X

Everything you want and need to know about Oracle SPARC systems performance

SHA Digest Encryption: SPARC T7-2 Beats x86 E5 v4

Brian Whitney
Principal Software Engineer

Oracle's cryptography benchmark measures security performance on important Secure Hash Algorithm (SHA) functions. Oracle's SPARC M7 processor with its security software in silicon is faster than current and recent x86 servers. In this test, the performance of on-processor digest operations is measured for three sizes of plaintext inputs (64, 1024 and 8192 bytes) using three SHA2 digests (SHA512, SHA384, SHA256) and the older, weaker SHA1 digest. Multiple parallel threads are used to measure each processor's maximum throughput. Oracle's SPARC T7-2 server shows dramatically faster digest computation compared to current x86 two processor servers.

  • SPARC M7 processors running Oracle Solaris 11.3 ran 10 times faster computing multiple parallel SHA512 digests of 8 KB inputs (in cache) than Cryptography for Intel Integrated Performance Primitives for Linux (library) on Intel Xeon Processor E5-2699 v4 running Oracle Linux 7.2.

  • SPARC M7 processors running Oracle Solaris 11.3 ran 10 times faster computing multiple parallel SHA256 digests of 8 KB inputs (in cache) than Cryptography for Intel Integrated Performance Primitives for Linux (library) on Intel Xeon Processor E5-2699 v4 running Oracle Linux 7.2.

  • SPARC M7 processors running Oracle Solaris 11.3 ran 3.6 times faster computing multiple parallel SHA1 digests of 8 KB inputs (in cache) than Cryptography for Intel Integrated Performance Primitives for Linux (library) on Intel Xeon Processor E5-2699 v4 running Oracle Linux 7.2.

  • SPARC M7 processors running Oracle Solaris 11.3 ran 17 times faster computing multiple parallel SHA512 digests of 8 KB inputs (in cache) than Cryptography for Intel Integrated Performance Primitives for Linux (library) on Intel Xeon Processor E5-2699 v3 running Oracle Linux 6.5.

  • SPARC M7 processors running Oracle Solaris 11.3 ran 14 times faster computing multiple parallel SHA256 digests of 8 KB inputs (in cache) than Cryptography for Intel Integrated Performance Primitives for Linux (library) on Intel Xeon Processor E5-2699 v3 running Oracle Linux 6.5.

  • SPARC M7 processors running Oracle Solaris 11.3 ran 4.8 times faster computing multiple parallel SHA1 digests of 8 KB inputs (in cache) than Cryptography for Intel Integrated Performance Primitives for Linux (library) on Intel Xeon Processor E5-2699 v3 running Oracle Linux 6.5.

  • SHA1 and SHA2 operations are an integral part of Oracle Solaris, while on Linux they are performed using the add-on Cryptography for Intel Integrated Performance Primitives for Linux (library).

Oracle has also measured AES (CFB, GCM, CCM, CBC) cryptographic performance on the SPARC M7 processor.

Performance Landscape

Presented below are results for computing SHA1, SHA256, SHA384 and SHA512 digests for input plaintext sizes of 64, 1024 and 8192 bytes. Results are presented as MB/sec (10**6). All SPARC M7 processor results were run as part of this benchmark effort. All other results were run during previous benchmark efforts.

Digest Performance – SHA512

Performance is presented for SHA512 digest. The digest was computed for 64, 1024 and 8192 bytes of pseudo-random input data (same data for each run).

Processors Performance (MB/sec)
64B input 1024B input 8192B input
2 x SPARC M7, 4.13 GHz 39,201 167,072 184,944
2 x SPARC T5, 3.6 GHz 18,717 73,810 78,997
2 x Intel Xeon E5-2699 v4, 2.2 GHz 6,973 15,412 17,616
2 x Intel Xeon E5-2699 v3, 2.3 GHz 3,949 9,214 10,681
2 x Intel Xeon E5-2697 v2, 2.7 GHz 2,681 6,631 7,701

Digest Performance – SHA384

Performance is presented for SHA384 digest. The digest was computed for 64, 1024 and 8192 bytes of pseudo-random input data (same data for each run).

Processors Performance (MB/sec)
64B input 1024B input 8192B input
2 x SPARC M7, 4.13 GHz 39,697 166,898 185,194
2 x SPARC T5, 3.6 GHz 18,814 73,770 78,997
2 x Intel Xeon E5-2699 v4, 2.2 GHz 6,909 15,353 17,618
2 x Intel Xeon E5-2699 v3, 2.3 GHz 4,061 9,263 10,678
2 x Intel Xeon E5-2697 v2, 2.7 GHz 2,774 6,669 7,706

Digest Performance – SHA256

Performance is presented for SHA256 digest. The digest was computed for 64, 1024 and 8192 bytes of pseudo-random input data (same data for each run).

Processors Performance (MB/sec)
64B input 1024B input 8192B input
2 x SPARC M7, 4.13 GHz 45,148 113,648 119,929
2 x SPARC T5, 3.6 GHz 21,140 49,483 51,114
2 x Intel Xeon E5-2699 v4, 2.2 GHz 5,103 11,174 12,037
2 x Intel Xeon E5-2699 v3, 2.3 GHz 3,446 7,785 8,463
2 x Intel Xeon E5-2697 v2, 2.7 GHz 2,404 5,570 6,037

Digest Performance – SHA1

Performance is presented for SHA1 digest. The digest was computed for 64, 1024 and 8192 bytes of pseudo-random input data (same data for each run).

Processors Performance (MB/sec)
64B input 1024B input 8192B input
2 x SPARC M7, 4.13 GHz 47,640 92,515 97,545
2 x SPARC T5, 3.6 GHz 21,052 40,107 41,584
2 x Intel Xeon E5-2699 v4, 2.2 GHz 8,566 23,901 26,752
2 x Intel Xeon E5-2699 v3, 2.3 GHz 6,677 18,165 20,405
2 x Intel Xeon E5-2697 v2, 2.7 GHz 4,649 13,245 14,842
 

Configuration Summary

SPARC T7-2 server
2 x SPARC M7 processor, 4.13 GHz
1 TB memory
Oracle Solaris 11.3
 
SPARC T5-2 server
2 x SPARC T5 processor, 3.60 GHz
512 GB memory
Oracle Solaris 11.2
 
Oracle Server X6-2L system
2 x Intel Xeon Processor E5-2699 v4, 2.20 GHz
256 GB memory
Oracle Linux 7.2
Intel Integrated Performance Primitives for Linux, Version 9.0 (Update 2) 17 Feb 2016
 
Oracle Server X5-2 system
2 x Intel Xeon Processor E5-2699 v3, 2.30 GHz
256 GB memory
Oracle Linux 6.5
Intel Integrated Performance Primitives for Linux, Version 8.2 (Update 1) 07 Nov 2014
 
Sun Server X4-2 system
2 x Intel Xeon Processor E5-2697 v2, 2.70 GHz
256 GB memory
Oracle Linux 6.5
Intel Integrated Performance Primitives for Linux, Version 8.2 (Update 1) 07 Nov 2014
 

Benchmark Description

The benchmark measures cryptographic capabilities in terms of general low-level encryption, in-cache and on-chip using various digests, including SHA1 and SHA2 (SHA256, SHA384, SHA512).

The benchmark results were obtained using tests created by Oracle which use various application interfaces to perform the various digests. They were run using optimized libraries for each platform to obtain the best possible performance. The encryption tests were run with pseudo-random data of sizes 64 bytes, 1024 bytes and 8192 bytes. The benchmark tests were designed to run out of cache, so memory bandwidth and latency are not the limitations.

See Also

 

Disclosure Statement

Copyright 2016, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 4/13/2016.

Be the first to comment

Comments ( 0 )
Please enter your name.Please provide a valid email address.Please enter a comment.CAPTCHA challenge response provided was incorrect. Please try again.