Wednesday Mar 05, 2014

SPARC T5-2 Delivers World Record 2-Socket SPECvirt_sc2010 Benchmark

Oracle's SPARC T5-2 server delivered a world record two-chip SPECvirt_sc2010 result of 4270 @ 264 VMs, establishing performance superiority in virtualized environments of the SPARC T5 processors with Oracle Solaris 11, which includes as standard virtualization products Oracle VM for SPARC and Oracle Solaris Zones.

  • The SPARC T5-2 server has 2.3x better performance than an HP BL620c G7 blade server (with two Westmere EX processors) which used VMware ESX 4.1 U1 virtualization software (best SPECvirt_sc2010 result on two-chip servers using VMware software).

  • The SPARC T5-2 server has 1.6x better performance than an IBM Flex System x240 server (with two Sandy Bridge processors) which used Kernel-based Virtual Machines (KVM).

  • This is the first SPECvirt_sc2010 result using Oracle production level software: Oracle Solaris 11.1, Oracle WebLogic Server 10.3.6, Oracle Database 11g Enterprise Edition, Oracle iPlanet Web Server 7 and Oracle Java Development Kit 7 (JDK). The only exception for the Dovecot mail server.

Performance Landscape

Complete benchmark results are at the SPEC website, SPECvirt_sc2010 Results. The following table highlights the leading two-chip results for the benchmark, bigger is better.

SPECvirt_sc2010
Leading Two-Chip Results
System Processor Result @ VMs Virtualization Software
SPARC T5-2 2 x SPARC T5, 3.6 GHz 4270 @ 264 Oracle VM Server for SPARC 3.0
Oracle Solaris Zones
IBM Flex System x240 2 x Intel E5-2690, 2.9 GHz 2741 @ 168 Red Hat Enterprise Linux 6.4 KVM
HP Proliant BL6200c G7 2 x Intel E7-2870, 2.4 GHz 1878 @ 120 VMware ESX 4.1 U1

Configuration Summary

System Under Test Highlights:

1 x SPARC T5-2 server, with
2 x 3.6 GHz SPARC T5 processors
1 TB memory
Oracle Solaris 11.1
Oracle VM Server for SPARC 3.0
Oracle iPlanet Web Server 7.0.15
Oracle PHP 5.3.14
Dovecot 2.1.17
Oracle WebLogic Server 11g (10.3.6)
Oracle Database 11g (11.2.0.3)
Java HotSpot(TM) 64-Bit Server VM on Solaris, version 1.7.0_51

Benchmark Description

The SPECvirt_sc2010 benchmark is SPEC's first benchmark addressing performance of virtualized systems. It measures the end-to-end performance of all system components that make up a virtualized environment.

The benchmark utilizes several previous SPEC benchmarks which represent common tasks which are commonly used in virtualized environments. The workloads included are derived from SPECweb2005, SPECjAppServer2004 and SPECmail2008. Scaling of the benchmark is achieved by running additional sets of virtual machines until overall throughput reaches a peak. The benchmark includes a quality of service criteria that must be met for a successful run.

Key Points and Best Practices

  • The SPARC T5 server running the Oracle Solaris 11.1, utilizes embedded virtualization products as the Oracle VM for SPARC and Oracle Solaris Zones, which provide a low overhead, flexible, scalable and manageable virtualization environment.

  • In order to provide a high level of data integrity and availability, all the benchmark data sets are stored on mirrored (RAID1) storage.

See Also

Disclosure Statement

SPEC and the benchmark name SPECvirt_sc are registered trademarks of the Standard Performance Evaluation Corporation. Results from www.spec.org as of 3/5/2014. SPARC T5-2, SPECvirt_sc2010 4270 @ 264 VMs; IBM Flex System x240, SPECvirt_sc2010 2741 @ 168 VMs; HP Proliant BL620c G7, SPECvirt_sc2010 1878 @ 120 VMs.

Friday Feb 14, 2014

SPARC M6-32 Delivers Oracle E-Business and PeopleSoft World Record Benchmarks, Linear Data Warehouse Scaling in a Virtualized Configuration

This result demonstrates how the combination of Oracle virtualization technologies for SPARC and Oracle's SPARC M6-32 server allow the deployment and concurrent high performance execution of multiple Oracle applications and databases sized for the Enterprise.

  • In an 8-chip Dynamic Domain (also known as PDom), the SPARC M6-32 server set a World Record E-Business 12.1.3 X-Large world record with 14,660 online users running five simultaneous E-Business modules.

  • In a second 8-chip Dynamic Domain, the SPARC M6-32 server set a World Record PeopleSoft HCM 9.1 HR Self-Service online supporting 35,000 users while simultaneously running a batch workload in 29.17 minutes. This was done with a database of 600,480 employees. Two other separate tests were run, one supporting 40,000 online users only and another a batch-only workload that was run in 18.27 min.

  • In a third Dynamic Domain with 16-chips on the SPARC M6-32 server, a data warehouse test was run that showed near-linear scaling.

  • On the SPARC M6-32 server, several critical applications instances were virtualized: an Oracle E-Business application and database, an Oracle's PeopleSoft application and database, and a Decision Support database instance using Oracle Database 12c.

  • In this Enterprise Virtualization benchmark a SPARC M6-32 server utilized all levels of Oracle Virtualization features available for SPARC servers. The 32-chip SPARC M6 based server was divided in three separate Dynamic Domains (also known as PDoms), available only on the SPARC Enterprise M-Series systems, which are completely electrically isolated and independent hardware partitions. Each PDom was subsequently split into multiple hypervisor-based Oracle VM for SPARC partitions (also known as LDoms), each one running its own Oracle Solaris kernel and managing its own CPUs and I/O resources. The hardware resources allocated to each Oracle VM for SPARC partition were then organized in various Oracle Solaris Zones, to further refine application tier isolation and resources management. The three PDoms were dedicated to the enterprise applications as follows:

    • Oracle E-Business PDom: Oracle E-Business 12.1.3 Suite World Record Extra-Large benchmark, exercising five Online Modules: Customer Service, Human Resources Self Service, iProcurement, Order Management and Financial, with 14,660 users and an average user response time under 2 seconds.

    • PeopleSoft PDom: PeopleSoft Human Capital Management (HCM) 9.1 FP2 World Record Benchmark, using PeopleTools 8.52 and an Oracle Database 11g Release 2, with 35,000 users, at an average user Search Time of 1.46 seconds and Save Time of 0.93 seconds. An online run with 40,000 users, had an average user Search Time of 2.17 seconds and Save Time of 1.39 seconds, and a Payroll batch run completed in 29.17 minutes elapsed time for more than 500,000 employees.

    • Decision Support PDom: An Oracle Database 12c instance executing a Decision Support workload on about 30 billion rows of data and achieving linear scalability, i.e. on the 16 chips comprising the PDom, the workload ran 16x faster than on a single chip. Specifically, the 16-chip PDom processed about 320M rows/sec whereas a single chip could process about 20M rows/sec.

  • The SPARC M6-32 server is ideally suited for large-memory utilization. In this virtualized environment, three critical applications made use of 16 TB of physical memory. Each of the Oracle VM Server for SPARC environments utilized from 4 to 8 TB of memory, more than the limits of other virtualization solutions.

  • SPARC M6-32 Server Virtualization Layout Highlights

    • The Oracle E-Business application instances were run in a dedicated Dynamic Domain consisting of 8 SPARC M6 processors and 4 TB of memory. The PDom was split into four symmetric Oracle VM Server for SPARC (LDoms) environments of 2 chips and 1 TB of memory each, two dedicated to the Application Server tier and the other two to the Database Server tier. Each Logical Domain was subsequently divided into two Oracle Solaris Zones, for a total of eight, one for each E-Business Application server and one for each Oracle Database 11g instance.

    • The PeopleSoft application was run in a dedicated Dynamic Domain (PDom) consisting of 8 SPARC M6 processors and 4 TB of memory. The PDom was split into two Oracle VM Server for SPARC (LDoms) environments one of 6 chips and 3 TB of memory, reserved for the Web and Application Server tiers, and a second one of 2 chips and 1 TB of memory, reserved for the Database tier. Two PeopleSoft Application Servers, a Web Server instance, and a single Oracle Database 11g instance were each executed in their respective and exclusive Oracle Solaris Zone.

    • The Oracle Database 12c Decision Support workload was run in a Dynamic Domain consisting of 16 SPARC M6 processors and 8 TB of memory.

  • All the Oracle Applications and Database instances were running at high level of performance and concurrently in a virtualized environment. Running three Enterprise level application environments on a single SPARC M6-32 server offers centralized administration, simplified physical layout, high availability and security features (as each PDom and LDom runs its own Oracle Solaris operating system copy physically and logically isolated from the other environments), enabling the coexistence of multiple versions Oracle Solaris and application software on a single physical server.

  • Dynamic Domains and Oracle VM Server for SPARC guests were configured with independent direct I/O domains, allowing for fast and isolated I/O paths, providing secure and high performance I/O access.

Performance Landscape

Oracle E-Business Test using Oracle Database 11g
SPARC M6-32 PDom, 8 SPARC M6 Processors, 4 TB Memory
Total Online Users Weighted Average
Response Time (sec)
90th Percentile
Response Time (s)
14,660 0.81 0.88
Multiple Online Modules X-Large Configuration (HR Self-Service, Order Management, iProcurement, Customer Service, Financial)

PeopleSoft HR Self-Service Online Plus Payroll Batch using Oracle Database 11g
SPARC M6-32 PDom, 8 SPARC M6 Processors, 4 TB Memory
HR Self-Service Payroll Batch
Elapsed (min)
Online Users Average User
Search / Save
Time (sec)
Transactions
per Second
35,000 1.46 / 0.93 116 29.17

HR Self-Service Only Payroll Batch Only
Elapsed (min)
40,000 2.17 / 1.39 132 18.27

Oracle Database 12c Decision Support Query Test
SPARC M6-32 PDom, 16 SPARC M6 Processors, 8 TB Memory
Parallelism
Chips Used
Rows Processing Rate
(rows/s)
Scaling Normalized to 1 Chip
16 319,981,734 15.9
8 162,545,303 8.1
4 80,943,271 4.0
2 40,458,329 2.0
1 20,086,829 1.0

Configuration Summary

System Under Test:

SPARC M6-32 server with
32 x SPARC M6 processors (3.6 GHz)
16 TB memory

Storage Configuration:

6 x Sun Storage 2540-M2 each with
8 x Expansion Trays (each tray equipped with 12 x 300 GB SAS drives)
7 x Sun Server X3-2L each with
2 x Intel Xeon E5-2609 2.4 GHz Processors
16 GB Memory
4 x Sun Flash Accelerator F40 PCIe 400 GB cards
Oracle Solaris 11.1 (COMSTAR)
1 x Sun Server X3-2L with
2 x Intel Xeon E5-2609 2.4 GHz Processors
16 GB Memory
12 x 3 TB SAS disks
Oracle Solaris 11.1 (COMSTAR)

Software Configuration:

Oracle Solaris 11.1 (11.1.10.5.0), Oracle E-Business
Oracle Solaris 11.1 (11.1.10.5.0), PeopleSoft
Oracle Solaris 11.1 (11.1.9.5.0), Decision Support
Oracle Database 11g Release 2, Oracle E-Business and PeopleSoft
Oracle Database 12c Release 1, Decision Support
Oracle E-Business Suite 12.1.3
PeopleSoft Human Capital Management 9.1 FP2
PeopleSoft PeopleTools 8.52.03
Oracle Java SE 6u32
Oracle Tuxedo, Version 10.3.0.0, 64-bit, Patch Level 043
Oracle WebLogic Server 11g (10.3.4)

Oracle Dynamic Domains (PDoms) resources:


Oracle E-Business PeopleSoft Oracle DSS
Processors 8 8 16
Memory 4 TB 4 TB 8 TB
Oracle Solaris 11.1 (11.1.10.5.0) 11.1 (11.1.10.5.0) 11.1 (11.1.9.5.0)
Oracle Database 11g 11g 12c
Oracle VM for SPARC /
Oracle Solaris Zones
4 LDom / 8 Zones 2 LDom / 4 Zones None
Storage 7 x Sun Server X3-2L 1 x Sun Server X3-2L
(12 x 3 TB SAS )
2 x Sun Storage 2540-M2 / 2501 pairs
4 x Sun Storage 2540-M2/2501 pairs

Benchmark Description

This benchmark consists of three different applications running concurrently. It shows that large, enterprise workloads can be run on a single system and without performance impact between application environments.

The three workloads are:

  • Oracle E-Business Suite Online

    • This test simulates thousands of online users executing transactions typical of an internal Enterprise Resource Processing, including 5 application modules: Customer Service, Human Resources Self Service, Procurement, Order Management and Financial.

    • Each database tier uses a database instance of about 600 GB in size, and supporting thousands of application users, accessing hundreds of objects (tables, indexes, SQL stored procedures, etc.).

    • The application tier includes multiple web and application server instances, specifically Apache Web Server, Oracle Application Server 10g and Oracle Java SE 6u32.

  • PeopleSoft Human Capital Management

    • This test simulates thousands of online employees, managers and Human Resource administrators executing transactions typical of a Human Resources Self Service application for the Enterprise. Typical transactions are: viewing paychecks, promoting and hiring employees, updating employee profiles, etc.

    • The database tier uses a database instance of about 500 GB in size, containing information for 500,480 employees.

    • The application tier for this test includes web and application server instances, specifically Oracle WebLogic Server 11g, PeopleSoft Human Capital Management 9.1 and Oracle Java SE 6u32.

  • Decision Support Workload using the Oracle Database.

    • The query processes 30 billion rows stored in the Oracle Database, making heavy use of Oracle parallel query processing features. It performs multiple aggregations and summaries by reading and processing all the rows of the database.

Key Points and Best Practices

Oracle E-Business Environment

The Oracle E-Business Suite setup consisted 4 Oracle E-Business environments running 5 online Oracle E-Business modules simultaneously.

The Oracle E-Business environments were deployed on 4 Oracle VM for SPARC, respectively 2 for the Application tier and 2 for the Database tier. Each LDom included 2 SPARC M6 processor chips. The Application LDom was further split into 2 Oracle Solaris Zones, each one containing one Oracle E-Business Application instance. Similarly, on the Database tier, each LDom was further divided into 2 Oracle Solaris Zones, each containing an Oracle Database instance. Applications on the same LDom shared a 10 GbE network link to connect to the Database tier LDom. Each Application in a Zone was connected to its own dedicated Database Zone. The communication between the two Zones was implemented via Oracle Solaris 11 virtual network, which provides high performance, low latency transfers at memory speed using large frames (9000 bytes vs typical 1500 bytes frames).

The Oracle E-Business setup made use of the Oracle Database Shared Server feature in order to limit memory utilization, as well as the number of database Server processes. The Oracle Database configuration and optimization was substantially out-of-the-box, except for proper sizing the Oracle Database memory areas (System Global Area and Program Global Area).

In the Oracle E-Business Application LDom handling Customer Service and HR Self Service modules, 28 Forms servers and 8 OC4J application servers were hosted in the two separate Oracle Solaris Zones, for a total of 56 forms servers and 16 applications servers.

All the Oracle Database server processes and the listener processes were executed in the Oracle Solaris FX scheduler class.

PeopleSoft Environment

The PeopleSoft Application Oracle VM for SPARC had one Oracle Solaris Zone of 12 cores containing the web tier and two Oracle Solaris Zones of 57 cores total containing the Application tier. The Database tier was contained in an Oracle VM for SPARC consisting of one Oracle Solaris Zone of 24 cores. One core, in the Application Oracle VM, was dedicated to network and disk interrupt handling.

All database data files, recovery files and Oracle Clusterware files for the PeopleSoft test were created with the Oracle Automatic Storage Management (Oracle ASM) volume manager for the added benefit of the ease of management provided by Oracle ASM integrated storage management solution.

In the application tier, 5 PeopleSoft domains with 350 application servers (70 per each domain) were hosted in the two separate Oracle Solaris Zones for a total of 10 domains with 700 application server processes.

All PeopleSoft Application processes and Web Server JVM instances were executed in the Oracle Solaris FX scheduler class.

Oracle Decision Support Environment

The decision support workload showed how the combination of a large memory (8 TB) and a large number of processors (16 chips comprising 1536 virtual CPUs) together with Oracle parallel query facility can linearly increase the performance of certain decision support queries as the number of CPUs increase.

The large memory was used to cache the entire 30 billion row Oracle table in memory. There are a number of ways to accomplish this. The method deployed in this test was to allocate sufficient memory for Oracle's "keep cache" and direct the table to the "keep cache."

To demonstrate scalability, it was necessary to ensure that the number of Oracle parallel servers was always equal to the number of available virtual CPUs. This was accomplished by the combination of providing a degree of parallelism hint to the query and setting both parallel_max_servers and parallel_min_servers to the number of virtual CPUs.

The number of virtual CPUs for each stage of the scalability test was adjusted using the psradm command available in Oracle Solaris.

See Also

Disclosure Statement

Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. PeopleSoft results as of 02/14/2014. Other results as of 09/22/2013.

Oracle E-Business Suite R12 extra-large multiple-online module benchmark, SPARC M6-32, SPARC M6, 3.6 GHz, 8 chips, 96 cores, 768 threads, 4 TB memory, 14,660 online users, average response time 0.81 sec, 90th percentile response time 0.88 sec, Oracle Solaris 11.1, Oracle Solaris Zones, Oracle VM for SPARC, Oracle E-Business Suite 12.1.3, Oracle Database 11g Release 2, Results as of 9/22/2013.

Thursday Sep 26, 2013

SPARC M6-32 Delivers Oracle E-Business and PeopleSoft World Record Benchmarks, Linear Data Warehouse Scaling in a Virtualized Configuration

This result has been superceded.  Please see the latest result.

 This result demonstrates how the combination of Oracle virtualization technologies for SPARC and Oracle's SPARC M6-32 server allow the deployment and concurrent high performance execution of multiple Oracle applications and databases sized for the Enterprise.

  • In an 8-chip Dynamic Domain (also known as PDom), the SPARC M6-32 server set a World Record E-Business 12.1.3 X-Large world record with 14,660 online users running five simultaneous E-Business modules.

  • In a second 8-chip Dynamic Domain, the SPARC M6-32 server set a World Record PeopleSoft HCM 9.1 HR Self-Service online supporting 34,000 users while simultaneously running a batch workload in 29.7 minutes. This was done with a database of 600,480 employees. In a separate test running a batch-only workload was run in 21.2 min.

  • In a third Dynamic Domain with 16-chips on the SPARC M6-32 server, a data warehouse test was run that showed near-linear scaling.

  • On the SPARC M6-32 server, several critical applications instances were virtualized: an Oracle E-Business application and database, an Oracle's PeopleSoft application and database, and a Decision Support database instance using Oracle Database 12c.

  • In this Enterprise Virtualization benchmark a SPARC M6-32 server utilized all levels of Oracle Virtualization features available for SPARC servers. The 32-chip SPARC M6 based server was divided in three separate Dynamic Domains (also known as PDoms), available only on the SPARC Enterprise M-Series systems, which are completely electrically isolated and independent hardware partitions. Each PDom was subsequently split into multiple hypervisor-based Oracle VM for SPARC partitions (also known as LDoms), each one running its own Oracle Solaris kernel and managing its own CPUs and I/O resources. The hardware resources allocated to each Oracle VM for SPARC partition were then organized in various Oracle Solaris Zones, to further refine application tier isolation and resources management. The three PDoms were dedicated to the enterprise applications as follows:

    • Oracle E-Business PDom: Oracle E-Business 12.1.3 Suite World Record Extra-Large benchmark, exercising five Online Modules: Customer Service, Human Resources Self Service, iProcurement, Order Management and Financial, with 14,660 users and an average user response time under 2 seconds.

    • PeopleSoft PDom: PeopleSoft Human Capital Management (HCM) 9.1 FP2 World Record Benchmark, using PeopleTools 8.52 and an Oracle Database 11g Release 2, with 34,000 users, at an average user Search Time of 1.11 seconds and Save Time of 0.77 seconds, and a Payroll batch run completed in 29.7 minutes elapsed time for more than 500,000 employees.

    • Decision Support PDom: An Oracle Database 12c instance executing a Decision Support workload on about 30 billion rows of data and achieving linear scalability, i.e. on the 16 chips comprising the PDom, the workload ran 16x faster than on a single chip. Specifically, the 16-chip PDom processed about 320M rows/sec whereas a single chip could process about 20M rows/sec.

  • The SPARC M6-32 server is ideally suited for large-memory utilization. In this virtualized environment, three critical applications made use of 16 TB of physical memory. Each of the Oracle VM Server for SPARC environments utilized from 4 to 8 TB of memory, more than the limits of other virtualization solutions.

  • SPARC M6-32 Server Virtualization Layout Highlights

    • The Oracle E-Business application instances were run in a dedicated Dynamic Domain consisting of 8 SPARC M6 processors and 4 TB of memory. The PDom was split into four symmetric Oracle VM Server for SPARC (LDoms) environments of 2 chips and 1 TB of memory each, two dedicated to the Application Server tier and the other two to the Database Server tier. Each Logical Domain was subsequently divided into two Oracle Solaris Zones, for a total of eight, one for each E-Business Application server and one for each Oracle Database 11g instance.

    • The PeopleSoft application was run in a dedicated Dynamic Domain (PDom) consisting of 8 SPARC M6 processors and 4 TB of memory. The PDom was split into two Oracle VM Server for SPARC (LDoms) environments one of 6 chips and 3 TB of memory, reserved for the Web and Application Server tiers, and a second one of 2 chips and 1 TB of memory, reserved for the Database tier. Two PeopleSoft Application Servers, a Web Server instance, and a single Oracle Database 11g instance were each executed in their respective and exclusive Oracle Solaris Zone.

    • The Oracle Database 12c Decision Support workload was run in a Dynamic Domain consisting of 16 SPARC M6 processors and 8 TB of memory.

  • All the Oracle Applications and Database instances were running at high level of performance and concurrently in a virtualized environment. Running three Enterprise level application environments on a single SPARC M6-32 server offers centralized administration, simplified physical layout, high availability and security features (as each PDom and LDom runs its own Oracle Solaris operating system copy physically and logically isolated from the other environments), enabling the coexistence of multiple versions Oracle Solaris and application software on a single physical server.

  • Dynamic Domains and Oracle VM Server for SPARC guests were configured with independent direct I/O domains, allowing for fast and isolated I/O paths, providing secure and high performance I/O access.

Performance Landscape

Oracle E-Business Test using Oracle Database 11g
SPARC M6-32 PDom, 8 SPARC M6 Processors, 4 TB Memory
Total Online Users Weighted Average
Response Time (sec)
90th Percentile
Response Time (s)
14,660 0.81 0.88
Multiple Online Modules X-Large Configuration (HR Self-Service, Order Management, iProcurement, Customer Service, Financial)

PeopleSoft HR Self-Service Online Plus Payroll Batch using Oracle Database 11g
SPARC M6-32 PDom, 8 SPARC M6 Processors, 4 TB Memory
HR Self-Service Payroll Batch
Elapsed (min)
Online Users Average User
Search / Save
Time (sec)
Transactions
per Second
34,000 1.11 / 0.77 113 29.7

Payroll Batch Only
Elapsed (min)
21.17

Oracle Database 12c Decision Support Query Test
SPARC M6-32 PDom, 16 SPARC M6 Processors, 8 TB Memory
Parallelism
Chips Used
Rows Processing Rate
(rows/s)
Scaling Normalized to 1 Chip
16 319,981,734 15.9
8 162,545,303 8.1
4 80,943,271 4.0
2 40,458,329 2.0
1 20,086,829 1.0

Configuration Summary

System Under Test:

SPARC M6-32 server with
32 x SPARC M6 processors (3.6 GHz)
16 TB memory

Storage Configuration:

6 x Sun Storage 2540-M2 each with
8 x Expansion Trays (each tray equipped with 12 x 300 GB SAS drives)
7 x Sun Server X3-2L each with
2 x Intel Xeon E5-2609 2.4 GHz Processors
16 GB Memory
4 x Sun Flash Accelerator F40 PCIe 400 GB cards
Oracle Solaris 11.1 (COMSTAR)
1 x Sun Server X3-2L with
2 x Intel Xeon E5-2609 2.4 GHz Processors
16 GB Memory
12 x 3 TB SAS disks
Oracle Solaris 11.1 (COMSTAR)

Software Configuration:

Oracle Solaris 11.1 (11.1.10.5.0), Oracle E-Business
Oracle Solaris 11.1 (11.1.10.5.0), PeopleSoft
Oracle Solaris 11.1 (11.1.9.5.0), Decision Support
Oracle Database 11g Release 2, Oracle E-Business and PeopleSoft
Oracle Database 12c Release 1, Decision Support
Oracle E-Business Suite 12.1.3
PeopleSoft Human Capital Management 9.1 FP2
PeopleSoft PeopleTools 8.52.03
Oracle Java SE 6u32
Oracle Tuxedo, Version 10.3.0.0, 64-bit, Patch Level 043
Oracle WebLogic Server 11g (10.3.4)

Oracle Dynamic Domains (PDoms) resources:


Oracle E-Business PeopleSoft Oracle DSS
Processors 8 8 16
Memory 4 TB 4 TB 8 TB
Oracle Solaris 11.1 (11.1.10.5.0) 11.1 (11.1.10.5.0) 11.1 (11.1.9.5.0)
Oracle Database 11g 11g 12c
Oracle VM for SPARC /
Oracle Solaris Zones
4 LDom / 8 Zones 2 LDom / 4 Zones None
Storage 7 x Sun Server X3-2L 1 x Sun Server X3-2L
(12 x 3 TB SAS )
2 x Sun Storage 2540-M2 / 2501 pairs
4 x Sun Storage 2540-M2/2501 pairs

Benchmark Description

This benchmark consists of three different applications running concurrently. It shows that large, enterprise workloads can be run on a single system and without performance impact between application environments.

The three workloads are:

  • Oracle E-Business Suite Online

    • This test simulates thousands of online users executing transactions typical of an internal Enterprise Resource Processing, including 5 application modules: Customer Service, Human Resources Self Service, Procurement, Order Management and Financial.

    • Each database tier uses a database instance of about 600 GB in size, and supporting thousands of application users, accessing hundreds of objects (tables, indexes, SQL stored procedures, etc.).

    • The application tier includes multiple web and application server instances, specifically Apache Web Server, Oracle Application Server 10g and Oracle Java SE 6u32.

  • PeopleSoft Human Capital Management

    • This test simulates thousands of online employees, managers and Human Resource administrators executing transactions typical of a Human Resources Self Service application for the Enterprise. Typical transactions are: viewing paychecks, promoting and hiring employees, updating employee profiles, etc.

    • The database tier uses a database instance of about 500 GB in size, containing information for 500,480 employees.

    • The application tier for this test includes web and application server instances, specifically Oracle WebLogic Server 11g, PeopleSoft Human Capital Management 9.1 and Oracle Java SE 6u32.

  • Decision Support Workload using the Oracle Database.

    • The query processes 30 billion rows stored in the Oracle Database, making heavy use of Oracle parallel query processing features. It performs multiple aggregations and summaries by reading and processing all the rows of the database.

Key Points and Best Practices

Oracle E-Business Environment

The Oracle E-Business Suite setup consisted 4 Oracle E-Business environments running 5 online Oracle E-Business modules simultaneously. The Oracle E-Business environments were deployed on 4 Oracle VM for SPARC, respectively 2 for the Application tier and 2 for the Database tier. Each LDom included 2 SPARC M6 processor chips. The Application LDom was further split into 2 Oracle Solaris Zones, each one containing one Oracle E-Business Application instance. Similarly, on the Database tier, each LDom was further divided into 2 Oracle Solaris Zones, each containing an Oracle Database instance. Applications on the same LDom shared a 10 GbE network link to connect to the Database tier LDom. Each Application in a Zone was connected to its own dedicated Database Zone. The communication between the two Zones was implemented via Oracle Solaris 11 virtual network, which provides high performance, low latency transfers at memory speed using large frames (9000 bytes vs typical 1500 bytes frames).

The Oracle E-Business setup made use of the Oracle Database Shared Server feature in order to limit memory utilization, as well as the number of database Server processes. The Oracle Database configuration and optimization was substantially out-of-the-box, except for proper sizing the Oracle Database memory areas (System Global Area and Program Global Area).

In the Oracle E-Business Application LDom handling Customer Service and HR Self Service modules, 28 Forms servers and 8 OC4J application servers were hosted in the two separate Oracle Solaris Zones, for a total of 56 forms servers and 16 applications servers.

All the Oracle Database server processes and the listener processes were executed in the Oracle Solaris FX scheduler class.

PeopleSoft Environment

The PeopleSoft Application Oracle VM for SPARC had one Oracle Solaris Zone of 12 cores containing the web tier and two Oracle Solaris Zones of 28 cores each containing the Application tier. The Database tier was contained in an Oracle VM for SPARC consisting of one Oracle Solaris Zone of 24 cores. One and a half cores, in the Application Oracle VM, were dedicated to network and disk interrupt handling.

All database data files, recovery files and Oracle Clusterware files for the PeopleSoft test were created with the Oracle Automatic Storage Management (Oracle ASM) volume manager for the added benefit of the ease of management provided by Oracle ASM integrated storage management solution.

In the application tier, 5 PeopleSoft domains with 350 application servers (70 per each domain) were hosted in the two separate Oracle Solaris Zones for a total of 10 domains with 700 application server processes.

All PeopleSoft Application processes and Web Server JVM instances were executed in the Oracle Solaris FX scheduler class.

Oracle Decision Support Environment

The decision support workload showed how the combination of a large memory (8 TB) and a large number of processors (16 chips comprising 1536 virtual CPUs) together with Oracle parallel query facility can linearly increase the performance of certain decision support queries as the number of CPUs increase.

The large memory was used to cache the entire 30 billion row Oracle table in memory. There are a number of ways to accomplish this. The method deployed in this test was to allocate sufficient memory for Oracle's "keep cache" and direct the table to the "keep cache."

To demonstrate scalability, it was necessary to ensure that the number of Oracle parallel servers was always equal to the number of available virtual CPUs. This was accomplished by the combination of providing a degree of parallelism hint to the query and setting both parallel_max_servers and parallel_min_servers to the number of virtual CPUs.

The number of virtual CPUs for each stage of the scalability test was adjusted using the psradm command available in Oracle Solaris.

See Also

Disclosure Statement

Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 09/22/2013.

Oracle E-Business Suite R12 extra-large multiple-online module benchmark, SPARC M6-32, SPARC M6, 3.6 GHz, 8 chips, 96 cores, 768 threads, 4 TB memory, 14,660 online users, average response time 0.81 sec, 90th percentile response time 0.88 sec, Oracle Solaris 11.1, Oracle Solaris Zones, Oracle VM for SPARC, Oracle E-Business Suite 12.1.3, Oracle Database 11g Release 2, Results as of 9/20/2013.

Thursday Nov 08, 2012

Improved Performance on PeopleSoft Combined Benchmark using SPARC T4-4

Oracle's SPARC T4-4 server running Oracle's PeopleSoft HCM 9.1 combined online and batch benchmark achieved a world record 18,000 concurrent users experiencing subsecond response time while executing a PeopleSoft Payroll batch job of 500,000 employees in 32.4 minutes.

  • This result was obtained with a SPARC T4-4 server running Oracle Database 11g Release 2, a SPARC T4-4 server running PeopleSoft HCM 9.1 application server and a SPARC T4-2 server running Oracle WebLogic Server in the web tier.

  • The SPARC T4-4 server running the application tier used Oracle Solaris Zones which provide a flexible, scalable and manageable virtualization environment.

  • The average CPU utilization on the SPARC T4-2 server in the web tier was 17%, on the SPARC T4-4 server in the application tier it was 59%, and on the SPARC T4-4 server in the database tier was 47% (online and batch) leaving significant headroom for additional processing across the three tiers.

  • The SPARC T4-4 server used for the database tier hosted Oracle Database 11g Release 2 using Oracle Automatic Storage Management (ASM) for database files management with I/O performance equivalent to raw devices.

Performance Landscape

Results are presented for the PeopleSoft HRMS Self-Service and Payroll combined benchmark. The new result with 128 streams shows significant improvement in the payroll batch processing time with little impact on the self-service component response time.

PeopleSoft HRMS Self-Service and Payroll Benchmark
Systems Users Ave Response
Search (sec)
Ave Response
Save (sec)
Batch
Time (min)
Streams
SPARC T4-2 (web)
SPARC T4-4 (app)
SPARC T4-4 (db)
18,000 0.988 0.539 32.4 128
SPARC T4-2 (web)
SPARC T4-4 (app)
SPARC T4-4 (db)
18,000 0.944 0.503 43.3 64

The following results are for the PeopleSoft HRMS Self-Service benchmark that was previous run. The results are not directly comparable with the combined results because they do not include the payroll component.

PeopleSoft HRMS Self-Service 9.1 Benchmark
Systems Users Ave Response
Search (sec)
Ave Response
Save (sec)
Batch
Time (min)
Streams
SPARC T4-2 (web)
SPARC T4-4 (app)
2x SPARC T4-2 (db)
18,000 1.048 0.742 N/A N/A

The following results are for the PeopleSoft Payroll benchmark that was previous run. The results are not directly comparable with the combined results because they do not include the self-service component.

PeopleSoft Payroll (N.A.) 9.1 - 500K Employees (7 Million SQL PayCalc, Unicode)
Systems Users Ave Response
Search (sec)
Ave Response
Save (sec)
Batch
Time (min)
Streams
SPARC T4-4 (db)
N/A N/A N/A 30.84 96

Configuration Summary

Application Configuration:

1 x SPARC T4-4 server with
4 x SPARC T4 processors, 3.0 GHz
512 GB memory
Oracle Solaris 11 11/11
PeopleTools 8.52
PeopleSoft HCM 9.1
Oracle Tuxedo, Version 10.3.0.0, 64-bit, Patch Level 031
Java Platform, Standard Edition Development Kit 6 Update 32

Database Configuration:

1 x SPARC T4-4 server with
4 x SPARC T4 processors, 3.0 GHz
256 GB memory
Oracle Solaris 11 11/11
Oracle Database 11g Release 2
PeopleTools 8.52
Oracle Tuxedo, Version 10.3.0.0, 64-bit, Patch Level 031
Micro Focus Server Express (COBOL v 5.1.00)

Web Tier Configuration:

1 x SPARC T4-2 server with
2 x SPARC T4 processors, 2.85 GHz
256 GB memory
Oracle Solaris 11 11/11
PeopleTools 8.52
Oracle WebLogic Server 10.3.4
Java Platform, Standard Edition Development Kit 6 Update 32

Storage Configuration:

1 x Sun Server X2-4 as a COMSTAR head for data
4 x Intel Xeon X7550, 2.0 GHz
128 GB memory
1 x Sun Storage F5100 Flash Array (80 flash modules)
1 x Sun Storage F5100 Flash Array (40 flash modules)

1 x Sun Fire X4275 as a COMSTAR head for redo logs
12 x 2 TB SAS disks with Niwot Raid controller

Benchmark Description

This benchmark combines PeopleSoft HCM 9.1 HR Self Service online and PeopleSoft Payroll batch workloads to run on a unified database deployed on Oracle Database 11g Release 2.

The PeopleSoft HRSS benchmark kit is a Oracle standard benchmark kit run by all platform vendors to measure the performance. It's an OLTP benchmark where DB SQLs are moderately complex. The results are certified by Oracle and a white paper is published.

PeopleSoft HR SS defines a business transaction as a series of HTML pages that guide a user through a particular scenario. Users are defined as corporate Employees, Managers and HR administrators. The benchmark consist of 14 scenarios which emulate users performing typical HCM transactions such as viewing paycheck, promoting and hiring employees, updating employee profile and other typical HCM application transactions.

All these transactions are well-defined in the PeopleSoft HR Self-Service 9.1 benchmark kit. This benchmark metric is the weighted average response search/save time for all the transactions.

The PeopleSoft 9.1 Payroll (North America) benchmark demonstrates system performance for a range of processing volumes in a specific configuration. This workload represents large batch runs typical of a ERP environment during a mass update. The benchmark measures five application business process run times for a database representing large organization. They are Paysheet Creation, Payroll Calculation, Payroll Confirmation, Print Advice forms, and Create Direct Deposit File. The benchmark metric is the cumulative elapsed time taken to complete the Paysheet Creation, Payroll Calculation and Payroll Confirmation business application processes.

The benchmark metrics are taken for each respective benchmark while running simultaneously on the same database back-end. Specifically, the payroll batch processes are started when the online workload reaches steady state (the maximum number of online users) and overlap with online transactions for the duration of the steady state.

Key Points and Best Practices

  • Two PeopleSoft Domain sets with 200 application servers each on a SPARC T4-4 server were hosted in 2 separate Oracle Solaris Zones to demonstrate consolidation of multiple application servers, ease of administration and performance tuning.

  • Each Oracle Solaris Zone was bound to a separate processor set, each containing 15 cores (total 120 threads). The default set (1 core from first and third processor socket, total 16 threads) was used for network and disk interrupt handling. This was done to improve performance by reducing memory access latency by using the physical memory closest to the processors and offload I/O interrupt handling to default set threads, freeing up cpu resources for Application Servers threads and balancing application workload across 240 threads.

  • A total of 128 PeopleSoft streams server processes where used on the database node to complete payroll batch job of 500,000 employees in 32.4 minutes.

See Also

Disclosure Statement

Copyright 2012, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 8 November 2012.

Tuesday Oct 02, 2012

Performance of Oracle Business Intelligence Benchmark on SPARC T4-4

Oracle's SPARC T4-4 server configured with four SPARC T4 3.0 GHz processors delivered 25,000 concurrent users on Oracle Business Intelligence Enterprise Edition (BI EE) 11g benchmark using Oracle Database 11g Release 2 running on Oracle Solaris 10.

  • A SPARC T4-4 server running Oracle Business Intelligence Enterprise Edition 11g achieved 25,000 concurrent users with an average response time of 0.36 seconds with Oracle BI server cache set to ON.

  • The benchmark data clearly shows that the underlying hardware, SPARC T4 server, and the Oracle BI EE 11g (11.1.1.6.0 64-bit) platform scales within a single system supporting 25,000 concurrent users while executing 415 transactions/sec.

  • The benchmark demonstrated the scalability of Oracle Business Intelligence Enterprise Edition 11g 11.1.1.6.0, which was deployed in a vertical scale-out fashion on a single SPARC T4-4 server.

  • Oracle Internet Directory configured on SPARC T4 server provided authentication for the 25,000 Oracle BI EE users with sub-second response time.

  • A SPARC T4-4 with internal Solid State Drive (SSD) using the ZFS file system showed significant I/O performance improvement over traditional disk for the Web Catalog activity. In addition, ZFS helped get past the UFS limitation of 32767 sub-directories in a Web Catalog directory.

  • The multi-threaded 64-bit Oracle Business Intelligence Enterprise Edition 11g and SPARC T4-4 server proved to be a successful combination by providing sub-second response times for the end user transactions, consuming only half of the available CPU resources at 25,000 concurrent users, leaving plenty of head room for increased load.

  • The Oracle Business Intelligence on SPARC T4-4 server benchmark results demonstrate that comprehensive BI functionality built on a unified infrastructure with a unified business model yields best-in-class scalability, reliability and performance.

  • Oracle BI EE 11g is a newer version of Business Intelligence Suite with richer and superior functionality. Results produced with Oracle BI EE 11g benchmark are not comparable to results with Oracle BI EE 10g benchmark. Oracle BI EE 11g is a more difficult benchmark to run, exercising more features of Oracle BI.

Performance Landscape

Results for the Oracle BI EE 11g version of the benchmark. Results are not comparable to the Oracle BI EE 10g version of the benchmark.

Oracle BI EE 11g Benchmark
System Number of Users Response Time (sec)
1 x SPARC T4-4 (4 x SPARC T4 3.0 GHz) 25,000 0.36

Results for the Oracle BI EE 10g version of the benchmark. Results are not comparable to the Oracle BI EE 11g version of the benchmark.

Oracle BI EE 10g Benchmark
System Number of Users
2 x SPARC T5440 (4 x SPARC T2+ 1.6 GHz) 50,000
1 x SPARC T5440 (4 x SPARC T2+ 1.6 GHz) 28,000

Configuration Summary

Hardware Configuration:

SPARC T4-4 server
4 x SPARC T4-4 processors, 3.0 GHz
128 GB memory
4 x 300 GB internal SSD

Storage Configuration:

Sun ZFS Storage 7120
16 x 146 GB disks

Software Configuration:

Oracle Solaris 10 8/11
Oracle Solaris Studio 12.1
Oracle Business Intelligence Enterprise Edition 11g (11.1.1.6.0)
Oracle WebLogic Server 10.3.5
Oracle Internet Directory 11.1.1.6.0
Oracle Database 11g Release 2

Benchmark Description

Oracle Business Intelligence Enterprise Edition (Oracle BI EE) delivers a robust set of reporting, ad-hoc query and analysis, OLAP, dashboard, and scorecard functionality with a rich end-user experience that includes visualization, collaboration, and more.

The Oracle BI EE benchmark test used five different business user roles - Marketing Executive, Sales Representative, Sales Manager, Sales Vice-President, and Service Manager. These roles included a maximum of 5 different pre-built dashboards. Each dashboard page had an average of 5 reports in the form of a mix of charts, tables and pivot tables, returning anywhere from 50 rows to approximately 500 rows of aggregated data. The test scenario also included drill-down into multiple levels from a table or chart within a dashboard.

The benchmark test scenario uses a typical business user sequence of dashboard navigation, report viewing, and drill down. For example, a Service Manager logs into the system and navigates to his own set of dashboards using Service Manager. The BI user selects the Service Effectiveness dashboard, which shows him four distinct reports, Service Request Trend, First Time Fix Rate, Activity Problem Areas, and Cost Per Completed Service Call spanning 2002 to 2005. The user then proceeds to view the Customer Satisfaction dashboard, which also contains a set of 4 related reports, drills down on some of the reports to see the detail data. The BI user continues to view more dashboards – Customer Satisfaction and Service Request Overview, for example. After navigating through those dashboards, the user logs out of the application. The benchmark test is executed against a full production version of the Oracle Business Intelligence 11g Applications with a fully populated underlying database schema. The business processes in the test scenario closely represent a real world customer scenario.

See Also

Disclosure Statement

Copyright 2012, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 30 September 2012.

SPARC T4-4 Delivers World Record First Result on PeopleSoft Combined Benchmark

Oracle's SPARC T4-4 servers running Oracle's PeopleSoft HCM 9.1 combined online and batch benchmark achieved World Record 18,000 concurrent users while executing a PeopleSoft Payroll batch job of 500,000 employees in 43.32 minutes and maintaining online users response time at < 2 seconds.

  • This world record is the first to run online and batch workloads concurrently.

  • This result was obtained with a SPARC T4-4 server running Oracle Database 11g Release 2, a SPARC T4-4 server running PeopleSoft HCM 9.1 application server and a SPARC T4-2 server running Oracle WebLogic Server in the web tier.

  • The SPARC T4-4 server running the application tier used Oracle Solaris Zones which provide a flexible, scalable and manageable virtualization environment.

  • The average CPU utilization on the SPARC T4-2 server in the web tier was 17%, on the SPARC T4-4 server in the application tier it was 59%, and on the SPARC T4-4 server in the database tier was 35% (online and batch) leaving significant headroom for additional processing across the three tiers.

  • The SPARC T4-4 server used for the database tier hosted Oracle Database 11g Release 2 using Oracle Automatic Storage Management (ASM) for database files management with I/O performance equivalent to raw devices.

  • This is the first three tier mixed workload (online and batch) PeopleSoft benchmark also processing PeopleSoft payroll batch workload.

Performance Landscape

PeopleSoft HR Self-Service and Payroll Benchmark
Systems Users Ave Response
Search (sec)
Ave Response
Save (sec)
Batch
Time (min)
Streams
SPARC T4-2 (web)
SPARC T4-4 (app)
SPARC T4-4 (db)
18,000 0.944 0.503 43.32 64

Configuration Summary

Application Configuration:

1 x SPARC T4-4 server with
4 x SPARC T4 processors, 3.0 GHz
512 GB memory
1 x 600 GB SAS internal disks
4 x 300 GB SAS internal disks
1 x 100 GB and 2 x 300 GB internal SSDs
2 x 10 Gbe HBA
Oracle Solaris 11 11/11
PeopleTools 8.52
PeopleSoft HCM 9.1
Oracle Tuxedo, Version 10.3.0.0, 64-bit, Patch Level 031
Java Platform, Standard Edition Development Kit 6 Update 32

Database Configuration:

1 x SPARC T4-4 server with
4 x SPARC T4 processors, 3.0 GHz
256 GB memory
1 x 600 GB SAS internal disks
2 x 300 GB SAS internal disks
Oracle Solaris 11 11/11
Oracle Database 11g Release 2
PeopleTools 8.52
Oracle Tuxedo, Version 10.3.0.0, 64-bit, Patch Level 031

Web Tier Configuration:

1 x SPARC T4-2 server with
2 x SPARC T4 processors, 2.85 GHz
256 GB memory
2 x 300 GB SAS internal disks
1 x 300 GB internal SSD
1 x 100 GB internal SSD
Oracle Solaris 11 11/11
PeopleTools 8.52
Oracle WebLogic Server 10.3.4
Java Platform, Standard Edition Development Kit 6 Update 32

Storage Configuration:

1 x Sun Server X2-4 as a COMSTAR head for data
4 x Intel Xeon X7550, 2.0 GHz
128 GB memory
1 x Sun Storage F5100 Flash Array (80 flash modules)
1 x Sun Storage F5100 Flash Array (40 flash modules)

1 x Sun Fire X4275 as a COMSTAR head for redo logs
12 x 2 TB SAS disks with Niwot Raid controller

Benchmark Description

This benchmark combines PeopleSoft HCM 9.1 HR Self Service online and PeopleSoft Payroll batch workloads to run on a unified database deployed on Oracle Database 11g Release 2.

The PeopleSoft HRSS benchmark kit is a Oracle standard benchmark kit run by all platform vendors to measure the performance. It's an OLTP benchmark where DB SQLs are moderately complex. The results are certified by Oracle and a white paper is published.

PeopleSoft HR SS defines a business transaction as a series of HTML pages that guide a user through a particular scenario. Users are defined as corporate Employees, Managers and HR administrators. The benchmark consist of 14 scenarios which emulate users performing typical HCM transactions such as viewing paycheck, promoting and hiring employees, updating employee profile and other typical HCM application transactions.

All these transactions are well-defined in the PeopleSoft HR Self-Service 9.1 benchmark kit. This benchmark metric is the weighted average response search/save time for all the transactions.

The PeopleSoft 9.1 Payroll (North America) benchmark demonstrates system performance for a range of processing volumes in a specific configuration. This workload represents large batch runs typical of a ERP environment during a mass update. The benchmark measures five application business process run times for a database representing large organization. They are Paysheet Creation, Payroll Calculation, Payroll Confirmation, Print Advice forms, and Create Direct Deposit File. The benchmark metric is the cumulative elapsed time taken to complete the Paysheet Creation, Payroll Calculation and Payroll Confirmation business application processes.

The benchmark metrics are taken for each respective benchmark while running simultaneously on the same database back-end. Specifically, the payroll batch processes are started when the online workload reaches steady state (the maximum number of online users) and overlap with online transactions for the duration of the steady state.

Key Points and Best Practices

  • Two Oracle PeopleSoft Domain sets with 200 application servers each on a SPARC T4-4 server were hosted in 2 separate Oracle Solaris Zones to demonstrate consolidation of multiple application servers, ease of administration and performance tuning.

  • Each Oracle Solaris Zone was bound to a separate processor set, each containing 15 cores (total 120 threads). The default set (1 core from first and third processor socket, total 16 threads) was used for network and disk interrupt handling. This was done to improve performance by reducing memory access latency by using the physical memory closest to the processors and offload I/O interrupt handling to default set threads, freeing up cpu resources for Application Servers threads and balancing application workload across 240 threads.

See Also

Disclosure Statement

Oracle's PeopleSoft HR and Payroll combined benchmark, www.oracle.com/us/solutions/benchmark/apps-benchmark/peoplesoft-167486.html, results 09/30/2012.

Tuesday May 01, 2012

SPARC T4 Servers Running Oracle Solaris 11 and Oracle RAC Deliver World Record on PeopleSoft HRMS 9.1

Oracle's SPARC T4-4 server running Oracle's PeopleSoft HRMS Self-Service 9.1 benchmark achieved world record performance with 18,000 interactive users. This was accomplished using a high availability configuration using Oracle Real Application Clusters (RAC) 11g Release 2 software for the database tier running on Oracle Solaris 11. The benchmark configuration included the SPARC T4-4 server for the application tier, a SPARC T4-2 server for the web tier and two SPARC T4-2 servers for the database tier.

  • The combination of the SPARC T4 servers running PeopleSoft HRSS 9.1 benchmark supports 4.5x the number of users an IBM pSeries 570 running PeopleSoft HRSS 8.9, with an average response time 40 percent better than IBM.

  • This result was obtained with two SPARC T4-2 servers running the database service using Oracle Real Application Clusters 11g Release 2 software in a high availability configuration.

  • The two SPARC T4-2 servers in the database tier used Oracle Solaris 11, and Oracle RAC 11g Release 2 software with database shared disk storage managed by Oracle Automatic Storage Management (ASM).

  • The average CPU utilization on one SPARC T4-4 server in the application tier handling 18,000 users is 54 percent, showing significant headroom for growth.

  • The SPARC T4 server for the application tier used Oracle Solaris Containers on Oracle Solaris 10, which provides a flexible, scalable and manageable virtualized environment.

  • The Peoplesoft HRMS Self-Service benchmark demonstrates better performance on Oracle hardware and software, engineered to work together, than Oracle software on IBM.

Performance Landscape

PeopleSoft HRMS Self-Service 9.1 Benchmark
Systems Processors Users Ave Response -
Search (sec)
Ave Response -
Save (sec)
SPARC T4-2 (web)
SPARC T4-4 (app)
2 x SPARC T4-2 (db)
2 x SPARC T4, 2.85 GHz
4 x SPARC T4, 3.0 GHz
2 x (2 x SPARC T4, 2.85 GHz)
18,000 1.048 0.742
SPARC T4-2 (web)
SPARC T4-4 (app)
SPARC T4-4 (db)
2 x SPARC T4, 2.85 GHz
4 x SPARC T4, 3.0 GHz
4 x SPARC T4, 3.0 GHz
15,000 1.01 0.63
PeopleSoft HRMS Self-Service 8.9 Benchmark
IBM Power 570 (web/app)
IBM Power 570 (db)
12 x POWER5, 1.9 GHz
4 x POWER5, 1.9 GHz
4,000 1.74 1.25
IBM p690 (web)
IBM p690 (app)
IBM p690 (db)
4 x POWER4, 1.9 GHz
12 x POWER4, 1.9 GHz
6 x 4392 MIPS/Gen1
4,000 1.35 1.01

The main differences between version 9.1 and version 8.9 of the benchmark are:

  • the database expanded from 100K employees and 20K managers to 500K employees and 100K managers,
  • the manager data was expanded,
  • a new transaction, "Employee Add Profile," was added, the percent of users executing it is less then 2%, and the transaction has a heavier footprint,
  • version 9.1 has a different benchmark metric (Average Response Search/Save time for x number of users) versus single user search/save time,
  • newer versions of the PeopleSoft application and PeopleTools software are used.

Configuration Summary

Application Server:

1 x SPARC T4-4 server
4 x SPARC T4 processors 3.0 GHz
512 GB main memory
5 x 300 GB SAS internal disks,
2 x 100 GB internal SSDs
1 x 300 GB internal SSD
Oracle Solaris 10 8/11
PeopleSoft PeopleTools 8.51.02
PeopleSoft HCM 9.1
Oracle Tuxedo, Version 10.3.0.0, 64-bit, Patch Level 031
Java HotSpot(TM) 64-Bit Server VM on Solaris, version 1.6.0_20

Web Server:

1 x SPARC T4-2 server
2 x SPARC T4 processors 2.85 GHz
256 GB main memory
2 x 300 GB SAS internal disks
1 x 100 GB internal SSD
Oracle Solaris 10 8/11
PeopleSoft PeopleTools 8.51.02
Oracle WebLogic Server 11g (10.3.3)
Java HotSpot(TM) 64-Bit Server VM on Solaris, version 1.6.0_20

Database Server:

2 x SPARC T4-2 servers, each with
2 x SPARC T4 processors 2.85 GHz
128 GB main memory
3 x 300 GB SAS internal disks
Oracle Solaris 11 11/11
Oracle Database 11g Release 2
Oracle Real Application Clusters

Database Storage:

Data
1 x Sun Storage F5100 Flash Array (80 flash modules)
1 x COMSTAR Sun Fire X4470 M2 server
4 x Intel Xeon X7550 processors 2.0 GHz
128 GB main memory
Oracle Solaris 11 11/11
Redo
2 x COMSTAR Sun Fire X4275 servers, each with
1 x Intel Xeon E5540 processor 2.53 GHz
6 GB main memory)
12 x 2 TB SAS disks
Oracle Solaris 11 Express 2010.11

Connectivity:

1 x 8-port 10GbE switch
1 x 24-port 1GbE switch
1 x 32-port Brocade FC switch

Benchmark Description

The purpose of the PeopleSoft HRMS Self-Service 9.1 benchmark is to measure comparative online performance of the selected processes in PeopleSoft Enterprise HCM 9.1 with Oracle Database 11g. The benchmark kit is an Oracle standard benchmark kit run by all platform vendors to measure the performance. It is an OLTP benchmark with no dependency on remote COBOL calls, there is no batch workload, and DB SQLs are moderately complex. The results are certified by Oracle and a white paper is published.

PeopleSoft defines a business transaction as a series of HTML pages that guide a user through a particular scenario. Users are defined as corporate Employees, Managers and HR administrators. The benchmark consists of 14 scenarios which emulate users performing typical HCM transactions such as viewing paychecks, promoting and hiring employees, updating employee profiles and other typical HCM application transactions.

All of these transactions are well defined in the PeopleSoft HR Self-Service 9.1 benchmark kit. This benchmark metric is the Weighted Average Response search/save time for all users.

Key Points and Best Practices

  • The combined processing power of two SPARC T4-2 servers running the highly available Oracle RAC database can provide greater throughput and Oracle RAC scalability than is available from a single server.

  • All database data files/recovery files and Oracle Clusterware files were created with Oracle Automatic Storage Management (Oracle ASM) volume manager and file system which resulted in equivalent performance of conventional volume managers, file systems, and raw devices, but with the added benefit of the ease of management provided by Oracle ASM integrated storage management solution.

  • Five Oracle PeopleSoft Domains with 200 application servers (40 per each Domain) on the SPARC T4-4 server were hosted in two separate Oracle Solaris Containers for a total of 10 Domains/400 application servers processes to demonstrate consolidation of multiple application servers, ease of administration and load balancing.

  • Each Oracle Solaris Container was bound to a separate processor set, each containing 124 virtual processors. The default set (composed of 4 virtual processors from first and third processor socket, total of 8 virtual processors) was used for network and disk interrupt handling. This was done to improve performance by reducing memory access latency by using the physical memory closest to the processors and offload I/O interrupt handling to default set virtual processors, freeing up processing resources for application server virtual processors.

See Also

Disclosure Statement

Oracle's PeopleSoft HRMS 9.1 benchmark, www.oracle.com/us/solutions/benchmark/apps-benchmark/peoplesoft-167486.html, results 5/1/2012.

Thursday Dec 02, 2010

World Record SPECweb2005 Result on SPARC T3-2 with Oracle iPlanet Web Server

Oracle's SPARC T3-2 server running Oracle iPlanet Web Server middleware delivered a world record SPECweb2005 benchmark result of 113,857. Oracle's 2-socket SPARC is 9% faster than the fastest 2-socket x86-based competitive server and even 8% faster than the 4-socket HP x86-based server.

  • The SPARC T3-2 server with dual 1.65 GHz SPARC T3 processors using Oracle iPlanet Web Server 7.0.9 middleware delivered a world record result of 113857 on the SPECweb2005 benchmark.

  • This result demonstrates that the SPARC T3-2 running Oracle Solaris and Oracle iPlanet Web Server can support thousands of concurrent web server sessions and is an industry leader in web serving with a high performance and enterprise quality solution.

  • Oracle is the only SPECweb2005 benchmark sponsor who can demonstrate top performance using a commercially viable and production quality web serving solution with the Oracle iPlanet Web Server and the Oracle Solaris 10 operating system.

  • On the SPECweb2005 benchmark, the SPARC T3-2 server with two 1.65 GHz SPARC T3 processors is 8% faster than the latest Hewlett-Packard result that was just published on the HP ProLiant DL585 G7 with four 2.0 GHz AMD 6128HE processors.

  • On the SPECweb2005 benchmark, the SPARC T3-2 server with two 1.65 GHz SPARC T3 processors is 9% faster than the Fujitsu PRIMERGY TX300 S6 with two 3.3 GHz Intel X5680 processors.

  • On the SPECweb2005 benchmark, the SPARC T3-2 server with two 1.65 GHz SPARC T3 processors is 37% faster than the HP ProLiant DL370 G6 with two 3.2 GHz Intel W5580 processors.

  • On the Support workload of SPECweb2005, the SPARC T3-2 server with two 1.65 GHz SPARC T3 processors obtained a 41% higher score than the Fujitsu PRIMERGY TX300 S6 with two 3.3 GHz Intel X5680 processors.

  • The SPARC T3-2 server obtained 14.4 times the result of the 4-core IBM System p5 550 1.9 GHz POWER5+ system on the SPECweb2005 benchmark. There are no IBM POWER7 or POWER6 based system results published on the SPECweb2005 benchmark.

Performance Landscape

SPECweb2005 select results as of 8 December 2010. See the SPEC website for more. Information ordered by Result, bigger is better.

Server Processor OS SPECweb2005 Performance (\*) Web Server
Result Bank Ecom Supp
SPARC T3-2 2 x 1.65 T3 Solaris 113857 165024 160056 123840 iPlanet
HP DL585 G7 4 x 2.0 6128HE RedHat Linux 105586 168192 175104 88576 Rock
Fujitsu TX300 S6 2 x 3.33 X5680 RedHat Linux 104422 162000 177000 88000 Rock
Sun T5440 4 x 1.6 T2 Plus Solaris 100209 176500 133000 95000 Sun
Fujitsu TX300 S5 2 x 2.93 X5570 RedHat Linux 83198 106000 140000 86000 Rock
HP ML370 G6 2 x 3.2 W5580 RedHat Linux 83073 117120 142080 76352 Rock
HP DL370 G6 2 x 3.2 W5580 RedHat Linux 83073 117120 142080 76352 Rock
HP DL585 G5 4 x 3.1 Opt8393 RedHat Linux 71629 117504 123072 56320 Rock
IBM p5 550 2 x 1.9 POWER5+ SuSE Linux 7881 12240 11820 7500 Zeus

(\*) Metrics are
Result - SPECweb2005, overall metric
Bank - SPECweb2005_banking, Banking component metric
Ecom - SPECweb2005_ecommerce, ECommerce component metric
Supp - SPECweb2005_support, Support component metric

Configuration Summary

Hardware Configuration:

1 SPARC T3-2 with
2 x 1.65 GHz SPARC T3 processors
256 GB memory
2 x Sun Storage F5100 Flash Array
4 x Dual 10 GbE SFP+ PCIe LP
4 x 6 GB SAS PCIe HBA

Software Configuration:

Oracle Solaris 10 9/10
Oracle iPlanet Web Server 7.0.9
Java Platform, Standard Edition version 1.6.0_21-b06
Java Hotspot Server VM version 17.0-b16, mixed mode

Benchmark Description

SPECweb2005, successor to SPECweb99 and SPECweb99_SSL, is an industry standard benchmark for evaluating Web Server performance developed by SPEC. The benchmark simulates multiple user sessions accessing a Web Server and generating static and dynamic HTTP requests. The major features of SPECweb2005 are:

  • Measures simultaneous user sessions
  • Dynamic content: currently PHP and JSP implementations
  • Page images requested using 2 parallel HTTP connections
  • Multiple, standardized workloads: Banking (HTTPS), E-commerce (HTTP and HTTPS), and Support (HTTP)
  • Simulates browser caching effects
  • File accesses more accurately simulate today's disk access patterns

SPEC requires the server under test to support SSL Protocol V3 (SSLv3).

Of the various ciphers supported in SSLv3, cipher SSL_RSA_WITH_RC4_128_MD5 is currently required for all workload components that use SSL. It was selected as one of the most commonly used SSLv3 ciphers and allows results to be directly compared to each other. SSL_RSA_WITH_RC4_128_MD5 consists of:

  • RSA public key (asymmetric) encryption with a 1024-bit key
  • RC4 symmetric encryption with a 128-bit key for bulk data encryption
  • MD5 digest algorithm with 128-bit output for the Message Authentication Code (MAC)

A compliant result must use the cipher suite listed above, and must employ the 1024 bit key for RSA public key encryption, 128-bit key for RC4 bulk data encryption, and have a 128-bit output for the Message Authentication code.

All Banking workload request to the server under test use SSL, where the Ecommerce workload requests are a mix of SSL and non-SSL. Non of the Support workload requests to server under test use SSL.

Key Points and Best Practices

  • When multiple 10 GbE Dual Port NICs are used, it is best practice to equally divide these NICs between PCI root nodes that are available.

  • Two web server instances was used. One web server instance was bound to a processor set with CPUs in the first processor chip. The other web server instance was bound to a processor set with CPUs in the second processor chip. The web server instance bound to CPUs in first processor chip was listening on the NIC IP addresses on that processor's chip PCI root node. The same was done with web server instance bound to CPUs in second processor chip. This was done to improve the locality of the processing.

  • Each web server is executed in the FX scheduling class to improve performance by reducing the frequency of context switches.

See Also

Disclosure Statement

SPEC and the benchmark name SPECweb are registered trademarks of Standard Performance Evaluation Corporation. Results are from www.spec.org as of December 8, 2010 and this report. Oracle, SPARC T3-2, 113,857 SPECweb2005. HP ProLiant DL585 G7, 105,586 SPECweb2005. Fujitsu PRIMERGY TX300 S6, 104,422 SPECweb2005. Sun SPARC Enterprise T5440, 100,209 SPECweb2005. Fujitsu PRIMERGY TX300 S5, 83,198 SPECweb2005. HP ProLiant ML370 G6, 83,073 SPECweb2005. HP ProLiant DL370 G6, 83,073 SPECweb2005. HP ProLiant DL585 G5, 71,629 SPECweb2005. IBM System p5 550, 7,881 SPECweb2005.

Tuesday Apr 13, 2010

Oracle Sun Flash Accelerator F20 PCIe Card Accelerates Web Caching Performance

Using Oracle's Sun FlashFire technology, the Sun Accelerator F20 PCIe Card is shown to be a high performance and cost effective caching device for web servers. Many current web and application servers are designed with an active cache that is used for holding things like session objects, files and web pages. The Sun F20 card is shown to be an excellent candidate to improve performance over using HDD solutions.

  • The Sun Flash Accelerator F20 PCIe Card provides 2x better Quality of Service (QoS) at the same load as compared to 15K RPM high performance disk drives.

  • The Sun Flash Accelerator F20 PCIe Card enables scaling to 3x more users than 15K RPM high performance disk drives.

  • The Sun Flash Accelerator F20 PCIe Card provides 25% higher Quality of Service (QoS) than 15K RPM high performance disk drives at maximum rate.

  • The Sun Flash Accelerator F20 PCIe Card allows for easy expansion of the webcache. Each card provides an additional 96 GB of storage.

  • The Sun Flash Accelerator F20 PCIe Card used as a caching device offers Bitrate and Quality of Service (QoS) comparable to that provided by memory. While memory also provides excellent caching performance in comparison to disk, memory capacity is limited in servers.

Performance Landscape

Experiment results using three Sun Flash Accelerator F20 PCIe Cards.

Load Factor No Cache F20 Webcache Memcache
Max Load @Disk Load Max Load @F20 Load
Max Connections 7,000 7,000 27,000 27,000
Average Bitrate 445 Kbps 870 Kbps 602 Kbps 678 Kbps
Cache Hit Rate 0% 98% 99% 56%

QoS Bitrates %Connect %Connect %Connect %Connect
900 Kbps - 1 Mbps 0% 97% 0% 0%
800 Kbps 0% 3% 0% 6%
700 Kbps 0% 0% 64% 70%
600 Kbps 18% 0% 24% 15%
420 Kbps - 500 Kbps 88% 0% 12% 9%

Experiment results using two Sun Flash Accelerator F20 PCIe Cards.

Load Factor No Cache F20 Webcache Memcache
Max Load @Disk Load Max Load @F20 Load
Max Connections 7,000 7,000 22,000 27,000
Average Bitrate 445 Kbps 870 Kbps 622 Kbps 678 Kbps
Cache Hit Rate 0% 98% 80% 56%

QoS Bitrates %Connect %Connect %Connect %Connect
900 Kbps - 1 Mbps 0% 97% 0% 0%
800 Kbps 0% 3% 1% 6%
700 Kbps 0% 0% 68% 70%
600 Kbps 18% 0% 26% 15%
420 Kbps - 500 Kbps 88% 0% 5% 9%

Results and Configuration Summary

Hardware Configuration:

Sun Fire X4270, 72 GB memory
3 X Sun Flash Accelerator F20 PCIe Card
Sun Storage J4400 (12 15K RPM disks)

Software Configuration:

Sun Java System Web Server 7
OpenSolaris
Flickr Photo Download Workload
Oracle Solaris Zettabyte File System (ZFS)

Three configurations are compared:

  1. No cache, 12 x high-speed 15K RPM Disks
  2. 3 x Sun Flash Accelerator F20 PCIe Cards as cache device
  3. 64 GB server memory as cache device

Benchmark Description

This benchmark is based upon the description of the flickr website presented at http://highscalability.com/flickr-architecture. It measures performance of an HTTP-based file photo Slide Show workload. The workload randomly selects and downloads from 80 photos stored in 4 bins:

  • 20 large photos, 1800x1800p, 1 MB, 1% probability
  • 20 medium photos, 1000x1000p, 500 KB, 4% probability
  • 20 small photos, 540x540p, 100K, 35% probability
  • 20 thumbnail photos, 100x100p, 5k, 60% probability

Benchmark metrics are:

  • Scalability – Number of persistent connections achieved
  • Quality of Service (QoS) – bitrate achieved by each user
    • max speed: 1 Mbps, min speed SLA: 420 Kbps
    • divides bitrates between max and min in 5 bands, corresponding to dial-in, T1, etc.
    • example: 900 Kbps, 800 Kbps, 700 Kbps, 600 Kbps, 500 Kbps
    • reports %users in each bitrate band

Three cases were tested:

  • Disk as OverFlow Cache – Contents are served from 12 high-performance 15K RPM disks configured in a ZFS zpool.
  • Sun Flash Accelerator F20 PCIe Card as Cache Device – Contents are served from 2 F20 Cards, with 8 component DOMs configured in a ZFS spool
  • Memory as Cache – Contents are served from tmpfs

Key Points and Best Practices

See Also

Disclosure Statement

Results as of 4/1/2010.

Tuesday Oct 13, 2009

SPECweb2005 on Sun SPARC Enterprise T5440 World Record using Solaris Containers and Sun Storage F5100 Flash

The Sun SPARC Enterprise T5440 server with 1.6GHz UltraSPARC T2 Plus with Solaris Containers, Sun Flash Open Storage, and Sun JAVA System Web Server 7.0 Update 5 achieved World Record SPECweb2005.
  • Sun has obtained a World Record SPECweb2005 performance result of 100,209 SPECweb2005 on the Sun SPARC Enterprise T5440, running Solaris 10 10/09 Sun JAVA System Web Server 7.0 Update 5, and Java Hotspot™ Server VM.

  • This result demonstrates performance leadership of the Sun SPARC Enterprise T5440 server and its scalability, by using Solaris Containers to consolidate multiple web serving environments, and Sun OpenStorage Flash technology to store large datasets for fast data retrieval.

  • The Sun SPARC Enterprise T5440 delivers 21% greater SPECweb2005 performance than the HP DL370 G6 with 3.2GHz Xeon W5580 processors.

  • The Sun SPARC Enterprise T5440 delivers 40% greater SPECweb2005 performance than the HP DL 585 G5 with four 3.114 GHz Opteron 8393 SE processors.

  • The Sun SPARC Enterprise T5440 delivers 2x the SPECweb2005 performance of the HP DL 580 G5 with four 2.66GHz Xeon X7460 processors.

  • There are no IBM Power6 results on the SPECweb2005 benchmark.

  • This benchmark result clearly demonstrates that the Sun SPARC Enterprise T5440 running Solaris 10 10/09 and Sun Java System Webserver 7.0 Update 5 can support thousands of concurrent web server sessions and is an industry leader in web serving with a Sun solution.

Performance Landscape

Server

Processor

SPECweb2005

Banking\*

Ecomm\*

Support\*

Webserver

OS

Sun T5440

4x 1.6 T2 Plus

100,209

176,500

133,000

95,000

Java WebServer

Solaris

HP DL370 G6

2x 3.2 W5580

83,073

117,120

142,080

76,352

Rock

RedHat
Linux

HP DL585 G5

4x 3.11 O8393

71,629

117,504

123,072

56,320

Rock

RedHat
Linux

HP DL580 G5

4x 2.66 X7460

50,013

97,632

69,600

40,800

Rock

RedHat
Linux

\* Banking - SPECweb2005-Banking
   Ecomm - SPECweb2005-Ecommerce
   Support - SPECweb2005-Support

Results and Configuration Summary

Hardware Configuration:

  1 Sun SPARC Enterprise T5440 with

  • 4 x UltraSPARC T2 Processor 8 core, 64 threads, 1.6 GHz
  • 254 GB memory
  • 6 x 4Gb PCI Express 8-Port Host Adapter (SG-XPCIE8SAS-E-Z)
  • 1 x Sun Storage F5100 Flash Array (TA5100RASA4-80AA)
  • 1 x Sun Storage F5100 Flash Array (TA5100RASA4-40AA)

Server Software Configuration:

  • Solaris 10 10/09
  • JAVA System Web Server 7.0 Update 5
  • Java Hotspot™ Server VM

Network configuration:

  • 1 x Arista DCS-7124s 24-10GbE port  switch
  • 1 x Cisco 2970 series (WS-C2970G-24TS-E) switch for the three 1 GbE networks

Back-end Simulator:

  1 Sun Fire X4270 with

  • 2 x 2.93 GHz Intel X5570 Quad core
  • 48GB memory
  • Solaris 10 10/09
  • JSWS 7.0 Update 5
  • Java Hotspot™ Server VM

Clients:

  8 Sun Blade™ T6320

  • 1 x 1.417 GHz UltraSPARC-T2
  • 64 GB memory
  • Solaris 10 5/09
  • Java Hotspot™ Server VM

  8 Sun Blade™ 6270

  • 2 x 2.93 GHz Intel X5570 Quad core
  • 36 GB memory
  • Solaris 10 5/09
  • Java Hotspot™ Server VM

Benchmark Description

SPECweb2005, successor to SPECweb99 and SPECweb99_SSL, is an industry standard benchmark for evaluating Web Server performance developed by SPEC. The benchmark simulates multiple user sessions accessing a Web Server and generating static and dynamic HTTP requests. The major features of SPECweb2005 are:

  • Measures simultaneous user sessions
  • Dynamic content: currently PHP and JSP implementations
  • Page images requested using 2 parallel HTTP connections
  • Multiple, standardized workloads: Banking (HTTPS), E-commerce (HTTP and HTTPS), and Support (HTTP)
  • Simulates browser caching effects
  • File accesses more accurately simulate today's disk access patterns

Key Points and Best Practices

  • The server was divided into four Solaris Containers and a single web server instance was executed in each container.
  • Four processor sets were created (with varying numbers of threads depending on the workload) to run the web server in. This was done to reduce memory access latency using the physical memory closest to the processor.  All interrupts were run on the remaining threads.
  • Each web server is executed in the FX scheduling class to improve performance by reducing the frequency of context switches.
  • Two Sun Storage F5100 Flash Arrays (holding the target file set and logs) were shared by the four containers  for fast data retrieval.   
  • Use of Solaris Containers highlights the consolidation of multiple web serving environments on a single server.
  • Use of the Sun Ext I/O Expansion unit and Sun Storage F5100 Flash Arrays highlight the expandability of the server.

    Disclosure Statement

    Sun SPARC Enterprise T5440 (8 cores, 1 chip) 100209 SPECweb2005, was submitted to SPEC for review on October 13, 2009.  HP ProLiant DL370 G6 (8 cores, 2 chips) 83,073 SPECweb2005. HP ProLiant DL585 G5 (16 cores, 4 chips) 71,629 SPECweb2005. HP ProLiant DL580 G5 (24 cores, 4 chips) 50,013 SPECweb2005. SPEC, SPECweb reg tm of Standard Performance Evaluation Corporation. Results from www.spec.org as of Oct 10, 2009.

    Thursday Jul 23, 2009

    World Record Performance of Sun CMT Servers

    This week, Sun continues to highlight the record-breaking performance of its latest update to the chip multi-threaded (CMT) Sun SPARC Enterprise server family running Solaris.  Some of these benchmarks leverage the use of a variety of Sun's unique technologies including ZFS, SSD, various Storage Products and many more. These benchmarks were blogged about by various members or our team and the URLs are shown below.

    Messages

    • Sun's CMT is the most powerful CPU regardless of architectural/implementation details (#transistors, #cores, threads, MHz, etc.)!
    • Performance tests show that Sun can outperform IBM Power6 by more than 2x on a variety of benchmarks.
    • Performance tests show Sun's new 1.6GHz CMT systems can be 20% faster than Sun's previous generation 1.4GHz processors, given Sun's continual advancements in both hardware and software.

    Benchmark Results Recently Blogged

    Sun T5440 Oracle BI EE World Record Performance
    http://blogs.sun.com/BestPerf/entry/sun_t5440_oracle_bi_ee

    Sun T5440 World Record SAP-SD 4-Processor Two-tier SAP ERP 6.0 EP 4 (Unicode), Beats IBM POWER6 (note1)
    http://blogs.sun.com/BestPerf/entry/sun_t5440_world_record_sap

    Zeus ZXTM Traffic Manager World Record on Sun T5240
    http://blogs.sun.com/BestPerf/entry/top_performance_on_sun_sparc

    Sun T5440 SPECjbb2005, Sun 1.6GHz T2 Plus chip is 2.3x IBM 4.7GHz POWER6 chip
    http://blogs.sun.com/BestPerf/entry/sun_t5440_specjbb2005_beats_ibm

    New SPECjAppServer2004 Performance on the Sun SPARC Enterprise T5440
    http://blogs.sun.com/BestPerf/entry/new_specjappserver2004_performance_on_sun

    1.6 GHz SPEC CPU2006: World Record 4-chip system, Rate Benchmarks, Beats IBM POWER6
    http://blogs.sun.com/BestPerf/entry/1_6_ghz_spec_cpu2006

    Sun Blade T6320 World Record 1-chip SPECjbb2005 performance, Sun 1.6GHz T2 Plus chip is 2.6x IBM 4.7GHz POWER6 chip
    http://blogs.sun.com/BestPerf/entry/new_specjbb2005_performance_on_the

    Comparison Table

    Benchmark Sun CMT Tier Software Key Messages
    Oracle BI EE Sun T5440 Appl,
    Database
    Oracle 11g,
    Oracle BIEE,
    ZFS,
    Solaris
    • World Record: T5440
    • Achieved 28,000 users
    • Reference
    SAP-SD 2-Tier Sun T5440 Appl,
    Database
    SAP ECC 6.0,EP4
    Oracle 10g,
    Solaris
    • World Record 4-socket: T5440
    • T5440 Beats 4-socket IBM 550 5GHz Power6 by 26% (note1)
    • T5440 Beats HP DL585 G6 4-socket Opteron (note1)
    • Unicode version
    SPECjAppServer
    2004
    Sun T5440 Appl, Database Oracle WebLogic,
    Oracle 11g,
    JDK 1.6.0_14,
    Solaris
    • World Record Single System (Appl Tier): T5440
    • T5440 is 6.4x faster of IBM Power 570 4.7GHz Power6
    • T5440 is 73% faster than HP DL 580 G5 Xeon 6C
    • Oracle Fusion Middleware
    Sun T5440
    SPECjbb2005
    Sun T5440 Appl Java HotSpot,
    OpenSolaris
    • 1.6GHz US T2 Plus CPU is 2.3x faster of IBM 4.7GHz Power6 CPU
    • 1.6GHz US T2 Plus CPU is 21% faster than previous generation 1.4GHz US T2 Plus CPU
    • Sun T5440 has 2.3x better power/perf than the IBM 570 (8 4.7GHz Power6)
    Sun Blade T6320 SPECjbb2005 Sun T6320 Appl Java HotSpot,
    OpenSolaris
    • World Record 1-socket: T6320
    • 1.6GHz US T2 Plus CPU is 2.6x faster than IBM 4.7GHz Power6 CPU
    • T6320 is 3% faster than Fujitsu 3.16GHz Xeon QC
    SPEC CPU2006 Sun T5440,
    Sun T5240,
    Sun T5220,
    Sun T5120,
    Sun T6320
    all tiers Sun Studio12,
    Solaris,
    ZFS
    • World Record 4-socket: T5440
    • 1.6GHz US T2 Plus CPU is 2.6x faster than IBM 4.7GHz Power6 CPU
    • T6320 is 3% faster than Fujitsu 3.16GHz Xeon QC
    Zeus ZXTM
    Traffic Manager
    Sun T5240 Web Zeus ZXTM v5.1r1,
    Solaris
    • World Record: T5240
    • T5240 Beats f5 BIG-IP VIPRON by 34%; 2.6x better $/perf
    • T5240 Beats f5 BIG-IP 8800 by 91%; 2.7x better $/perf⁞
    • T5240 Beats Citrix 12000 by 2.2x; 3.3x better $/perf
    • No IBM result

    Virtualization

    Sun's announcement also included updated virtualization software (LDOMs 1.1). Downloads are available to existing SPARC Enterprise server customers at: http://www.sun.com/servers/coolthreads/ldoms/index.jsp.  Also look the the blog posting "LDoms for Dummies" at http://blogs.sun.com/PierreReynes/entry/ldoms_for_dummies

    Try & Buy Program

    Sun is also offering free 60-day trials on Sun CMT servers with with a very popular Try and Buy program: http://www.sun.com/tryandbuy.

    Benchmark Performance Disclosure Statements (the URLs listed above go into more detail on each of these benchmarks)

    Note1: 4-processor world record on the 2-tier SAP SD Standard Application Benchmark with 4720 SD User, as of July 23, 2009, IBM System 550 (4 processors, 8 cores, 16 threads) 3,752 SAP SD Users, 4x 5 GHz Power6, 64 GB memory, DB2 9.5, AIX 6.1, Cert# 2009023. T5440 beats HP new 4-socket Opteron Servers (HPDL585 G6 with 4665 SD User and HP BL685c G6 with 4422 SD User)

    Two-tier SAP Sales and Distribution (SD) standard SAP ERP 6.0 2005/EP4 (Unicode) application benchmarks as of 07/21/09: Sun SPARC Enterprise T5440 Server (4 processors, 32 cores, 256 threads) 4,720 SAP SD Users, 4x 1.6 GHz UltraSPARC T2 Plus, 256 GB memory, Oracle10g, Solaris10, Cert# 2009026. HP ProLiant DL585 G6 (4 processors, 24 cores, 24 threads) 4,665 SAP SD Users, 4x 2.8 GHz AMD Opteron Processor 8439 SE, 64 GB memory, SQL Server 2008, Windows Server 2008 Enterprise Edition, Cert# 2009025. HP ProLiant BL685c G6 (4 processors, 24 cores, 24 threads) 4,422 SAP SD Users, 4x 2.6 GHz AMD Opteron Processor 8435, 64 GB memory, SQL Server 2008, Windows Server 2008 Enterprise Edition, Cert# 2009021. IBM System 550 (4 processors, 8 cores, 16 threads) 3,752 SAP SD Users, 4x 5 GHz Power6, 64 GB memory, DB2 9.5, AIX 6.1, Cert# 2009023. HP ProLiant DL585 G5 (4 processors, 16 cores, 16 threads) 3,430 SAP SD Users, 4x 3.1 GHz AMD Opteron Processor 8393 SE, 64 GB memory, SQL Server 2008, Windows Server 2008 Enterprise Edition, Cert# 2009008. HP ProLiant BL685 G6 (4 processors, 16 cores, 16 threads) 3,118 SAP SD Users, 4x 2.9 GHz AMD Opteron Processor 8389, 64 GB memory, SQL Server 2008, Windows Server 2008 Enterprise Edition, Cert# 2009007. NEC Express5800 (4 processors, 24 cores, 24 threads) 2,957 SAP SD Users, 4x 2.66 GHz Intel Xeon Processor X7460, 64 GB memory, SQL Server 2008, Windows Server 2008 Enterprise Edition, Cert# 2009018. Dell PowerEdge M905 (4 processors, 16 cores, 16 threads) 2,129 SAP SD Users, 4x 2.7 GHz AMD Opteron Processor 8384, 96 GB memory, SQL Server 2005, Windows Server 2003 Enterprise Edition, Cert# 2009017. Sun Fire X4600M2 (8 processors, 32 cores, 32 threads) 7,825 SAP SD Users, 8x 2.7 GHz AMD Opteron 8384, 128 GB memory, MaxDB 7.6, Solaris 10, Cert# 2008070. IBM System x3650 M2 (2 Processors, 8 Cores, 16 Threads) 5,100 SAP SD users,2x 2.93 Ghz Intel Xeon X5570, DB2 9.5, Windows Server 2003 Enterprise Edition, Cert# 2008079. HP ProLiant DL380 G6 (2 processors, 8 cores, 16 threads) 4,995 SAP SD Users, 2x 2.93 GHz Intel Xeon x5570, 48 GB memory, SQL Server 2005, Windows Server 2003 Enterprise Edition, Cert# 2008071. SAP, R/3, reg TM of SAP AG in Germany and other countries. More info www.sap.com/benchmark.

    Oracle Business Intelligence Enterprise Edition benchmark, see http://www.oracle.com/solutions/business_intelligence/resource-library-whitepapers.html for more. Results as of 7/20/09.

    Zeus is TM of Zeus Technology Limited. Results as of 7/21/2009 on http://www.zeus.com/news/press_articles/zeus-price-performance-press-release.html?gclid=CLn4jLuuk5cCFQsQagod7gTkJA.

    SPEC, SPECint, SPECfp reg tm of Standard Performance Evaluation Corporation. Competitive results from www.spec.org as of 16 July 2009. Sun's new results quoted on this page have been submitted to SPEC. Sun Blade T6320 89.2 SPECint_rate_base2006, 96.7 SPECint_rate2006, 64.1 SPECfp_rate_base2006, 68.5 SPECfp_rate2006; Sun SPARC Enterprise T5220/T5120 89.1 SPECint_rate_base2006, 97.0 SPECint_rate2006, 64.1 SPECfp_rate_base2006, 68.5 SPECfp_rate2006; Sun SPARC Enterprise T5240 172 SPECint_rate_base2006, 183 SPECint_rate2006, 124 SPECfp_rate_base2006, 133 SPECfp_rate2006; Sun SPARC Enterprise T5440 338 SPECint_rate_base2006, 360 SPECint_rate2006, 254 SPECfp_rate_base2006, 270 SPECfp_rate2006; Sun Blade T6320 76.4 SPECint_rate_base2006, 85.5 SPECint_rate2006, 58.1 SPECfp_rate_base2006, 62.3 SPECfp_rate2006; Sun SPARC Enterprise T5220/T5120 76.2 SPECint_rate_base2006, 83.9 SPECint_rate2006, 57.9 SPECfp_rate_base2006, 62.3 SPECfp_rate2006; Sun SPARC Enterprise T5240 142 SPECint_rate_base2006, 157 SPECint_rate2006, 111 SPECfp_rate_base2006, 119 SPECfp_rate2006; Sun SPARC Enterprise T5440 270 SPECint_rate_base2006, 301 SPECint_rate2006, 212 SPECfp_rate_base2006, 230 SPECfp_rate2006; IBM p 570 53.2 SPECint_rate_base2006, 60.9 SPECint_rate2006, 51.5 SPECfp_rate_base2006, 58.0 SPECfp_rate2006; IBM Power 520 102 SPECint_rate_base2006, 124 SPECint_rate2006, 88.7 SPECfp_rate_base2006, 105 SPECfp_rate2006; IBM Power 550 215 SPECint_rate_base2006, 263 SPECint_rate2006, 188 SPECfp_rate_base2006, 222 SPECfp_rate2006; HP Integrity BL870c 114 SPECint_rate_base2006; HP Integrity rx7640 87.4 SPECfp_rate_base2006, 90.8 SPECfp_rate2006.

    SPEC, SPECjbb reg tm of Standard Performance Evaluation Corporation. Results as of 7/17/2009 on http://www.spec.org. SPECjbb2005, Sun Blade T6320 229576 SPECjbb2005 bops, 28697 SPECjbb2005 bops/JVM; IBM p 570 88089 SPECjbb2005 bops, 88089 SPECjbb2005 bops/JVM; Fujitsu TX100 223691 SPECjbb2005 bops, 111846 SPECjbb2005 bops/JVM; IBM x3350 194256 SPECjbb2005 bops, 97128 SPECjbb2005 bops/JVM; Sun SPARC Enterprise T5120 192055 SPECjbb2005 bops, 24007 SPECjbb2005 bops/JVM.

    SPECjAppServer2004, Sun SPARC Enterprise T5440 (4 chips, 32 cores) 7661.16 SPECjAppServer2004 JOPS@Standard; HP DL580 G5 (4 chips, 24 cores) 4410.07 SPECjAppServer2004 JOPS@Standard; HP DL580 G5 (4 chips, 16 cores) 3339.94 SPECjAppServer2004 JOPS@Standard; Two Dell PowerEdge 2950 (4 chips, 16 cores) 4794.33 SPECjAppServer2004 JOPS@Standard; Dell PowerEdge R610 (2 chips, 8 cores) 3975.13 SPECjAppServer2004 JOPS@Standard; Two Dell PowerEdge R610 (4 chips, 16 cores) 7311.50 SPECjAppServer2004 JOPS@Standard; IBM Power 570 (2 chips, 4 cores) 1197.51 SPECjAppServer2004 JOPS@Standard; SPEC, SPECjAppServer reg tm of Standard Performance Evaluation Corporation. Results from http://www.spec.org as of 7/20/09.

    SPECjbb2005 Sun SPARC Enterprise T5440 (4 chips, 32 cores) 841380 SPECjbb2005 bops, 26293 SPECjbb2005 bops/JVM. Results submitted to SPEC. HP DL585 G5 (4 chips, 24 cores) 937207 SPECjbb2005 bops, 234302 SPECjbb2005 bops/JVM. IBM Power 570 (8 chips, 16 cores) 798752 SPECjbb2005 bops, 99844 SPECjbb2005 bops/JVM. Sun SPARC Enterprise T5440 (4 chips, 32 cores) 692736 SPECjbb2005 bops, 21648 SPECjbb2005 bops/JVM. SPEC, SPECjbb reg tm of Standard Performance Evaluation Corporation. Results from www.spec.org as of 7/20/09.

    IBM p 570 8P 4.7GHz (4 building blocks) power specifications calculated as 80% of maximum input power reported 7/8/09 in “Facts and Features Report”: ftp://ftp.software.ibm.com/common/ssi/pm/br/n/psb01628usen/PSB01628USEN.PDF

    Tuesday Jul 21, 2009

    Zeus ZXTM Traffic Manager World Record on Sun T5240

    Significance of Results

    The Sun SPARC Enterprise T5240 server equipped with two UltraSPARC T2 processors running at 1.6 GHz delivered World Record ZXTM HTTPThroughput results.

    • Sun SPARC Enterprise T5240 (2 UltraSPARC T2 Plus 1.6GHz) delivers an HTTPThroughput of 13.4 Gbit/sec and a price-performance of 5.5K $/Gb/sec which is 34% better performance and 2.6x the price-performance than a f5 BIG-IP VIPRON (Chassis + 1 blade).
    • Sun  SPARC Enterprise T5240 (2 UltraSPARC T2 Plus 1.6GHz) delivers an HTTPThroughput of 13.4 Gbit/sec and a price-performance of 5.5K $/Gb/sec which is 91% better performance and 2.7x the price-performance than a f5 BIG-IP 8800.
    • Sun SPARC Enterprise T5240 (2 UltraSPARC T2 Plus 1.6GHz) delivers an HTTPThroughput of 13.4 Gbit/sec and a price-performance of 5.5K $/Gb/sec which is 3.3x the price-performance than a Citrix 12000.
    • Sun's UltraSPARC T2+ processor includes support for common bulk ciphers, secure hash operations and both prime and binary field Elliptic Cryptography.  The UltraSPARC T2 processor supports RC4, DES, 3DES, AES-128, AES-192,  AES-256, MD5, SHA-1, SHA-256.

    Performance Landscape

    Zeus ZXTM HTTPThroughput Chart (ordered by performance)

    System
    Gb/sec

    $

    (HW+SW)

    $/perf

    ($/Gb/sec)

    Sun SPARC Enterprise T5240 (2x 1.6GHz US T2 Plus) 13.4
    $74K 5.5K
    f5 BIG-IP VIPRION 10.0 $141K 14.1K
    Sun SPARC Enterprise T5140 (2x 1.2GHz US T2 Plus)  9.1
    $55K
    6.1K
    f5 BIG-IP 8800 7.0
    $105K
    15.1K
    f5 BIG-IP 6900 6.0
    $71K
    11.8K
    Citrix 12000
    6.0
    $110K
    18.3K
    Sun SPARC Enterprise T5120 (1x 1.2GHz US T2) 5.9
    $46K
    7.8K
    Citrix 10010 4.8
    $85K 17.7K

    Performance graph of f5, Citrix and previous Sun results at: http://www.zeus.com/news/press_articles/zeus-price-performance-press-release.html?gclid=CLn4jLuuk5cCFQsQagod7gTkJA.

    Results and Configuration Summary

    Hardware Configuration:
      Sun SPARC Enterprise T5240 with
      • 2x 1.6GHz UltraSPARC T2 Plus
      • 16 GB memory
      • 1 internal 146GB 10K SAS drive
      • 2x Sun 10GbE Xaui Card - (SESX7XA1Z)
      • 2 x Dual 10GbE SFP+ PCIe ( X1109a-z ) with 1 X1109a-z per card

    Software Configuration:

      Solaris
      Zeus ZXTM version 5.1r1

    Benchmark Description

    The benchmark tests HTTP Throughput for Persistent HTTP connections.  Large files bandwidth (Gbit/s) is measured by fetching large files.  Load is applied by using ZeusBench, a benchmarking tool in ZXTM 5.1r1,  and is used for Zeus internal performance testing and as a load generation tool.   Multiple clients request 100MB files over http via the ZXTM load balancer.  

    See Also

    Performance on the Zeus Website

    Disclosure Statement

    Zeus is TM of Zeus Technology Limited. Results as of 7/21/2009 on http://www.zeus.com/news/press_articles/zeus-price-performance-press-release.html?gclid=CLn4jLuuk5cCFQsQagod7gTkJA.

    Monday Jul 20, 2009

    New CMT results coming soon....

    Many new CMT results will be coming soon!   A few postings within the hour and more coming throughout the day tomorrow morning!

    Please check back often to see the latest.

    Friday Jun 12, 2009

    OpenSolaris Beats Linux on memcached Sun Fire X2270

    OpenSolaris provided 25% better performance on memcached than Linux on the Sun Fire X2270 server. memcached 1.3.2 using OpenSolaris gave a maximum throughput of 352K ops/sec compared to the same server running RHEL5 (with kernel 2.6.29) which produced a result of 281K ops/sec.

    memcached is the de-facto distributed caching server used to scale many web2.0 sites today. With the requirement to support a very large number of users as sites grow, memcached aids scalability by effectively cutting down on MySQL traffic and improving response times.

    • memcached is a very light-weight server but is known not to scale beyond 4-6 threads. Some scalability improvements have gone into the 1.3 release (still in beta).
    • As customers move to the newer, more powerful Intel Nehalem based systems, it is important that they have the ability to use these systems efficiently using appropriate software and hardware components.

    Performance Landscape

    memcached performance results: ops/sec (bigger is better)

    System C/C/T Processors Memory Operating System Performance
    Ops/Sec
    GHz Type
    Sun Fire X2270 2/8/16 2.93 Intel X5570 QC 48GB OpenSolaris 2009.06 352K
    Sun Fire X2270 2/8/16 2.93 Intel X5570 QC 48GB RedHat Enterprise Linux 5 (kernel 2.6.29) 281K

    C/C/T: Chips, Cores, Threads

    Results and Configuration Summary

    Sun's results used the following hardware and software components.

    Hardware:

      Sun Fire X2270
      2 x Intel X5570 QC 2.93 GHz
      48GB of memory
      10GbE Intel Oplin card

    Software:

      OpenSolaris 2009.06
      Linux RedHat 5 (on kernel 2.6.29)

    Benchmark Description

    memcached is a high-performance, distributed memory object caching system, generic in nature, but intended for use in speeding up dynamic web applications by alleviating database load. The memcached benchmark was based on Apache Olio - a web2.0 workload.

    The benchmark initially populates the server cache with objects of different sizes to simulate the types of data that real sites typically store in memcached :

    • small objects (4-100 bytes) to represent locks and query results
    • medium objects (1-2 KBytes) to represent thumbnails, database rows, resultsets
    • large objects (5-20 KBytes) to represent whole or partially generated pages

    The benchmark then runs a mixture of operations (90% gets, 10% sets) and measures the throughput and response times when the system reaches steady-state. The workload is implemented using Faban, an open-source benchmark development framework. It not only speeds benchmark development, but the Faban harness is a great way to queue, monitor and archive runs for analysis.

    Key Points and Best Practices

    OpenSolaris Tuning

    The following /etc/system settings were used to set the number of MSIX:

    • set ddi_msix_alloc_limit=4
    • set pcplusmp:apic_intr_policy=1

    For the ixgbe interface, 4 transmit and 4 receive rings gave the best performance :

    • tx_queue_number=4, rx_queue_number=4

    The crossbow threads were bound:

    dladm set-linkprop -p cpus=12,13,14,15 ixgbe0

    Linux Tuning

    Linux was more complicated to tune, the following Linux tunables were changed to try and get the best performance:

    • net.ipv4.tcp_timestamps = 0
    • net.core.wmem_default = 67108864
    • net.core.wmem_max = 67108864
    • net.core.optmem_max = 67108864
    • net.ipv4.tcp_dsack = 0
    • net.ipv4.tcp_sack = 0
    • net.ipv4.tcp_window_scaling = 0
    • net.core.netdev_max_backlog = 300000
    • net.ipv4.tcp_max_syn_backlog = 200000

    Here are the ixgbe specific settings that were used (2 transmit, 2 receive rings):

    • RSS=2,2 InterruptThrottleRate=1600,1600

    Linux Issues

    The 10GbE Intel Oplin card on Linux resulted in the following driver and kernel re-builds.

    • With the default ixgbe driver from the RedHat distribution (version 1.3.30-k2 on kernel 2.6.18)), the interface simply hung during the benchmark test.
    • This led to downloading the driver from the Intel site (1.3.56.11-2-NAPI) and re-compiling it. This version does work and we got a maximum throughput of 232K operations/sec on the same linux kernel (2.6.18). However, this version of the kernel does not have support for multiple TX rings.
    • The kernel version 2.6.29 includes support for multiple TX rings but still doesn't have the ixgbe driver which is 1.3.56.11-2-NAPI. So we downloaded, built and installed these versions of the kernel and driver. This worked well giving a maximum throughput of 281K with some tuning.

    See Also

    Disclosure Statement

    Sun Fire X2270 server with OpenSolaris 352K ops/sec. Sun Fire X2270 server with RedHat Linux 281K ops/sec. For memcached information, visit http://www.danga.com/memcached. Results as of June 8, 2009.

    Wednesday Jun 03, 2009

    Welcome to BestPerf group blog!

    Welcome to BestPerf group blog!  This blog will contain many different performance results and the best practices learned from doing a wide variety of performance work on the broad range of Sun's products.

    Over the coming days, you will see many engineers in the Strategic Applications Engineering group posting a wide variety topics and providing useful information to the users of Sun's technologies. Some of the areas explored will be:

    world-record, performance, $/Perf, watts, watt/perf, scalability, bandwidth, RAS, virtualization, security, cluster, latency, HPC, Web, Application, Database

    About

    BestPerf is the source of Oracle performance expertise. In this blog, Oracle's Strategic Applications Engineering group explores Oracle's performance results and shares best practices learned from working on Enterprise-wide Applications.

    Index Pages
    Search

    Archives
    « April 2014
    SunMonTueWedThuFriSat
      
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
       
           
    Today