viel besser ist als glauben.   Daher:

Die Benchmark-Teams bei Oracle sind so ueberzeugt von den Vorteilen der Solaris Zonen, dass sie diese fuer die veroeffentlichten Benchmarks verwenden.  Das Solaris Resource Management funktioniert natuerlich auch ohne Zonen, aber Zonen machen es so viel einfacher, insb. in Verbindung mit den teilweise recht komplexen Benchmark-Konfigurationen.  Es gibt zahlreiche Benchmark-Veroeffentlichungen bis zurueck in die Tage der T5440, in denen Solaris Container zur Anwendung kommen.  Einige aktuelle Beispiele, alles Weltrekorde, sind:

Die genaue verwendung der Zonen ist in der jeweiligen Benchmark-Beschreibung dokumentiert.

Darueber hinaus hat das Benchmark-Team in einem Blogeintrag beschrieben, wie sie das Solaris Resource Management und Zonen verwenden, um die Anwendungsleistung zu erhoehen.  Das verleitet fast dazu, von "negativem Overhead" zu sprechen, waere der Begriff nicht so irrefuehrend.

Mittwoch Apr 15, 2009

UltraSPARC T2 haelt auch Nehalem Stand

Die neuen Intel Xeon X5570 Systeme sind da!  Und wer sich die SPECint-Werte der neuen CPU ansieht erwartet sicher viel von ihnen.  Zurecht, wie die ersten Anwendungsbenchmarks zeigen.  Das  Dual-Socket System Sun X4270 stellt einen neuen Weltrekord beim SAP SD 2-Tier Benchmark unter Verwendung von Unicode auf.  Die Verwendung von Solaris 10 und Oracle macht es dabei moeglich, gleichartige Systeme von HP mit Windows und SQL Server auf die nachfolgenden Plaetze zu verweisen.  


Bemerkenswert ist, dass die bereits mehr als ein Jahr verfuegbare CMT-CPU UltraSPARC T2Plus sich in diesem Benchmark aehnlich gut schlaegt.  Zwar ohne Unicode, aber dafuer mit etwas besserer Leistung.   Auch bei SPECweb2005 schneided die aeltere CPU recht gut ab - immerhin 57% der Leistung der X4570 - mit 50% der Sockel ;-)  CMT Rocks - auch ohne tick tock...


Nachtrag:  Die Verwendung von Unicode ist deutlich CPU-Intensiver.  Damit sind Unicode und Non-Unicode Ergebnisse nicht direkt vergleichbar.  Die wenigen Ergebnisse hierzu, die auf vergleichbarer Hardware einmal mit und einmal ohne Unicode veroeffentlicht wurden legen einen Unterschied von ca. 1.6 nahe.  Damit wuerde eine T5240 immer noch geschaetze 13000 Unicode-SAPS liefern...

Freitag Okt 10, 2008

Unerwartete Parallelisierung - Threads all ueberall

SPECint2006 ist, anders als der auf Skalierung setzende SPECint_rate2006 ein CPU-Benchmark, der die Singlethread-Leistung einer CPU misst.  Doch seit auch Intel und AMD erkannt haben, dass Taktfrequenzsteigerungen keine Leistungssteigerungen mehr bringen, wird in den Entwicklungsabteilungen der Compilerbauer intensiv, und offenbar erfolgreich, an den Parallelisierungsmoeglichkeiten der Compiler gearbeitet.  Und diese Arbeit bringt nun erste Fruechte, zu sehen an den neuesten Ergebnissen von SPECint2006.  Mein Kollege Lawrence Spracklen hat sie untersucht.  Sein Fazit: "So much for single-threaded performance improvements :-)"  Mein Fazit: Die Einsatzgebiete von CMT-Technologie werden durch die Kombination dieser Entwicklung mit der zunehmenden Verbreitung paralleler Programmiertechniken immer universeller werden.  Und daß sich auch bei diesen Programmiertechniken einiges tut, kann man an der baldigen Verfuegbarkeit von Transactional Memory sehen...

Mittwoch Apr 16, 2008

Memory-Bandbreite der 2-Sockel T2+

Ein Kollege hat die Memory-Bandbreite der 2-Sockel Systeme mit dem bekannten "Stream" Benchmark gemessen.  Bis zu ca. 30 GB/sec. sind gar nicht so schlecht...  Fuer die Ein-CPU Systeme hat die RWTH Aachen bspw. ca. 16GB/sec. gemessen, die Uni Erlangen ca. 12GB/sec, im Peak 16GB/sec (Details in PDF).  Damit sollte auch geklaert sein, dass die Anzahl der Memory-Controller pro CPU nicht das allein ausschlaggebende Element bei der Bestimmung der tatsaechlichen Bandbreit sein muss.

Benchmarken ist eine Kunst...

Ich mache jetzt 8 Jahre Benchmarks.  In dieser Zeit ist mir so das eine oder andere untergekommen, nicht zuletzt auch der eine oder andere Fall, in dem nicht das Testsystem, sondern der Lastgenerator gemessen wurde.  Soll ja vorkommen, und schliesslich machen die meisten Leute so etwas nicht regelmaessig.  Bis auf die Profis eben, die u.A. jeder Hardwarehersteller dafuer bezahlt, dass sie so Benchmarks wie z.B. den SPEC CPU2006 auf neuer Hardware solange tunen, bis ein optimaler, fuer den Hersteller natuerlich guenstiger Wert, dabei herauskommt.  Wobei natuerlich streng darauf geachtet wird, dass dieser Wert auch reproduzierbar ist - schliesslich will man sich ja auch seine Glaubwuerdigkeit nicht beschaedigen.

Jetzt lese ich neulich in einer renomierten deutschen IT-Zeitschrift davon, dass ein Redakteur versucht hat, eben diesen Benchmark, den SPEC CPU2006, auf einer T5220 nachzumessen.  Das ist nicht verkehrt, schliesslich ist Reproduzierbarkeit ein Ziel solcher Benchmarks.  Wie das bei aufwendigeren Benchmarks so ueblich ist, stiess auch dieser Redakteur auf gewisse Schwierigkeiten.  Die einzelnen Jobs dauerten lange - zu lange fuer die ihm zur Verfuegung stehende Zeit auf dem Testsystem.  Desweiteren konnte er mangels Hauptspeicher nicht die Maximalzahl der Jobs starten, die er fuer das Nachstellen der offiziellen Werte gebraucht haette.  Dass sein Testsystem nicht mit 1.4 GHz, sondern nur mit 1.2 GHz getaktet war, war da dann auch nicht mehr wesentlich.  

Weil also nur ein einzelner Job tatsaechlich durchlief (einer von 64), und weil der Hauptspeicher fuer 64 Jobs und die Zeit fuer die Jobs mit z.B. 16 oder 32 Threads fehlte, blieb dem Redakteur nichts anderes uebrig, als das Ergebnis seines Einzellaufs hochzurechnen.  Er war enttaeuscht, dass 100% Skalierung bei einem Messpunkt am unteren Ende nicht zu erreichen war.

Das alles ist nicht ungewoehnlich.  Zeit gibt es bei Benchmarks eigentlich nie ausreichend.  Und man darf kaum erwarten, dass ein erster Schuss mit einer doch eher grossen Benchmark-Suite wie dem SPEC CPU2006 gleich sitzt.  Enttaeuscht war ich jedoch von den Schlussfolgerungen:

Weil Sun die Werte mit 64GB Hauptspeicher gerechnet hat schliesst der Redakteur, dass die CPU nur mit diesem Speicherausbau die entsprechende Leistung bringt.  Ja, natuerlich braucht die Benchmarksuite 64GB RAM, wenn man 64 Threads davon testen will.  Aber wenn die tatsaechlich bei einem Kunden im Einsatz befindliche Anwendung fuer 64 Threads weniger Hauptspeicher benoetigt, hat es doch die selbe CPU zur Verfuegung, oder?

Weiter wird in Frage gestellt, ob denn 64GB RAM in "professionellen Umgebungen" ueblich sind.  Ist das nicht ganz stark davon abhaengig, welche Anwendung dieser Profi benoetigt?  Und die Leistungsfaehigkeit haengt ja, siehe oben, nicht vom RAM-Ausbau ab.  (Jedenfalls nicht erheblich - die Memory-Bandbreite ist durchaus von der Anzahl der DIMMs abhaengig, aber man kann ja auch 16 1GB DIMMs einbauen....)

Ich koennte jetzt noch weiter gehen und kleinere Unstimmigkeiten in diesem Artikel aufzaehlen.  Aber das fuehrt zu nichts.  Nur schade, dass es dem Redakteur nicht gelungen ist, nach dem einen SPEC CPU2006-Job und dem Nachschlagen von SPECjbb2005 noch weitere Benchmarks (wie z.B. Lotus Notes, SAP SD, SPECweb2005) zu betrachten, oder in einigen Blogs ( RWTH Aachen, Uni Erlangen) zu lesen, was an echtem Number-Crunching interessierte Forscher von der CPU halten.  Aber letztlich ist es eben doch eine Kunst, das Benchmarken.

About

Neuigkeiten, Tipps und Wissenswertes rund um SPARC, CMT, Performance und ihre Analyse sowie Erfahrungen mit Solaris auf dem Server und dem Laptop.

This is a bilingual blog (most of the time). Please select your prefered language:
.
The views expressed on this blog are my own and do not necessarily reflect the views of Oracle.

Search

Categories
Archives
« April 2014
MoDiMiDoFrSaSo
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
    
       
Heute