Thursday Dec 02, 2010

World Record TPC-C Result on Oracle's SPARC Supercluster with T3-4 Servers

Oracle demonstrated the world's fastest database performance using 27 of Oracle's SPARC T3-4 servers, 138 Sun Storage F5100 Flash Array storage systems and Oracle Database 11g Release 2 Enterprise Edition with Real Application Clusters (RAC) and Partitioning delivered a world-record TPC-C benchmark result.

  • The SPARC T3-4 server cluster delivered a world record TPC-C benchmark result of 30,249,688 tpmC and $1.01 $/tpmC (USD) using Oracle Database 11g Release 2 on a configuration available 6/1/2011.

  • The SPARC T3-4 server cluster is 2.9x faster than the performance of the IBM Power 780 (POWER7 3.86 GHz) cluster with IBM DB2 9.7 database and has 27% better price/performance on the TPC-C benchmark. Almost identical price discount levels were applied by Oracle and IBM.

  • The Oracle solution has three times better performance than the IBM configuration and only used twice the power during the run of the TPC-C benchmark.  (Based upon IBM's own claims of energy usage from their August 17, 2010 press release.)

  • The Oracle solution delivered 2.9x the performance in only 71% of the space compared to the IBM TPC-C benchmark result.

  • The SPARC T3-4 server with Sun Storage F5100 Flash Array storage solution demonstrates 3.2x faster response time than IBM Power 780 (POWER7 3.86 GHz) result on the TPC-C benchmark.

  • Oracle used a single-image database, whereas IBM used 96 separate database partitions on their 3-node cluster. It is interesting to note that IBM used 32 database images instead of running each server as a simple SMP.

  • IBM did not use DB2 Enterprise Database, but instead IBM used "DB2 InfoSphere Warehouse 9.7" which is a data warehouse and data management product and not their flagship OLTP product.

  • The multi-node SPARC T3-4 server cluster is 7.4x faster than the HP Superdome (1.6 GHz Itanium2) solution and has 66% better price/performance on the TPC-C benchmark.

  • The Oracle solution utilized Oracle's Sun FlashFire technology to deliver this result. The Sun Storage F5100 Flash Array storage system was used for database storage.

  • Oracle Database 11g Enterprise Edition Release 2 with Real Application Clusters and Partitioning scales and effectively uses all of the nodes in this configuration to produce the world record TPC-C benchmark performance.

  • This result showed Oracle's integrated hardware and software stacks provide industry leading performance.

Performance Landscape

TPC-C results (sorted by tpmC, bigger is better)

System tpmC Price/tpmC Avail Database Cluster Racks
27 x SPARC T3-4 30,249,688 1.01 USD 6/1/2011 Oracle 11g RAC Y 15
3 x IBM Power 780 10,366,254 1.38 USD 10/13/10 DB2 9.7 Y 10
HP Integrity Superdome 4,092,799 2.93 USD 08/06/07 Oracle 10g R2 N 46

Avail - Availability date
Racks - Clients, servers, storage, infrastructure

Oracle and IBM TPC-C Response times

System tpmC Response Time (sec)
New Order 90th%
Response Time (sec)
New Order Average
27 x SPARC T3-4 30,249,688 0.750 0.352
3 x IBM Power 780 10,366,254 2.1 1.137
Response Time Ratio - Oracle Better 2.9x 2.8x 3.2x

Oracle uses Average New Order Response time for comparison between Oracle and IBM.

Graphs of Oracle's and IBM's response times for New-Order can be found in the full disclosure reports on TPC's website TPC-C Official Result Page.

Configuration Summary and Results

Hardware Configuration:

15 racks used to hold

Servers
27 x SPARC T3-4 servers, each with
4 x 1.65 GHz SPARC T3 processors
512 GB memory
3 x 300 GB 10K RPM 2.5" SAS disks

Data Storage
69 x Sun Fire X4270 M2 servers configured as COMSTAR heads, each with
1 x 2.93 GHz Intel Xeon X5670 processor
8 GB memory
9 x 2 TB 7.2K RPM 3.5" SAS disks
2 x Sun Storage F5100 Flash Array storage (1.92 TB each)
1 x Brocade DCX switch

Redo Storage
28 x Sun Fire X4270 M2 servers configured as COMSTAR heads, each with
1 x 2.93 GHz Intel Xeon X5670 processor
8 GB memory
11 x 2 TB 7.2K RPM 3.5" SAS disks
2 x Brocade 5300 switches

Clients
81 x Sun Fire X4170 M2 servers, each with
2 x 2.93 GHz Intel X5670 processors
48 GB memory
2 x 146 GB 10K RMP 2.5" SAS disks

Software Configuration:

Oracle Solaris 10 9/10 (for SPARC T3-4 and Sun Fire X4170 M2)
Oracle Solaris 11 Express (COMSTAR for Sun Fire X4270 M2)
Oracle Database 11g Release 2 Enterprise Edition with Real Application Clusters and Partitioning
Oracle iPlanet Web Server 7.0 U5
Tuxedo CFS-R Tier 1

Results:

System 27 x SPARC T3-4
tpmC 30,249,688
Price/tpmC 1.01 USD
Avail 6/1/2011
Database Oracle Database 11g RAC
Cluster yes
Racks 15
New Order Ave Response 0.352 seconds

Benchmark Description

TPC-C is an OLTP system benchmark. It simulates a complete environment where a population of terminal operators executes transactions against a database. The benchmark is centered around the principal activities (transactions) of an order-entry environment. These transactions include entering and delivering orders, recording payments, checking the status of orders, and monitoring the level of stock at the warehouses.

Key Points and Best Practices

  • Oracle Database 11g Release 2 Enterprise Edition with Real Application Clusters and Partitioning scales easily to this high level of performance.

  • Sun Storage F5100 Flash Array storage provides high performance, very low latency, and very high storage density.

  • COMSTAR (Common Multiprotocol SCSI Target), new in Oracle Solaris 11 Express, is the software framework that enables a Solaris host to serve as a SCSI Target platform. COMSTAR uses a modular approach to break the huge task of handling all the different pieces in a SCSI target subsystem into independent functional modules which are glued together by the SCSI Target Mode Framework (STMF). The modules implementing functionality at SCSI level (disk, tape, medium changer etc.) are not required to know about the underlying transport. And the modules implementing the transport protocol (FC, iSCSI, etc.) are not aware of the SCSI-level functionality of the packets they are transporting. The framework hides the details of allocation providing execution context and cleanup of SCSI commands and associated resources and simplifies the task of writing the SCSI or transport modules.

  • Oracle iPlanet Web Server 7.0 U5 is used in the user tier of the benchmark with each of the web server instance supporting more than a quarter-million users, while satisfying the stringent response time requirement from the TPC-C benchmark.

See Also

Disclosure Statement

TPC Benchmark C, tpmC, and TPC-C are trademarks of the Transaction Processing Performance Council (TPC). 27-node SPARC T3-4 Cluster (4 x 1.65 GHz SPARC T3 processors) with Oracle Database 11g Release 2 Enterprise Edition with Real Application Clusters and Partitioning, 30,249,688 tpmC, $1.01/tpmC, Available 6/1/2011. IBM Power 780 Cluster (3 nodes using 3.86 GHz POWER7 processors) with IBM DB2 InfoSphere Warehouse Ent. Base Ed. 9.7, 10,366,254 tpmC, $1.38 USD/tpmC, available 10/13/2010. HP Integrity Superdome(1.6GHz Itanium2, 64 processors, 128 cores, 256 threads) with Oracle 10g Enterprise Edition, 4,092,799 tpmC, $2.93/tpmC, available 8/06/07. Energy claims based upon IBM calculations and internal measurements. Source: http://www.tpc.org/tpcc, results as of 11/22/2010

Wednesday Nov 04, 2009

New TPC-C World Record Sun/Oracle

TPC-C Sun SPARC Enterprise T5440 with Oracle RAC World Record Database Result

Sun and Oracle demonstrate the World's fastest database performance. Sun Microsystems using 12 Sun SPARC Enterprise T5440 servers, 60 Sun Storage F5100 Flash arrays and Oracle 11g Enterprise Edition with Real Application Clusters and Partitioning delivered a world-record TPC-C benchmark result.

  • The 12-node Sun SPARC Enterprise T5440 server cluster result delivered a world record TPC-C benchmark result of 7,646,486.7 tpmC and $2.36 $/tpmC (USD) using Oracle 11g R1 on a configuration available 3/19/10.

  • The 12-node Sun SPARC Enterprise T5440 server cluster beats the performance of the IBM Power 595 (5GHz) with IBM DB2 9.5 database by 26% and has 16% better price/performance on the TPC-C benchmark.

  • The complete Oracle/Sun solution used 10.7x better computational density than the IBM configuration (computational density = performance/rack).

  • The complete Oracle/Sun solution used 8 times fewer racks than the IBM configuration.

  • The complete Oracle/Sun solution has 5.9x better power/performance than the IBM configuration.

  • The 12-node Sun SPARC Enterprise T5440 server cluster beats the performance of the HP Superdome (1.6GHz Itanium2) by 87% and has 19% better price/performance on the TPC-C benchmark.

  • The Oracle/Sun solution utilized Sun FlashFire technology to deliver this result. The Sun Storage F5100 flash array was used for database storage.

  • Oracle 11g Enterprise Edition with Real Application Clusters and Partitioning scales and effectively uses all of the nodes in this configuration to produce the world record performance.

  • This result showed Sun and Oracle's integrated hardware and software stacks provide industry-leading performance.

More information on this benchmark will be posted in the next several days.

Performance Landscape

TPC-C results (sorted by tpmC, bigger is better)


System
tpmC Price/tpmC Avail Database Cluster Racks w/KtpmC
12 x Sun SPARC Enterprise T5440 7,646,487 2.36 USD 03/19/10 Oracle 11g RAC Y 9 9.6
IBM Power 595 6,085,166 2.81 USD 12/10/08 IBM DB2 9.5 N 76 56.4
HP Integrity Superdome 4,092,799 2.93 USD 08/06/07 Oracle 10g R2 N 46 to be added

Avail - Availability date
w/KtmpC - Watts per 1000 tpmC
Racks - clients, servers, storage, infrastructure

Sun and IBM TPC-C Response times


System
tpmC

Response Time

New Order 90th%

Response Time

New Order Average

12 x Sun SPARC Enterprise T5440 7,646,487 0.170 0.168
IBM Power 595 6,085,166 1.69
1.22
Response Time Ratio - Sun Better

9.9x 7.3x

Sun uses 7x comparison to highlight the differences in response times between Sun's solution and IBM.  Although notice that Sun is 10x faster on New Order transactions that finish in the 90% percentile.

It is also interesting to note that none of Sun's response times, avg or 90th percentile, for any transaction is over 0.25 seconds. While IBM does not have even one interactive transaction, not even the menu, below 0.50 seconds. Graphs of Sun's and IBM's response times for New-Order can be found in the full disclosure reports on TPC's website TPC-C Official Result Page.

Results and Configuration Summary

Hardware Configuration:

    9 racks used to hold

    Servers:
      12 x Sun SPARC Enterprise T5440
      4 x 1.6 GHz UltraSPARC T2 Plus
      512 GB memory
      10 GbE network for cluster
    Storage:
      60 x Sun Storage F5100 Flash Array
      61 x Sun Fire X4275, Comstar SAS target emulation
      24 x Sun StorageTek 6140 (16 x 300 GB SAS 15K RPM)
      6 x Sun Storage J4400
      3 x 80-port Brocade FC switches
    Clients:
      24 x Sun Fire X4170, each with
      2 x 2.53 GHz X5540
      48 GB memory

Software Configuration:

    Solaris 10 10/09
    OpenSolaris 6/09 (COMSTAR) for Sun Fire X4275
    Oracle 11g Enterprise Edition with Real Application Clusters and Partitioning
    Tuxedo CFS-R Tier 1
    Sun Web Server 7.0 Update 5

Benchmark Description

TPC-C is an OLTP system benchmark. It simulates a complete environment where a population of terminal operators executes transactions against a database. The benchmark is centered around the principal activities (transactions) of an order-entry environment. These transactions include entering and delivering orders, recording payments, checking the status of orders, and monitoring the level of stock at the warehouses.

See Also

Disclosure Statement

TPC Benchmark C, tpmC, and TPC-C are trademarks of the Transaction Performance Processing Council (TPC). 12-node Sun SPARC Enterprise T5440 Cluster (1.6GHz UltraSPARC T2 Plus, 4 processor) with Oracle 11g Enterprise Edition with Real Application Clusters and Partitioning, 7,646,486.7 tpmC, $2.36/tpmC. Available 3/19/10. IBM Power 595 (5GHz Power6, 32 chips, 64 cores, 128 threads) with IBM DB2 9.5, 6,085,166 tpmC, $2.81/tpmC, available 12/10/08. HP Integrity Superdome(1.6GHz Itanium2, 64 processors, 128 cores, 256 threads) with Oracle 10g Enterprise Edition, 4,092,799 tpmC, $2.93/tpmC. Available 8/06/07. Source: www.tpc.org, results as of 11/5/09.

Sunday Oct 11, 2009

TPC-C World Record Sun - Oracle

TPC-C Sun SPARC Enterprise T5440 with Oracle RAC World Record Database Result

Sun and Oracle demonstrate the World's fastest database performance. Sun Microsystems using 12 Sun SPARC Enterprise T5440 servers, 60 Sun Storage F5100 Flash arrays and Oracle 11g Enterprise Edition with Real Application Clusters and Partitioning delivered a world-record TPC-C benchmark result.

  • The 12-node Sun SPARC Enterprise T5440 server cluster result delivered a world record TPC-C benchmark result of 7,646,486.7 tpmC and $2.36 $/tpmC (USD) using Oracle 11g R1 on a configuration available 3/19/10.

  • The 12-node Sun SPARC Enterprise T5440 server cluster beats the performance of the IBM Power 595 (5GHz) with IBM DB2 9.5 database by 26% and has 16% better price/performance on the TPC-C benchmark.

  • The complete Oracle/Sun solution used 10.7x better computational density than the IBM configuration (computational density = performance/rack).

  • The complete Oracle/Sun solution used 8 times fewer racks than the IBM configuration.

  • The complete Oracle/Sun solution has 5.9x better power/performance than the IBM configuration.

  • The 12-node Sun SPARC Enterprise T5440 server cluster beats the performance of the HP Superdome (1.6GHz Itanium2) by 87% and has 19% better price/performance on the TPC-C benchmark.

  • The Oracle/Sun solution utilized Sun FlashFire technology to deliver this result. The Sun Storage F5100 flash array was used for database storage.

  • Oracle 11g Enterprise Edition with Real Application Clusters and Partitioning scales and effectively uses all of the nodes in this configuration to produce the world record performance.

  • This result showed Sun and Oracle's integrated hardware and software stacks provide industry-leading performance.

More information on this benchmark will be posted in the next several days.

Performance Landscape

TPC-C results (sorted by tpmC, bigger is better)


System
tpmC Price/tpmC Avail Database Cluster Racks w/KtpmC
12 x Sun SPARC Enterprise T5440 7,646,487 2.36 USD 03/19/10 Oracle 11g RAC Y 9 9.6
IBM Power 595 6,085,166 2.81 USD 12/10/08 IBM DB2 9.5 N 76 56.4
Bull Escala PL6460R 6,085,166 2.81 USD 12/15/08 IBM DB2 9.5 N 71 56.4
HP Integrity Superdome 4,092,799 2.93 USD 08/06/07 Oracle 10g R2 N 46 to be added

Avail - Availability date
w/KtmpC - Watts per 1000 tpmC
Racks - clients, servers, storage, infrastructure

Results and Configuration Summary

Hardware Configuration:

    9 racks used to hold

    Servers:
      12 x Sun SPARC Enterprise T5440
      4 x 1.6 GHz UltraSPARC T2 Plus
      512 GB memory
      10 GbE network for cluster
    Storage:
      60 x Sun Storage F5100 Flash Array
      61 x Sun Fire X4275, Comstar SAS target emulation
      24 x Sun StorageTek 6140 (16 x 300 GB SAS 15K RPM)
      6 x Sun Storage J4400
      3 x 80-port Brocade FC switches
    Clients:
      24 x Sun Fire X4170, each with
      2 x 2.53 GHz X5540
      48 GB memory

Software Configuration:

    Solaris 10 10/09
    OpenSolaris 6/09 (COMSTAR) for Sun Fire X4275
    Oracle 11g Enterprise Edition with Real Application Clusters and Partitioning
    Tuxedo CFS-R Tier 1
    Sun Web Server 7.0 Update 5

Benchmark Description

TPC-C is an OLTP system benchmark. It simulates a complete environment where a population of terminal operators executes transactions against a database. The benchmark is centered around the principal activities (transactions) of an order-entry environment. These transactions include entering and delivering orders, recording payments, checking the status of orders, and monitoring the level of stock at the warehouses.

POSTSCRIPT: Here are some comments on IBM's grasping-at-straws-perf/core attacks on the TPC-C result:
c0t0d0s0 blog: "IBM's Reaction to Sun&Oracle TPC-C

See Also

Disclosure Statement

TPC Benchmark C, tpmC, and TPC-C are trademarks of the Transaction Performance Processing Council (TPC). 12-node Sun SPARC Enterprise T5440 Cluster (1.6GHz UltraSPARC T2 Plus, 4 processor) with Oracle 11g Enterprise Edition with Real Application Clusters and Partitioning, 7,646,486.7 tpmC, $2.36/tpmC. Available 3/19/10. IBM Power 595 (5GHz Power6, 32 chips, 64 cores, 128 threads) with IBM DB2 9.5, 6,085,166 tpmC, $2.81/tpmC, available 12/10/08. HP Integrity Superdome(1.6GHz Itanium2, 64 processors, 128 cores, 256 threads) with Oracle 10g Enterprise Edition, 4,092,799 tpmC, $2.93/tpmC. Available 8/06/07. Source: www.tpc.org, results as of 10/11/09.

Friday Jun 05, 2009

Interpreting Sun's SPECpower_ssj2008 Publications

Sun recently entered the SPECpower fray with the publication of three results on the SPECpower_ssj2008 benchmark.  Strangely, the three publications documented results on the same hardware platform (Sun Netra X4250) running identical software stacks, but the results were markedly different.  What exactly were we trying to get at?

 Benchmark Configurations

Sun produces robust industrial-grade servers with a range of redundancy features we believe benefit our customers.   These features increase reliability, at the cost of additional power consumption. For example, redundant power supplies and redundant fans allow servers to tolerate faults, and hot-swap capabilities further minimize downtime.

The benchmark run and reporting rules require the incorporation within the tested configuration of all components implied by the model name.  Within these limitations, the first publication was intended to be the best result (that is, the lowest power consumption per unit of performance) achievable on the Sun Netra X4250 platform, by minimizing the configured hardware to the greatest extent possible.

Common Components

All tested configurations had the following components in common:

  • System:  Sun Netra X4250
  • Processor: 2 x Intel L5408 QC @ 2.13GHz
  • 2 x 658 watt redundant AC power supplies
  • redundant fans
  • standard I/O expansion mezzanine
  • standard Telco dry contact alarm

And the same software stack:

  • OS: Windows Server 2003 R2 Enterprise X64 Edition SP2
  • Drivers: platform-specific drivers from Sun Netra X4250 Tools and Drivers DVD Version 2.1N
  • JVM: Java HotSpot 32-Bit Server VM on Windows, version 1.6.0_14

Tiny Configuration

In addition to the common hardware components, the tiny configuration was limited to:

  • 8 GB of Memory (4 x 2048 MB as PC2-5300F 2Rx8)
  • 1 x Sun 146 GB 10K RPM SAS internal drive

This is called the tiny configuration because it seems unlikely that most customers would configure an 8-core server with only one disk and only 1 GB available per core. Nevertheless, from a benchmark point of view, this configuration gave the best result.

Typical Configuration

The other two results were both produced on a configuration we considered much more typical of configurations that are actually ordered by customers.  In addition to the common hardware, these typical configuration included:

  • 32 GB of Memory (8 x 4096 MB as PC2-5300F)
  • 4 x Sun 146 GB 10K RPM SAS internal drives
  • 1 x Sun x8 PCIe Quad Gigabit Ethernet option card (X4447A-Z)

Nothing special was done with the additional components.  The added memory increased the performance component of the benchmark. The other components were installed and configured but allowed to sit idle, so consumed less power than they would have under load.

One Other Thing: Tuning for Performance

So one thing we're getting at is the difference in power consumption between a small configuration optimized for a power-performance benchmark and a typical configuration optimized for customer workloads.  Hardware (power consumption) is only half of the benchmark--the other half being the performance achieved by the System Under Test (SUT).

Tuning Choices 

In all three publications the identical tunings were applied at the software level: identical java command-line arguments and JVM-to-processor affinity.  We also applied, in the case of the better results, the common (but usually non-default) BIOS-level optimization of disabling hardware prefetcher and adjacent cache line prefetch.  These optimizations are commonly applied to produce optimized SPECpower_ssj2008 results but it is unlikely that many production applications would benefit from these settings.  To demonstrate the effect of this tuning, the final result was generated with standard BIOS settings.

 And just so we couldn't be accused of sand-bagging the results, the number of JVMs was increased in the typical configurations to take advantage of the additional memory populated over and above the tiny configuration.  Additional performance was achieved but sadly it doesn't compensate for the higher power consumption of all that memory.

So in summary we tuned:

  • Tiny Configuration: non-default BIOS settings
  • Typical Configuration 1: non-default BIOS settings; additional JVMs to utilize added memory
  • Typical Configuration 2: default BIOS settings; additional JVMs to utilize added memory

At the OS level, all tunings  were identical.

Results 

The results are summarized in this table:

System
(Click system for SPEC full disclosure)

Processors

Performance

Model

GHz

Metric
overall
ssj_ops/watt

Peak
Performance
ssj_ops

Peak
Power
watts

Idle
Power
watts

Sun Netra X4250
(8GB non-default BIOS)

L5408

2.13

600

244832

226

174

Sun Netra X425
(32GB non-default BIOS)

L5408

2.13

478

251555

294

226

Sun Netra X4250
(32GB default BIOS)

L5408

2.13

437

229828

296

225

Conclusions

  • The measurement and reporting methods of the benchmark encourage small memory configurations.  Comparing the first and second result, adding additional memory yielded minimal performance improvement (from 244832 to 251555) but a large increase in power consumption, 68 watts at peak.

  • In our opinion, unrealistically small configurations yield the best results on this benchmark.  On the more typical system, the benchmark overall metric decreased from 600 overall ssj_ops per watt to 478 overall ssj_ops per watt, despite our best effort to utilize the additional configured memory.

  • On typical configurations, reverting to default BIOS settings resulted in a significant decrease in performance (from 25155 to 229828) with no corresponding decrease in power consumption (essentially identical for both results).

Configurations typical of customer systems (with adequate memory, internal disks, and option cards) consume more power than configurations which are commonly benchmarked, while providing no corresponding improvement in SPECpower_ssj2008 benchmark performance. The result is a lower overall power-performance metric on typical configurations and a lack of published benchmark results on robust systems with the capacities and redundancies that enterprise customers desire.

Fair Use Disclosure

SPEC, SPECpower, and SPECpower_ssj are trademarks of the Standard Performance Evaluation Corporation.  All results from the SPEC website (www.spec.com)  as of June 5, 2009.  For a complete set of accepted results refer to that site.

Wednesday Jun 03, 2009

Welcome to BestPerf group blog!

Welcome to BestPerf group blog!  This blog will contain many different performance results and the best practices learned from doing a wide variety of performance work on the broad range of Sun's products.

Over the coming days, you will see many engineers in the Strategic Applications Engineering group posting a wide variety topics and providing useful information to the users of Sun's technologies. Some of the areas explored will be:

world-record, performance, $/Perf, watts, watt/perf, scalability, bandwidth, RAS, virtualization, security, cluster, latency, HPC, Web, Application, Database

About

BestPerf is the source of Oracle performance expertise. In this blog, Oracle's Strategic Applications Engineering group explores Oracle's performance results and shares best practices learned from working on Enterprise-wide Applications.

Index Pages
Search

Archives
« April 2014
SunMonTueWedThuFriSat
  
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
   
       
Today