Monday Oct 13, 2008

Sun's 4-chip CMT system raises the bar

Find out about Sun's new 4-chip UltraSPARC T2 Plus system direct from the source: Sun's engineers.

Sun today announced the 4-chip variant of its UltraSPARC T2 Plus system, the Sun SPARC Enterprise T5440. This new system is the big brother of the 2-chip Sun SPARC Enterprise T5140 and T5240 systems released in April 2008. Each UltraSPARC T2 Plus chip offers 8 hardware strands in each of 8 cores. With up to four UltraSPARC T2 Plus chips delivering a total of 32 cores and 256 hardware threads and up to 512Gbytes of memory in a compact 4U package, the T5440 raises the bar for server performance, price-performance, energy efficiency, and compactness. And with Logical Domains (LDoms) and Solaris Containers, the potential for server consolidation is compelling.

Standard configurations of the Sun SPARC Enterprise T5440 include 2- and 4-chip systems at 1.2 GHz, and a 4-chip system at 1.4 GHz. All of these configurations come with 8 cores per chip.

The blogs posted today by various Sun engineers offer a broad perspective on the new system. The system design, the various hardware subsystems, the performance characteristics, the application experiences - it's all here! And if you'd like some background on how we arrived at this point, check out the earlier UltraSPARC T2 blogs (CMT Comes of Age) and the first release of the UltraSPARC T2 Plus (Sun's CMT goes multi-chip).

Let's see what the engineers have to say (and more will be posted throughout the day):

For more information on the new Sun SPARC Enterprise T5440 server, check out this web page.

Sunday Oct 12, 2008

Sizing a Sun Enterprise SPARC T5440 Server

Today Sun released the Sun Enterprise UltraSPARC T5440 server, a wild beast caged in a tiny 4U package. Putting it into perspective, this system has roughly the same performance potential as four Enterprise 10000 (Starfire) systems. Compared to the T5440, the floor space, energy consumption, and cooling required by the four older Starfire systems doesn't bear thinking about, either.

In more modern terms, the T5440 will handily outperform two Sun Fire E2900 systems with 12 dual-core UltraSPARC IV+ chips. Not bad for just four UltraSPARC T2 Plus chips. And when you add in up to 512Gbytes of memory and plenty of I/O connectivity, that's a lot of system.

Using up all that horsepower gets to be an interesting challenge. There are some applications that can consume the entire system, as demonstrated by some of the benchmarks published today. But for the most part, end users will be expecting to find other ways of deploying the considerable resources delivered by the system. Let's take a brief look at some of the issues to consider.

The first important factor is that the available resource is delivered in the form of many hardware threads. A four-chip T5440 delivers 32 cores with a whopping 256 hardware threads, and the Operating System in turn sees 256 CPUs. Each "CPU" has lower single-thread performance than many other current CPU chip implementations. But the capacity to get work done is enormous. For a simple analogy, consider water. One drop of water can't do a lot of damage. But that same drop together with a bunch of its friends carved out the Grand Canyon. (The UltraSPARC T1 chip was not codenamed "Niagara" for nothing!)

For applications that are multi-threaded, multi-process, or multi-user, you can spread the work across the available threads/CPUs. But don't expect an application to show off the strengths of this platform if it has heavy single-threaded dependencies. This is true for all systems based on the UltraSPARC T1, T2, and T2 Plus chip.

The good news is that people are starting to understand this message. When Sun first released the UltraSPARC T1 chip back in December 2005, it was a bit of a shock to many people. The Sun Fire T1000 and T2000 systems were the first wave of a new trend in CPU design, and some took a while to get their heads around the implications. Now, with Intel, AMD, and others jumping on the bandwagon, the stakes have become higher. And the rewards will flow quickest to those application developers who had the foresight to get their act together earliest.

The second factor is virtualization. Once again, people today understand the benefits of consolidating a larger number of smaller systems onto a fewer number of larger systems using virtualization technologies. The T5440 is an ideal platform for such consolidations. With its Logical Domain (LDom) capabilities and with Solaris Containers, there are many effective ways to carve the system up into smaller logical pieces.

And then there's the even simpler strategy of just throwing a bunch of different applications onto the system and letting Solaris handle the resource management. Solaris actually does an excellent job of managing such complex environments.

Summing it up, the T5440 is made to handle large workloads. As long as you don't expect great throughput if you're running a single thread, you should find it has a lot to offer in a small package.

About

I'm a Principal Engineer in the Performance Technologies group at Sun. My current role is team lead for the MySQL Performance & Scalability Project.

Search

Categories
Archives
« April 2014
SunMonTueWedThuFriSat
  
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
   
       
Today