mercredi janv. 11, 2012

Big Data : opportunité Business et (nouveau) défi pour la DSI ?

Translate in English

Ayant participé à quelques conférences sur ce thème, voici quelques réflexions pour commencer l'année 2012 sur le sujet du moment...

Big Data : Opportunités Business

Comme le souligne une étude de McKinsey (« Big Data: The next frontier for innovation, competition, and productivity » ), la maîtrise des données (dans leur diversité) et la capacité à les analyser à un impact fort sur l’apport que l’informatique (la DSI) peut fournir aux métiers pour trouver de nouveaux axes de compétitivité. Pour ne citer que 2 exemples, McKinsey estime que l'exploitation du Big Data pourrait permettre d'économiser plus de €250 milliards sur l'ensemble du secteur public Européen (identification des fraudes, gestion et mesures de l'efficacité des affectations des subventions et des plans d'investissements, ...). Quant au secteur marchand, la simple utilisation des données de géolocalisation pourrait permettre un surplus global de $600 milliards, opportunité illustrée par Jean-Pierre Dijcks dans son blog : "Understanding a Big Data Implementation and its Components".

Volume, Vélocité, Variété...

Le "Big Data" est souvent caractérisé par ces 3x V :

  • Volume : pour certains, le Big Data commence à partir du seuil pour lequel le volume de données devient difficile à gérer dans une solution de base données relationnelle. Toutefois, les avancées technologiques nous permettent toujours de repousser ce seuil de plus en plus loin sans remettre en cause les standards des DSI (cf: Exadata), et c'est pourquoi, l'aspect volume en tant que tel n'est pas suffisant pour caractériser une approche "Big Data".
  • Vélocité : le Big Data nécessite donc également une notion temporelle forte associée à de gros volumes. C'est à dire, être capable de capturer une masse de données mouvante pour pouvoir soit réagir quasiment en temps réel face à un évènement ou pouvoir le revisiter ultérieurement avec un autre angle de vue.
  • Variété : le Big Data va adresser non seulement les données structurées mais pas seulement. L'objectif essentiel est justement de pouvoir aller trouver de la valeur ajoutée dans l'ensemble des données accessibles à une entreprise. Et à l'heure du numérique, de la dématérialisation, des réseaux sociaux, des fournisseurs de flux de données, du Machine2Machine, de la géolocalisation,... la variété des données accessibles est importante, en perpétuelle évolution (qui sera le prochain Twitter ou Facebook, Google+ ?) et rarement structurée.

""

...Visualisation et Valeur

A ces 3x V qui caractérisent le "Big Data" de manière générale j'en ajouterai 2 : visualisation et valeur !

Visualisation, car face à ce volume de données, sa variété et sa vélocité, il est primordial de pouvoir se doter des moyens de naviguer au sein de cette masse, pour en tirer (rapidement et simplement) de l'information et de la Valeur, afin de trouver ce que l'on cherche mais aussi,... bénéficier d'un atout intéressant au travers de la diversité des données non structurées couplées aux données structurées de l'entreprise : la sérendipité ou, trouver ce que l'on ne cherchait pas (le propre de beaucoup d'innovations) !

Les opportunités pour le Business se situent évidemment dans les 2 derniers V : savoir visualiser l'information utile pour en tirer une valeur Business ...

(nouveau) Défi pour la DSI

Le défi pour la DSI est dans la chaîne de valeur globale : savoir acquérir et stocker un volume important de données variées et mouvantes, et être capable de fournir les éléments (outils) aux métiers pour en tirer du sens et de la valeur. Afin de traiter ces données (non-structurées), il est nécessaire de mettre en oeuvre des technologies complémentaires aux solutions déjà en place pour gérer les données structurées des entreprises. Ces nouvelles technologies sont initialement issues des centres de R&D des géants de l'internet, qui ont été les premiers à être confrontés à ces masses d'information non-structurées. L'enjeu aujourd'hui est d'amener ces solutions au sein de l'entreprise de manière industrialisée avec à la fois la maîtrise de l'intégration de l'ensemble des composants (matériels et logiciels) et leur support sur les 3 étapes fondamentales que constitue une chaîne de valeur autour du Big Data : Acquérir, Organiser et Distribuer.

  1. Acquérir : une fois les sources de données identifiées (avec les métiers), il faut pouvoir les stocker à moindre coût avec de forte capacité d'évolution (de part la volumétrie concernée et la rapidité de croissance) à des fins d'extraction d'information. Un système de grille de stockage évolutif doit être déployé, à l'instar du modèle Exadata. La référence dans ce domaine pour le stockage en grille de données non-structurées à des fins de traitement est  HDFS (Hadoop Distributed Filesystem), ce système de fichiers étant directement lié aux algorithmes d'extraction permettant d'effectuer l'opération directement là où les données sont stockées.

  2. Organiser : associer un premier niveau d'index {clé,valeur} sur ces données non-structurées avec NoSQL (pour Not Only SQL) . L'intérêt ici, par rapport à un modèle SQL classique étant de pouvoir traiter la variété (modèle non prédéfinie à l'avance), la vélocité et le volume. En effet, la particularité du NoSQL est de traiter les données sur un modèle CRUD (Create, Read, Update, Delete) et non pas ACID (Atomicity, Consistency, Isolation, Durability), avec ses avantages de rapidité (pas besoin de rentrer les données dans un modèle structuré) et ses inconvénients (accepter pour des raisons de capacité d'acquisition de pouvoir être amené à lire des données "périmées", entre autres). Et ensuite pouvoir également extraire de l'information au travers de l'opération MapReduce s'effectuant directement sur la grille de données non-structurées (pour éviter de transporter les données vers des noeuds de traitement).

    L'information ainsi extraite de cette grille de données non-structurées devient une partie du patrimoine de l'entreprise et a toute sa place dans les données structurées et donc fiables et à "haute densité" d'information. C'est pourquoi, l'extraction d'information des données non-structurées nécessite également une passerelle vers l'entrepôt de données de l'entreprise pour enrichir le référentiel. Cette passerelle doit être en mesure d'absorber d'importants volumes d'information dans des temps très courts.

    Ces 2 premières étapes ont été industrialisées aussi bien sur la partie matérielle (grille/cluster de stockage) que logicielle (HDFS, Hadoop MapReduce, NoSQL, Oracle Loader for Hadoop) au sein de l'Engineered System d'Oracle : Oracle Big Data Appliance, le référentiel de données structurées pouvant quant à lui être implémenté au sein d'Exadata.


  3. Distribuer : la dernière étape consiste à rendre disponible l'information aux métiers, et leur permettre d'en tirer la quintessence : Analyser et Visualiser. L'enjeu est de fournir les capacités de faire de l'analyse dynamique sur un gros volume de données (cubes décisionnels) avec la possibilité de visualiser simplement sur plusieurs facettes.

    Un premier niveau d'analyse peut se faire directement sur les données non-structurées au travers du langage R, directement sur le Big Data Appliance.

    L'intérêt réside également dans la vision agrégée au sein du référentiel enrichi suite à l'extraction, directement au travers d'Exadata par exemple... ou via un véritable tableau de bord métier dynamique qui vient s'interfacer au référentiel et permettant d'analyser de très gros volumes directement en mémoire avec des mécanismes de visualisation multi-facettes, pour non seulement trouver ce que l'on cherche mais aussi découvrir ce que l'on ne cherchait pas (retour sur la sérendipité...). Ceci est fait grâce à l'identification (visuelle) d'axes de recherches que les utilisateurs n'avaient pas forcément anticipés au départ.

    Cette dernière étape est industrialisée au travers de la solution Exalytics, illustrée dans la vidéo ci-dessous dans le monde de l'automobile, où vous verrez une démonstration manipulant dynamiquement les données des ventes automobiles mondiales sur une période de 10 ans, soit environ 1 milliard d'enregistrements et 2 TB de données manipulées en mémoire (grâce a des technologies de compression embarquées).



HSM (Hierachical Storage Management) et Big Data

Pour terminer la mise en place de l'éco-système "Big Data" au sein de la DSI, il reste un point fondamental souvent omis : la sécurisation et l'archivage des données non-structurées. L'objectif est de pouvoir archiver/sauvegarder les données non-structurées à des fins de rejeu éventuel, et pour faire face à la croissance des volumes en les stockant sur un support approprié en fonction de leur "fraîcheur".  En effet, une grille de type Hadoop base sa sécurité sur la duplication de la données, mais si une donnée est corrompue, ses copies le sont aussi. En outre, cette grille est là pour permettre un traitement à un instant t (vélocité) sur les données, une fois ce traitement effectué, les données sur la grille sont souvent remplacées par des données plus récentes (voir l'exemple : "⁞Understanding a Big Data Implementation and its Components" qui traite bien du cas d'usage des données liées à un contexte temporel) . Dans certains cas d'usage, il peut être intéressant de pouvoir revisiter des données capturées ultérieurement avec un autre angle d'analyse, ou pour des besoins de vérification, et dans tous les cas pour pouvoir restaurer en cas d'incident de corruption. C'est là où le couplage avec une solution de stockage hiérarchique (HSM) est indispensable pour la capture initiale des données non-structurées et leur archivage à moindre coût face aux volumétries à traiter. C'est ce que nous couvrons au travers de notre solution Storage Archive Manager (SAM), solution d'ailleurs utilisée dans un projet "Big Data" français pour pouvoir archiver 1 PB de données non-structurées.

Pour aller plus loin :

About

Eric Bezille

Search

Archives
« avril 2014
lun.mar.mer.jeu.ven.sam.dim.
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
    
       
Today