Thursday Mar 24, 2016

PeopleSoft Human Capital Management 9.1 FP2: SPARC M7-8 Results Using Oracle Advances Security Transparent Data Encryption

Using Oracle Advanced Security Transparent Data Encryption (TDE), Oracle's SPARC M7-8 server using Oracle's SPARC M7 processor's software in silicon cryptography instructions produced results on Oracle's PeopleSoft Human Capital Management 9.1 FP2 Benchmark that were nearly identical to results run without TDE (clear-text runs). The benchmark consists of three different components, PeopleSoft HR Self-Service Online, PeopleSoft Payroll Batch, and the combined PeopleSoft HR Self-Service Online and PeopleSoft Payroll Batch. The benchmarks were run on a virtualized two-chip, 1 TB LDom of the SPARC M7-8 server.

Using TDE enforces data-at-rest encryption in the database layer. Applications and users authenticated to the database continue to have access to application data transparently (no application code or configuration changes are required), while attacks from OS users attempting to read sensitive data from tablespace files and attacks from thieves attempting to read information from acquired disks or backups are denied access to the clear-text data.

  • The PeopleSoft HR online-only and the PeopleSoft HR online combined with PeopleSoft Payroll batch showed similar Search/Save average response times using TDE compared to the corresponding clear-text runs.

  • The PeopleSoft Payroll batch-only run showed only around 4% degradation in batch throughput using TDE compared to the clear-text run.

  • The PeopleSoft HR online combined with PeopleSoft Payroll batch run showed less than 5% degradation in batch throughput (payments per hour) using TDE compared to the clear-text result.

  • On the combined benchmark, the virtualized two-chip LDom of the SPARC M7-8 server with TDE demonstrated around 5 times better Search and around 8 times better Save average response times running nearly double the number of online users for the online component compared to the ten-chip x86 clear-text database solution from Cisco.

  • On the PeopleSoft Payroll batch run and using only a single chip in the virtualized two-chip LDom on the SPARC M7-8 server, the TDE solution demonstrated 1.7 times better batch throughput compared to a four-chip Cisco UCSB460 M4 server with clear-text database.

  • On the PeopleSoft Payroll batch run and using only a single chip in the virtualized two-chip LDom on the SPARC M7-8 server, the TDE solution demonstrated around 2.3 times better batch throughput compared to a nine-chip IBM zEnterprise z196 server (EC 2817-709, 9-way, 8943 MIPS) with clear-text database.

  • On the combined benchmark, the two SPARC M7 processor LDom (in SPARC M7-8) can run the same number of online users with TDE as a dynamic domain (PDom) of eight SPARC M6 processors (in SPARC M6-32) with clear-text database with better online response times, batch elapsed times and batch throughput.

Performance Landscape

All results presented are taken from Oracle's PeopleSoft benchmark white papers.

The first table presents the combined results, running both the PeopleSoft HR Self-Service Online and Payroll Batch tests concurrently.

PeopleSoft HR Self-Service Online And Payroll Batch Using Oracle Database 11g
System
Processors
Chips
Used
Users Search/Save Batch Elapsed
Time
Batch Pay/Hr
SPARC M7-8
(Secure with TDE)
SPARC M7
2 35,000 0.55 sec/0.34 sec 23.72 min 1,265,969
SPARC M7-8
(Unsecure)
SPARC M7
2 35,000 0.67 sec/0.42 sec 22.71 min 1,322,272
SPARC M6-32
(Unsecure)
SPARC M6
8 35,000 1.80 sec/1.12 sec 29.2 min 1,029,440
Cisco 1 x B460 M4, 3 x B200 M3
(Unsecure)
Intel E7-4890 v2, Intel E5-2697 v2
10 18,000 2.70 sec/2.60 sec 21.70 min 1,383,816

The following results are running only the Peoplesoft HR Self-Service Online test.

PeopleSoft HR Self-Service Online Using Oracle Database 11g
System
Processors
Chips
Used
Users Search/Save
Avg Response Times
SPARC M7-8 (Secure with TDE)
SPARC M7
2 40,000 0.52 sec/0.31 sec
SPARC M7-8 (Unsecure)
SPARC M7
2 40,000 0.55 sec/0.33 sec
SPARC M6-32 (Unsecure)
SPARC M6
8 40,000 2.73 sec/1.33 sec
Cisco 1 x B460 M4, 3 x B200 M3 (Unsecure)
Intel E7-4890 v2, Intel E5-2697 v2
10 20,000 0.35 sec/0.17 sec

The following results are running only the Peoplesoft Payroll Batch test. For the SPARC M7-8 server results, only one of the processors was used per LDom. This was accomplished using processor sets to further restrict the test to a single SPARC M7 processor.

PeopleSoft Payroll Batch Using Oracle Database 11g
System
Processors
Chips
Used
Batch Elapsed
Time
Batch Pay/Hr
SPARC M7-8 (Secure with TDE)
SPARC M7
1 13.34 min 2,251,034
SPARC M7-8 (Unsecure)
SPARC M7
1 12.85 min 2,336,872
SPARC M6-32 (Unsecure)
SPARC M6
2 18.27 min 1,643,612
Cisco UCS B460 M4 (Unsecure)
Intel E7-4890 v2
4 23.02 min 1,304,655
IBM z196 (Unsecure)
zEnterprise (5.2 GHz, 8943 MIPS)
9 30.50 min 984,551

Configuration Summary

System Under Test:

SPARC M7-8 server with
8 x SPARC M7 processor (4.13 GHz)
4 TB memory
Virtualized as an Oracle VM Server for SPARC (LDom) with
2 x SPARC M7 processor (4.13 GHz)
1 TB memory

Storage Configuration:

2 x Oracle ZFS Storage ZS3-2 appliance (DB Data) each with
40 x 300 GB 10K RPM SAS-2 HDD,
8 x Write Flash Accelerator SSD and
2 x Read Flash Accelerator SSD 1.6TB SAS
2 x Oracle Server X5-2L as COMSTAR nodes (DB redo logs & App object cache) each with
2 x Intel Xeon Processor E5-2630 v3
32 GB memory
4 x 1.6 TB NVMe SSD

Software Configuration:

Oracle Solaris 11.3
Oracle Database 11g Release 2 (11.2.0.3.0)
PeopleSoft Human Capital Management 9.1 FP2
PeopleSoft PeopleTools 8.52.03
Oracle Java SE 6u32
Oracle Tuxedo, Version 10.3.0.0, 64-bit, Patch Level 043
Oracle WebLogic Server 11g (10.3.5)

Benchmark Description

The PeopleSoft Human Capital Management benchmark simulates thousands of online employees, managers and Human Resource administrators executing transactions typical of a Human Resources Self Service application for the Enterprise. Typical transactions are: viewing paychecks, promoting and hiring employees, updating employee profiles, etc. The database tier uses a database instance of about 500 GB in size, containing information for 500,480 employees. The application tier for this test includes web and application server instances, specifically Oracle WebLogic Server 11g, PeopleSoft Human Capital Management 9.1 FP2 and Oracle Java SE 6u32.

Key Points and Best Practices

In the HR online along with Payroll batch run, the LDom had one Oracle Solaris Zone of 7 cores containing the Web tier, two Oracle Solaris Zones of 16 cores each containing the Application tier and one Oracle Solaris Zone of 23 cores containing the Database tier. Two cores were dedicated to network and disk interrupt handling. In the HR online only run, the LDom had one Oracle Solaris Zone of 12 cores containing the Web tier, two Oracle Solaris Zones of 18 cores each containing the Application tier and one Oracle Solaris Zone of 14 cores containing the Database tier. 2 cores were dedicated to network and disk interrupt handling. In the Payroll batch only run, the LDom had one Oracle Solaris Zone of 31 cores containing the Database tier. 1 core was dedicated to disk interrupt handling.

All database data files, recovery files and Oracle Clusterware files for the PeopleSoft test were created with the Oracle Automatic Storage Management (Oracle ASM) volume manager for the added benefit of the ease of management provided by Oracle ASM integrated storage management solution.

In the application tier on the LDom, 5 PeopleSoft application domains with 350 application servers (70 per domain) were hosted in two separate Oracle Solaris Zones for a total of 10 domains with 700 application server processes.

All PeopleSoft Application processes and the 32 Web Server JVM instances were executed in the Oracle Solaris FX scheduler class.

See Also

Disclosure Statement

Copyright 2016, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of March 24, 2016.

Tuesday Mar 22, 2016

Siebel PSPP: SPARC T7-2 World Record Result, Beats IBM

Oracle set a new world record for the Siebel Platform Sizing and Performance Program (PSPP) benchmark using Oracle's SPARC T7-2 server for the application server with Oracle's Siebel CRM 8.1.1.4 Industry Applications and Oracle Database 12c running on Oracle Solaris.

  • The SPARC T7-2 server running the application tier achieved 55,000 users with sub-second response time and with throughput of 457,909 business transactions per hour on the Siebel PSPP benchmark.

  • The SPARC T7-2 server in the application tier delivered 3.3 times more users on a per chip basis compared to published IBM POWER8 based server results.

  • For the new Oracle results, eight cores of a SPARC T7-2 server were used for the database tier running at 32% utilization (as measured by mpstat). The IBM result used 6 cores at about 75% utilization for the database/gateway tier.

  • The SPARC T7-2 server in the application tier delivered nearly the same number of users on a per core basis compared to published IBM POWER8 based server results.

  • The SPARC T7-2 server in the application tier delivered nearly 2.8 times more users on a per chip basis compared to earlier published SPARC T5-2 server results.

  • The SPARC T7-2 server in the application tier delivered nearly 1.4 times more users on a per core basis compared to earlier published SPARC T5-2 server results.

  • The SPARC T7-2 server used Oracle Solaris Zones which provide flexible, scalable and manageable virtualization to scale the application within and across multiple nodes.

The Siebel 8.1.1.4 PSPP workload includes Siebel Call Center and Order Management System.

Performance Landscape

Application Server TPH Users Users/
Chip
Users/
Core
Response Times
Call
Center
Order
Mgmt
1 x SPARC T7-2
(2 x SPARC M7 @4.13 GHz)
457,909 55,000 27,500 859 0.045 sec 0.257 sec
3 x IBM S824 (each 2 x 8 active core
LPARs, POWER8 @4.1 GHz)
418,976 50,000 8,333 1041 0.031 sec 0.175 sec
2 x SPARC T5-2
(each with 2 x SPARC T5 @3.6 GHz)
333,339 40,000 10,000 625 0.110 sec 0.608 sec

TPH – Business transactions throughput per hour

Configuration Summary

Application Server:

1 x SPARC T7-2 server with
2 x SPARC M7 processors, 4.13 GHz
1 TB memory
6 x 300 GB SAS internal disks
Oracle Solaris 11.3
Siebel CRM 8.1.1.4 SIA

Web/Database/Gateway Server:

1 x SPARC T7-2 server with
2 x SPARC M7 processors, 4.13 GHz (20 active cores: 8 cores for DB, 12 for Web/Gateway)
512 TB memory
6 x 300 GB SAS internal disks
2 x 1.6 TB NVMe SSD
Oracle Solaris 11.3
Siebel CRM 8.1.1.4 SIA
iPlanet Web Server 7
Oracle Database 12c (12.1.0.2)

Benchmark Description

Siebel PSPP benchmark includes Call Center and Order Management:

  • Siebel Financial Services Call Center – Provides the most complete solution for sales and service, allowing customer service and telesales representatives to provide superior customer support, improve customer loyalty, and increase revenues through cross-selling and up-selling.

    High-level description of the use cases tested: Incoming Call Creates Opportunity, Quote and Order and Incoming Call Creates Service Request. Three complex business transactions are executed simultaneously for specific number of concurrent users. The ratios of these 3 scenarios were 30%, 40%, 30% respectively, which together were totaling 70% of all transactions simulated in this benchmark. Between each user operation and the next one, the think time averaged approximately 10, 13, and 35 seconds respectively.

  • Siebel Order Management – Oracle's Siebel Order Management allows employees such as salespeople and call center agents to create and manage quotes and orders through their entire life cycle. Siebel Order Management can be tightly integrated with back-office applications allowing users to perform tasks such as checking credit, confirming availability, and monitoring the fulfillment process.

    High-level description of the use cases tested: Order & Order Items Creation and Order Updates. Two complex Order Management transactions were executed simultaneously for specific number of concurrent users concurrently with aforementioned three Call Center scenarios above. The ratio of these 2 scenarios was 50% each, which together were totaling 30% of all transactions simulated in this benchmark. Between each user operation and the next one, the think time averaged approximately 20 and 67 seconds respectively.

See Also

Disclosure Statement

Copyright 2016, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of March 22, 2016.

Thursday Nov 19, 2015

SPECvirt_2013: SPARC T7-2 World Record Performance for Two- and Four-Chip Systems

Oracle's SPARC T7-2 server delivered a world record SPECvirt_sc2013 result for systems with two to four chips.

  • The SPARC T7-2 server produced a result of 3198 @ 179 VMs SPECvirt_sc2013.

  • The two-chip SPARC T7-2 server beat the best four-chip x86 Intel E7-8890 v3 server (HP ProLiant DL580 Gen9), demonstrating that the SPARC M7 processor is 2.1 times faster than the Intel Xeon Processor E7-8890 v3 (chip-to-chip comparison).

  • The two-chip SPARC T7-2 server beat the best two-chip x86 Intel E5-2699 v3 server results by nearly 2 times (Huawei FusionServer RH2288H V3, HP ProLiant DL360 Gen9).

  • The two-chip SPARC T7-2 server delivered nearly 2.2 times the performance of the four-chip IBM Power System S824 server solution which used 3.5 GHz POWER8 six core chips.

  • The SPARC T7-2 server running Oracle Solaris 11.3 operating system, utilizes embedded virtualization products as the Oracle Solaris 11 zones, which in turn provide a low overhead, flexible, scalable and manageable virtualization environment.

  • The SPARC T7-2 server result used Oracle VM Server for SPARC 3.3 and Oracle Solaris Zones providing a flexible, scalable and manageable virtualization environment.

Performance Landscape

Complete benchmark results are at the SPEC website, SPECvirt_sc2013 Results. The following table highlights the leading two-, and four-chip results for the benchmark, bigger is better.

SPECvirt_sc2013
Leading Two to Four-Chip Results
System
Processor
Chips Result @ VMs Virtualization Software
SPARC T7-2
SPARC M7 (4.13 GHz, 32core)
2 3198 @ 179 Oracle VM Server for SPARC 3.3
Oracle Solaris Zones
HP ProLiant DL580 Gen9
Intel E7-8890 v3 (2.5 GHz, 18core)
4 3020 @ 168 Red Hat Enterprise Linux 7.1 KVM
Lenovo System x3850 X6
Intel E7-8890 v3 (2.5 GHz, 18core)
4 2655 @ 147 Red Hat Enterprise Linux 6.6 KVM
Huawei FusionServer RH2288H V3
Intel E5-2699 v3 (2.3 GHz, 18core)
2 1616 @ 95 Huawei FusionSphere V1R5C10
HP ProLiant DL360 Gen9
Intel E5-2699 v3 (2.3 GHz, 18core)
2 1614 @ 95 Red Hat Enterprise Linux 7.1 KVM
IBM Power S824
POWER8 (3.5 GHz, 6core)
4 1370 @ 79 PowerVM Enterprise Edition 2.2.3

Configuration Summary

System Under Test Highlights:

Hardware:
1 x SPARC T7-2 server, with
2 x 4.13 GHz SPARC M7
1 TB memory
2 Sun Dual Port 10GBase-T Adapter
2 Sun Storage Dual 16 Gb Fibre Channel PCIe Universal HBA

Software:
Oracle Solaris 11.3
Oracle VM Server for SPARC 3.3 (LDom)
Oracle Solaris Zones
Oracle iPlanet Web Server 7.0.20
Oracle PHP 5.3.29
Dovecot v2.2.18
Oracle WebLogic Server Standard Edition Release 10.3.6
Oracle Database 12c Enterprise Edition (12.1.0.2.0)
Java HotSpot(TM) 64-Bit Server VM on Solaris, version 1.7.0_85-b15

Storage:
3 x Oracle Server X5-2L, with
2 x Intel Xeon Processor E5-2630 v3 8-core 2.4 GHz
32 GB memory
4 x Oracle Flash Accelerator F160 PCIe Card
Oracle Solaris 11.3

1 x Oracle Server X5-2L, with
2 x Intel Xeon Processor E5-2630 v3 8-core 2.4 GHz
32 GB memory
4 x Oracle Flash Accelerator F160 PCIe Card
4x 400 GB SSDs
Oracle Solaris 11.3

Benchmark Description

SPECvirt_sc2013 is SPEC's updated benchmark addressing performance evaluation of datacenter servers used in virtualized server consolidation. SPECvirt_sc2013 measures the end-to-end performance of all system components including the hardware, virtualization platform, and the virtualized guest operating system and application software. It utilizes several SPEC workloads representing applications that are common targets of virtualization and server consolidation. The workloads were made to match a typical server consolidation scenario of CPU resource requirements, memory, disk I/O, and network utilization for each workload. These workloads are modified versions of SPECweb2005, SPECjAppServer2004, SPECmail2008, and SPEC CPU2006. The client-side SPECvirt_sc2013 harness controls the workloads. Scaling is achieved by running additional sets of virtual machines, called "tiles", until overall throughput reaches a peak.

Key Points and Best Practices

  • The SPARC T7-2 server running the Oracle Solaris 11.3, utilizes embedded virtualization products as the Oracle VM Server for SPARC and Oracle Solaris Zones, which provide a low overhead, flexible, scalable and manageable virtualization environment.

  • In order to provide a high level of data integrity and availability, all the benchmark data sets are stored on mirrored (RAID1) storage

  • Using Oracle VM Server for SPARC to bind the SPARC M7 processor with its local memory optimized the memory use in this virtual environment.

  • This improved result used a fractional tile to fully saturate the system.

See Also

Disclosure Statement

SPEC and the benchmark name SPECvirt_sc are registered trademarks of the Standard Performance Evaluation Corporation. Results from www.spec.org as of 11/19/2015. SPARC T7-2, SPECvirt_sc2013 3198@179 VMs; HP ProLiant DL580 Gen9, SPECvirt_sc2013 3020@168 VMs; Lenovo x3850 X6; SPECvirt_sc2013 2655@147 VMs; Huawei FusionServer RH2288H V3, SPECvirt_sc2013 1616@95 VMs; HP ProLiant DL360 Gen9, SPECvirt_sc2013 1614@95 VMs; IBM Power S824, SPECvirt_sc2013 1370@79 VMs.

Monday Oct 26, 2015

Hadoop TeraSort: SPARC T7-4 Top Per-Chip Performance

Oracle's SPARC T7-4 server using virtualization delivered an outstanding single server result running the Hadoop TeraSort benchmark. The SPARC T7-4 server was run with and without security. Even the secure runs on the SPARC M7 processor based server performed much faster per chip compared to competitive unsecure results.

  • The SPARC T7-4 server on a per chip basis is 4.7x faster than an IBM POWER8 based cluster on the 10 TB Hadoop TeraSort benchmark.

  • The SPARC T7-4 server running with ZFS encryption enabled on the 10 TB Hadoop TeraSort benchmark is 4.6x faster than an unsecure x86 v2 cluster on a per chip basis.

  • The SPARC T7-4 server running with ZFS encryption (AES-256-GCM) enabled on the 10 TB Hadoop TeraSort benchmark is 4.3x faster than an unsecure (plain-text) IBM POWER8 cluster on a per chip basis.

  • The SPARC T7-4 server ran the 10 TB Hadoop TeraSort benchmark in 4,259 seconds.

Performance Landscape

The following table presents results for the 10 TB Hadoop TeraSort benchmark. The rate results are determined by taking the dataset size (10**13) and dividing by the time (in minutes). These rates are further normalized by the number of systems or chips used in obtaining the results.

10 TB Hadoop TeraSort Performance Landscape
System Security Nodes Total
Chips
Time
(sec)
Sort Rate (GB/min)
Per Node Per Chip
SPARC T7-4
SPARC M7 (4.13 GHz)
unsecure 1 4 4,259 140.9 35.2
SPARC T7-4
SPARC M7 (4.13 GHz)
AES-256-GCM 1 4 4,657 128.8 32.2
IBM Power System S822L
POWER8 (3.0 GHz)
unsecure 8 32 2,490 30.1 7.5
Dell R720xd/VMware
Intel Xeon E5-2680 v2 (2.8 GHz)
unsecure 32 64 1,054 17.8 8.9
Cisco UCS CPA C240 M3
Intel Xeon E5-2665 (2.4 GHz)
unsecure 16 32 3,112 12.0 6.0

Configuration Summary

Server:

SPARC T7-4
4 x SPARC M7 processors (4.13 GHz)
2 TB memory (64 x 32 GB)
6 x 600 GB 10K RPM SAS-2 HDD
10 GbE
Oracle Solaris 11.3 (11.3.0.29)
Oracle Solaris Studio 12.4
Java SE Runtime Environment (build 1.7.0_85-b33)
Hadoop 1.2.1

External Storage (Common Multiprotocol SCSI TARget, or COMSTAR enables system to be seen as a SCSI target device):

16 x Sun Server X3-2L
2 x Intel Xeon E5-2609 (2.4 GHz)
16 GB memory (2 x 8 GB)
2 x 600 GB SAS-2 HDD
12 x 3 TB SAS-1 HDD
4 x Sun Flash Accelerator F40 PCIe Card
Oracle Solaris 11.1 (11.1.16.5.0)
Please note: These devices are only used as storage. No Hadoop is run on these COMSTAR storage nodes. There was no compression or encryption done on these COMSTAR storage nodes.

Benchmark Description

The Hadoop TeraSort benchmark sorts 100-byte records by a contained 10-byte random key. Hadoop TeraSort is characterized by high I/O bandwidth between each compute/data node of a Hadoop cluster and the disk drives that are attached to that node.

Note: benchmark size is measured by power-of-ten not power-of-two bytes; 1 TB sort is sorting 10^12 Bytes = 10 billion 100-byte rows using an embedded 10-Byte key field of random characters, 100 GB sort is sorting 10^11 Bytes = 1 billion 100-byte rows, etc.

Key Points and Best Practices

  • The SPARC T7-4 server was configured with 15 Oracle Solaris Zones. Each Zone was running one Hadoop data-node with HDFS layered on an Oracle Solaris ZFS volume.

  • Hadoop uses a distributed, shared nothing, batch processing framework employing divide-conquer serial Map and Reduce JVM tasks with performance coming from scale-out concurrency (e.g. more tasks) rather than parallelism. Only one job scheduler and task manager can be configured per data/compute-node and both (job scheduler and task manager) have inherent scaling limitations (the hadoop design target being small compute-nodes and hundreds or even thousands of them).

  • Multiple data-nodes significantly help improve overall system utilization – HDFS becomes more distributed with more processes servicing file system operations, and more task-trackers are managing all the MapReduce work.

  • On large node systems virtualization is required to improve utilization by increasing the number of independent data/compute nodes each running their own hadoop processes.

  • I/O bandwidth to the local disk drives and network communication bandwidth are the primary determinants of Hadoop performance. Typically, Hadoop reads input data files from HDFS during the Map phase of computation, and stores intermediate file back to HDFS. Then during the subsequent Reduce phase of computation, Hadoop reads the intermediate files, and outputs the final result. The Map and Reduce phases are executed concurrently by multiple Map tasks and Reduce tasks. Tasks are purpose-built stand-alone serial applications often written in Java (but can be written in any programming language or script).

See Also

Disclosure Statement

Copyright 2015, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 25 October 2015.

Competitive results found at: Dell R720xd/VMware, IBM S822L, Cisco C240 M3

SPECvirt_sc2013: SPARC T7-2 World Record for 2 and 4 Chip Systems

Oracle has had a new result accepted by SPEC as of November 19, 2015. This new result may be found here.

Oracle's SPARC T7-2 server delivered a world record SPECvirt_sc2013 result for systems with two to four chips.

  • The SPARC T7-2 server produced a result of 3026 @ 168 VMs SPECvirt_sc2013.

  • The two-chip SPARC T7-2 server beat the best two-chip x86 Intel E5-2699 v3 server results by nearly 1.9 times (Huawei FusionServer RH2288H V3, HP ProLiant DL360 Gen9).

  • The two-chip SPARC T7-2 server delivered nearly 2.2 times the performance of the four-chip IBM Power System S824 server solution which used 3.5 GHz POWER8 six core chips.

  • The SPARC T7-2 server running Oracle Solaris 11.3 operating system, utilizes embedded virtualization products as the Oracle Solaris 11 zones, which in turn provide a low overhead, flexible, scalable and manageable virtualization environment.

  • The SPARC T7-2 server result used Oracle VM Server for SPARC 3.3 and Oracle Solaris Zones providing a flexible, scalable and manageable virtualization environment.

Performance Landscape

Complete benchmark results are at the SPEC website, SPECvirt_sc2013 Results. The following table highlights the leading two-, and four-chip results for the benchmark, bigger is better.

SPECvirt_sc2013
Leading Two to Four-Chip Results
System
Processor
Chips Result @ VMs Virtualization Software
SPARC T7-2
SPARC M7 (4.13 GHz, 32core)
2 3026 @ 168 Oracle VM Server for SPARC 3.3
Oracle Solaris Zones
HP DL580 Gen9
Intel E7-8890 v3 (2.5 GHz, 18core)
4 3020 @ 168 Red Hat Enterprise Linux 7.1 KVM
Lenovo System x3850 X6
Intel E7-8890 v3 (2.5 GHz, 18core)
4 2655 @ 147 Red Hat Enterprise Linux 6.6 KVM
Huawei FusionServer RH2288H V3
Intel E5-2699 v3 (2.3 GHz, 18core)
2 1616 @ 95 Huawei FusionSphere V1R5C10
HP DL360 Gen9
Intel E5-2699 v3 (2.3 GHz, 18core)
2 1614 @ 95 Red Hat Enterprise Linux 7.1 KVM
IBM Power S824
POWER8 (3.5 GHz, 6core)
4 1370 @ 79 PowerVM Enterprise Edition 2.2.3

Configuration Summary

System Under Test Highlights:

Hardware:
1 x SPARC T7-2 server, with
2 x 4.13 GHz SPARC M7
1 TB memory
2 Sun Dual Port 10GBase-T Adapter
2 Sun Storage Dual 16 Gb Fibre Channel PCIe Universal HBA

Software:
Oracle Solaris 11.3
Oracle VM Server for SPARC 3.3 (LDom)
Oracle Solaris Zones
Oracle iPlanet Web Server 7.0.20
Oracle PHP 5.3.29
Dovecot v2.2.18
Oracle WebLogic Server Standard Edition Release 10.3.6
Oracle Database 12c Enterprise Edition (12.1.0.2.0)
Java HotSpot(TM) 64-Bit Server VM on Solaris, version 1.7.0_85-b15

Storage:
3 x Oracle Server X5-2L, with
2 x Intel Xeon Processor E5-2630 v3 8-core 2.4 GHz
32 GB memory
4 x Oracle Flash Accelerator F160 PCIe Card
Oracle Solaris 11.3

1 x Oracle Server X5-2L, with
2 x Intel Xeon Processor E5-2630 v3 8-core 2.4 GHz
32 GB memory
4 x Oracle Flash Accelerator F160 PCIe Card
4x 400 GB SSDs
Oracle Solaris 11.3

Benchmark Description

SPECvirt_sc2013 is SPEC's updated benchmark addressing performance evaluation of datacenter servers used in virtualized server consolidation. SPECvirt_sc2013 measures the end-to-end performance of all system components including the hardware, virtualization platform, and the virtualized guest operating system and application software. It utilizes several SPEC workloads representing applications that are common targets of virtualization and server consolidation. The workloads were made to match a typical server consolidation scenario of CPU resource requirements, memory, disk I/O, and network utilization for each workload. These workloads are modified versions of SPECweb2005, SPECjAppServer2004, SPECmail2008, and SPEC CPU2006. The client-side SPECvirt_sc2013 harness controls the workloads. Scaling is achieved by running additional sets of virtual machines, called "tiles", until overall throughput reaches a peak.

Key Points and Best Practices

  • The SPARC T7-2 server running the Oracle Solaris 11.3, utilizes embedded virtualization products as the Oracle VM Server for SPARC and Oracle Solaris Zones, which provide a low overhead, flexible, scalable and manageable virtualization environment.

  • In order to provide a high level of data integrity and availability, all the benchmark data sets are stored on mirrored (RAID1) storage

  • Using Oracle VM Server for SPARC to bind the SPARC M7 processor with its local memory optimized system memory use in this virtual environment.

See Also

Disclosure Statement

SPEC and the benchmark name SPECvirt_sc are registered trademarks of the Standard Performance Evaluation Corporation. Results from www.spec.org as of 10/25/2015. SPARC T7-2, SPECvirt_sc2013 3026@168 VMs; HP DL580 Gen9, SPECvirt_sc2013 3020@168 VMs; Lenovo x3850 X6; SPECvirt_sc2013 2655@147 VMs; Huawei FusionServer RH2288H V3, SPECvirt_sc2013 1616@95 VMs; HP ProLiant DL360 Gen9, SPECvirt_sc2013 1614@95 VMs; IBM Power S824, SPECvirt_sc2013 1370@79 VMs.

Live Migration: SPARC T7-2 Oracle VM Server for SPARC Performance

One of the features that Oracle VM Server for SPARC offers is Live Migration, which is the process of securely moving an active logical domain (LDom, Virtual Machine) between different physical machines while maintaining application services to users. Memory, storage, and network connectivity of the logical domain are transferred from the original logical domain's machine to the destination target machine with all data compressed and encrypted.

  • Oracle's Live Migration is secure by default using SSL (AES256_GCM_SHA384) to encrypt migration network traffic to protect sensitive data from exploitation and to eliminate the requirement for additional hardware and dedicated networks. Additional authentication schemes can be set up to increase security for the source and target machines. VMware vMotion and IBM PowerVM do not support Secure Live Migration by default (see below).

  • An enterprise Java workload with a 74 GB footprint in a 128 GB VM running on Oracle's SPARC T7-2 server migrated to another SPARC T7-2 server in just 95 seconds with 30 seconds suspension time to the user.

Performance Landscape

Results from moving an active workload as well as two different idle workloads. The LDom was allocated 128 GB of memory.

Mission-Critical LDom Live Migration
Benchmark Test Total Migration
Time (sec)
Data Moved
(GB)
Network Bandwidth
(MB/sec)
Enterprise Java Workload/Active 95 74.3 835.3
After Active Workload/Idle 13 1.9 236.1
Out of the Box/Idle 13 1.1 135.4

Enterprise Java Workload Performance
Test Conditions Average Operations per Second
During Live Migration 347,370
No Migration 596,914

Configuration Summary

2 x SPARC T7-2
2 x SPARC M7 processors (4.13 GHz)
512 GB memory (32 x 16 GB DDR4-2133 DIMMs)
6 x 600 GB 10K RPM SAS-2 HDD
10 GbE (built-in network device)
Oracle Solaris 11.3 (11.3.0.26.0)
Oracle VM Server for SPARC ( LDoms v 3.3.0.0 Integration 17 )

The configuration of the LDoms on the source machine is:

Source Machine Configuration
LDom vcpus Memory
Primary/control 128 (16-cores) 128 GB
Guest0 128 (16-cores) 110 GB
Guest1 (Migration) 128 (16-cores) 128 GB
Guest2 128 (16-cores) 110 GB

The configuration of the LDoms on the target machine is:

Target Machine Configuration
LDom vcpus Memory
Primary/control 128 (16-cores) 128 GB

Benchmark Description

By running a Java workload on a logical domain and start a Live Migration process to move this logical domain to a target machine, the values of the major performance metrics of live migration can be measured:

  • Total Migration Time ( the total time it takes to migrate a logical domain ) .
  • Effect on Application Performance ( how much an application's performance degrades because of being migrated ) .

The number of logical domains on the source machine is three (Guest0, Guest1, Guest3) because it could represent a more realistic environment where all the source machine resources (vcpus and memory) are in use, by running the same Java workload on each LDom.

Three different experiments are run:

  • Enterprise Java Workload/Active: starting the same Java workload at the same time on three logical domains (Guest0, Guest1, and Guest2), the Live Migration of Guest1 is executed after an arbitrary amount of time.
  • After Active Workload/Idle: after running a Java workload on three logical domains (Guest0, Guest1, and Guest2), so the memory of each has been touched, and no workload is running on any of them, the Live Migration of Guest1 is executed.
  • Out of the Box/Idle: as soon as the three logical domains are installed or rebooted (Guest0, Guest1, and Guest2) with Oracle Solaris and no workload is running on any of them, the Live Migration of Guest1 is executed.

Key Points and Best Practices

  • The network interconnection between the primaries on source and target machines is 10 GbE built-in network device configured to use Jumbo Frames (MTU=9000) in order to get higher bandwidth during the live migration.

  • The Enterprise Java Workload Performance on the non-migrated logical domains (Guest0, Guest2) was not affected before, during, and after the live migration of Guest1.

  • IBM PowerVM does not support Secure Live Migration by default; the IBM's technology name is Live Partition Mobility and it can be found on Cloud Security Guidelines for IBM Power Systems, January 2015, pp 89 "4.10.1 Live Partition Mobility".

See Also

Disclosure Statement

Copyright 2015, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 25 October 2015.

Virtualized Storage: SPARC T7-1 Performance

Oracle's SPARC T7-1 server using SR-IOV enabled HBAs can achieve near native throughput. The SPARC T7-1 server, with its dramatically improved compute engine, can also achieve near native throughput with Virtual Disk (VDISK).

  • The SPARC T7-1 server is able to produce 604,219 8K read IO/Second (IOPS) with native Oracle Solaris 11.3 using 8 Gb FC HBAs. The SPARC T7-1 server using Oracle VM Server for SPARC 3.1 with 4 LDOM VDISK produced near native performance of 603,766 8K read IOPS. With SR-IOV enabled using 2 LDOMs, the SPARC T7-1 server produced 604,966 8K read IOPS.

  • The SPARC T7-1 server running Oracle VM Server for SPARC 3.1 ran 2.8 times faster virtualized IO throughput than a Sun Server X3-2L system (two Intel Xeon E5-2690, running a popular virtualization product). The virtualized x86 system produced 209,166 8K virtualized reads. The native performance of the x86 system was 338,458 8K read IOPS.

  • The SPARC T7-1 server is able to produce 891,025 4K Read IOPS with native Oracle Solaris 11.3 using 8 Gb FC HBAs. The SPARC T7-1 server using Oracle VM Server for SPARC 3.1 with 4 LDOM VDISK produced near native performance of 849,493 4K read IOPS. With SR-IOV enabled using 2 LDOMs, the SPARC T7-1 server produced 891,338 4K read IOPS.

  • The SPARC T7-1 server running Oracle VM Server for SPARC 3.1 ran 3.8 times faster virtualized IO throughput than a Sun Server X3-2L system (Intel Xeon E5-2690, running a popular virtualization product). The virtualized x86 system produced 219,830 4K virtualized reads. The native performance of the x86 system was 346,868 4K read IOPS.

  • The SPARC T7-1 server running Oracle VM Server for SPARC 3.1 ran 1.3 times faster with 16 Gb HBA compared to 8 Gb HBAs. This is quite impressive considering it was still attached to 8 Gb switches and storage.

Performance Landscape

Results presented below are for read performance for 8K size and then for 4K size. All of the following results were run as part of this benchmark effort.

Read Performance — 8K

System 8K Read IOPS Performance
Native Virtual Disk SR-IOV
SPARC T7-1 (16 Gb FC) 796,849 N/A 797,221
SPARC T7-1 (8 Gb FC) 604,219 603,766 604,966
Sun Server X3-2 (8 Gb FC) 338,458 209,166 N/A

Read Performance — 4K

System 4K Read IOPS Performance
Native Virtual Disk SR-IOV
SPARC T7-1 (16 Gb FC) 1,185,392 N/A 1,231,808
SPARC T7-1 (8 Gb FC) 891,025 849,493 891,338
Sun Server X3-2 (8 Gb FC) 346,868 219,830 N/A

Configuration Summary

SPARC T7-1 server
1 x SPARC M7 processor (4.13 GHz)
256 GB memory (16 x 16 GB)
Oracle Solaris 11.3
Oracle VM Server for SPARC 3.1
4 x Sun Storage 16 Gb Fibre Channel PCIe Universal FC HBA, Qlogic
4 x StorageTek 8 Gb Fibre Channel PCIe HBA

Sun Server X3-2 system
2 x Intel Xeon Processor E5-2690 (2.90 GHz)
128 GB memory
Oracle Solaris 11.2
Popular Virtualization Software
4 x StorageTek 8 Gb Fibre Channel PCIe HBA

Storage SAN
Brocade 5300 Switch
2 x Sun Storage 6780 array with 64 disk drives / 16 GB Cache
2 x Sun Storage 2540-M2 arrays with 36 disk drives / 1.5 GB Cache

Benchmark Description

The benchmark tests operating system IO efficiency of native and virtual machine environments. The test accesses storage devices raw and with no operating system buffering. The storage space accessed fit within the cache controller on the storage arrays for low latency and highest throughput. All accesses were random 4K or 8K reads.

Tests were executed with Oracle's Vdbench Version 5.04.03 tool against 32 LUNs. Each LUN was run with a queue depth of 32.

See Also

Disclosure Statement

Copyright 2015, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 10/25/2015.

PeopleSoft Human Capital Management 9.1 FP2: SPARC M7-8 World Record

This result demonstrates how Oracle's SPARC M7-8 server using Oracle VM Server for SPARC (LDoms) provides mission critical enterprise virtualization.

  • The virtualized two-chip, 1 TB LDom of the SPARC M7-8 server set a world record two-chip PeopleSoft Human Capital Management (HCM) 9.1 FP2 benchmark result, supporting 35,000 HR Self-Service online users with response times under one second, while simultaneously running the Payroll batch workload.

  • The virtualized two-chip LDom of the SPARC M7-8 server demonstrated 4 times better Search and 6 times better Save average response times running nearly double the number of online users along with payroll batch, compared to the ten-chip x86 solution from Cisco.

  • Using only a single chip in the virtualized two-chip LDom on the SPARC M7-8 server, the batch-only run demonstrated 1.8 times better throughput (payments/hour) compared to a four-chip Cisco UCSB460 M4 server.

  • Using only a single chip in the virtualized two-chip LDom on the SPARC M7-8 server, the batch-only run demonstrated 2.3 times better throughput (payments/hour) compared to a nine-chip IBM zEnterprise z196 server (EC 2817-709, 9-way, 8943 MIPS).

  • This record result demonstrates that a two SPARC M7 processor LDom (in SPARC M7-8), can run the same number of online users as a dynamic domain (PDom) of eight SPARC M6 processors (in SPARC M6-32), with better online response times, batch elapsed times and batch throughput (payments/hour).

  • The SPARC M7-8 server provides enterprise applications high availability and security, where each application is executed on its own environment independent of the others.

Performance Landscape

The first table presents the combined results, running both the PeopleSoft HR Self-Service Online and Payroll Batch tests concurrently.

PeopleSoft HR Self-Service Online And Payroll Batch Using Oracle Database 11g
System
Processors
Chips
Used
Users Search/Save Batch Elapsed
Time
Batch Pay/Hr
SPARC M7-8
SPARC M7
LDom1 2 35,000 0.67 sec/0.42 sec 22.71 min 1,322,272
LDom2 2 35,000 0.85 sec/0.50 sec 22.96 min 1,307,875
SPARC M6-32
SPARC M6
8 35,000 1.80 sec/1.12 sec 29.2 min 1,029,440
Cisco 1 x B460 M4, 3 x B200 M3
Intel E7-4890 v2, Intel E5-2697 v2
10 18,000 2.70 sec/2.60 sec 21.70 min 1,383,816

The following results are running only the Peoplesoft HR Self-Service Online test.

PeopleSoft HR Self-Service Online Using Oracle Database 11g
System
Processors
Chips
Used
Users Search/Save
Avg Response Times
SPARC M7-8
SPARC M7
LDom1 2 40,000 0.55 sec/0.33 sec
LDom2 2 40,000 0.56 sec/0.32 sec
SPARC M6-32
SPARC M6
8 40,000 2.73 sec/1.33 sec
Cisco 1 x B460 M4, 3 x B200 M3
Intel E7-4890 v2, Intel E5-2697 v2
10 20,000 0.35 sec/0.17 sec

The following results are running only the Peoplesoft Payroll Batch test. For the SPARC M7-8 server results, only one of the processors was used per LDom. This was accomplished using processor sets to further restrict the test to a single SPARC M7 processor.

PeopleSoft Payroll Batch Using Oracle Database 11g
System
Processors
Chips
Used
Batch Elapsed
Time
Batch Pay/Hr
SPARC M7-8
SPARC M7
LDom1 1 13.06 min 2,299,296
LDom2 1 12.85 min 2,336,872
SPARC M6-32
SPARC M6
2 18.27 min 1,643,612
Cisco UCS B460 M4
Intel E7-4890 v2
4 23.02 min 1,304,655
IBM z196
zEnterprise (5.2 GHz, 8943 MIPS)
9 30.50 min 984,551

Configuration Summary

System Under Test:

SPARC M7-8 server with
8 x SPARC M7 processor (4.13 GHz)
4 TB memory
Virtualized as two Oracle VM Server for SPARC (LDom) each with
2 x SPARC M7 processor (4.13 GHz)
1 TB memory

Storage Configuration:

2 x Oracle ZFS Storage ZS3-2 appliance (DB Data) each with
40 x 300 GB 10K RPM SAS-2 HDD,
8 x Write Flash Accelerator SSD and
2 x Read Flash Accelerator SSD 1.6TB SAS
2 x Oracle Server X5-2L (DB redo logs & App object cache) each with
2 x Intel Xeon Processor E5-2630 v3
32 GB memory
4 x 1.6 TB NVMe SSD

Software Configuration:

Oracle Solaris 11.3
Oracle Database 11g Release 2 (11.2.0.3.0)
PeopleSoft Human Capital Management 9.1 FP2
PeopleSoft PeopleTools 8.52.03
Oracle Java SE 6u32
Oracle Tuxedo, Version 10.3.0.0, 64-bit, Patch Level 043
Oracle WebLogic Server 11g (10.3.5)

Benchmark Description

The PeopleSoft Human Capital Management benchmark simulates thousands of online employees, managers and Human Resource administrators executing transactions typical of a Human Resources Self Service application for the Enterprise. Typical transactions are: viewing paychecks, promoting and hiring employees, updating employee profiles, etc. The database tier uses a database instance of about 500 GB in size, containing information for 500,480 employees. The application tier for this test includes web and application server instances, specifically Oracle WebLogic Server 11g, PeopleSoft Human Capital Management 9.1 FP2 and Oracle Java SE 6u32.

Key Points and Best Practices

In the HR online along with Payroll batch run, each LDom had one Oracle Solaris Zone of 7 cores containing the Web tier, two Oracle Solaris Zones of 16 cores each containing the Application tier and one Oracle Solaris Zone of 23 cores containing the Database tier. Two cores were dedicated to network and disk interrupt handling. In the HR online only run, each LDom had one Oracle Solaris Zone of 12 cores containing the Web tier, two Oracle Solaris Zones of 18 cores each containing the Application tier and one Oracle Solaris Zone of 14 cores containing the Database tier. 2 cores were dedicated to network and disk interrupt handling. In the Payroll batch only run, each LDom had one Oracle Solaris Zone of 31 cores containing the Database tier. 1 core was dedicated to disk interrupt handling.

All database data files, recovery files and Oracle Clusterware files for the PeopleSoft test were created with the Oracle Automatic Storage Management (Oracle ASM) volume manager for the added benefit of the ease of management provided by Oracle ASM integrated storage management solution.

In the application tier on each LDom, 5 PeopleSoft application domains with 350 application servers (70 per domain) were hosted in two separate Oracle Solaris Zones for a total of 10 domains with 700 application server processes.

All PeopleSoft Application processes and the 32 Web Server JVM instances were executed in the Oracle Solaris FX scheduler class.

See Also

Disclosure Statement

Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 10/25/2015.

Oracle E-Business Suite Applications R12.1.3 (OLTP X-Large): SPARC M7-8 World Record

Oracle's SPARC M7-8 server, using a four-chip Oracle VM Server for SPARC (LDom) virtualized server, produced a world record 20,000 users running the Oracle E-Business OLTP X-Large benchmark. The benchmark runs five Oracle E-Business online workloads concurrently: Customer Service, iProcurement, Order Management, Human Resources Self-Service, and Financials.

  • The virtualized four-chip LDom on the SPARC M7-8 was able to handle more users than the previous best result which used eight processors of Oracle's SPARC M6-32 server.

  • The SPARC M7-8 server using Oracle VM Server for SPARC provides enterprise applications high availability, where each application is executed on its own environment, insulated and independent of the others.

Performance Landscape

Oracle E-Business (3-tier) OLTP X-Large Benchmark
System Chips Total Online Users Weighted Average
Response Time (sec)
90th Percentile
Response Time (s)
SPARC M7-8 4 20,000 0.70 1.13
SPARC M6-32 8 18,500 0.61 1.16

Break down of the total number of users by component.

Users per Component
Component SPARC M7-8 SPARC M6-32
Total Online Users 20,000 users 18,500 users
HR Self-Service
Order-to-Cash
iProcurement
Customer Service
Financial
5000 users
2500 users
2700 users
7000 users
2800 users
4000 users
2300 users
2400 users
7000 users
2800 users

Configuration Summary

System Under Test:

SPARC M7-8 server
8 x SPARC M7 processors (4.13 GHz)
4 TB memory
2 x 600 GB SAS-2 HDD
using a Logical Domain with
4 x SPARC M7 processors (4.13 GHz)
2 TB memory
2 x Sun Storage Dual 16Gb Fibre Channel PCIe Universal HBA
2 x Sun Dual Port 10GBase-T Adapter
Oracle Solaris 11.3
Oracle E-Business Suite 12.1.3
Oracle Database 11g Release 2

Storage Configuration:

4 x Oracle ZFS Storage ZS3-2 appliances each with
2 x Read Flash Accelerator SSD
1 x Storage Drive Enclosure DE2-24P containing:
20 x 900 GB 10K RPM SAS-2 HDD
4 x Write Flash Accelerator SSD
1 x Sun Storage Dual 8Gb FC PCIe HBA
Used for Database files, Zones OS, EBS Mid-Tier Apps software stack
and db-tier Oracle Server
2 x Sun Server X4-2L server with
2 x Intel Xeon Processor E5-2650 v2
128 GB memory
1 x Sun Storage 6Gb SAS PCIe RAID HBA
4 x 400 GB SSD
14 x 600 GB HDD
Used for Redo log files, db backup storage.

Benchmark Description

The Oracle E-Business OLTP X-Large benchmark simulates thousands of online users executing transactions typical of an internal Enterprise Resource Processing, simultaneously executing five application modules: Customer Service, Human Resources Self Service, iProcurement, Order Management and Financial.

Each database tier uses a database instance of about 600 GB in size, supporting thousands of application users, accessing hundreds of objects (tables, indexes, SQL stored procedures, etc.).

Key Points and Best Practices

This test demonstrates virtualization technologies running concurrently various Oracle multi-tier business critical applications and databases on four SPARC M7 processors contained in a single SPARC M7-8 server supporting thousands of users executing a high volume of complex transactions with constrained (<1 sec) weighted average response time.

The Oracle E-Business LDom is further configured using Oracle Solaris Zones.

This result of 20,000 users was achieved by load balancing the Oracle E-Business Suite Applications 12.1.3 five online workloads across two Oracle Solaris processor sets and redirecting all network interrupts to a dedicated third processor set.

Each applications processor set (set-1 and set-2) was running concurrently two Oracle E-Business Suite Application servers and two database servers instances, each within its own Oracle Solaris Zone (4 x Zones per set).

Each application server network interface (to a client) was configured to map with the locality group associated to the CPUs processing the related workload, to guarantee memory locality of network structures and application servers hardware resources.

All external storage was connected with at least two paths to the host multipath-capable fibre channel controller ports and Oracle Solaris I/O multipathing feature was enabled.

See Also

Disclosure Statement

Oracle E-Business Suite R12 extra-large multiple-online module benchmark, SPARC M7-8, SPARC M7, 4.13 GHz, 4 chips, 128 cores, 1024 threads, 2 TB memory, 20,000 online users, average response time 0.70 sec, 90th percentile response time 1.13 sec, Oracle Solaris 11.3, Oracle Solaris Zones, Oracle VM Server for SPARC, Oracle E-Business Suite 12.1.3, Oracle Database 11g Release 2, Results as of 10/25/2015.

Virtualized Network Performance: SPARC T7-1

Oracle's SPARC T7-1 server using Oracle VM Server for SPARC exhibits lower network latency under virtualization. The network latency and bandwidth were measured using the Netperf benchmark.

  • TCP network latency between two Oracle VM Server for SPARC guests running on separate SPARC T7-1 servers each using SR-IOV is similar to that of two SPARC T7-1 servers without virtualization (native/bare metal).

  • TCP and UDP network latencies between two Oracle VM Server for SPARC guests running on separate SPARC T7-1 servers each using assigned I/O were significantly less than the other two I/O configurations (SR-IOV and paravirtual I/O).

  • TCP and UDP network latencies between two Oracle VM Server for SPARC guests running on separate SPARC T7-1 servers each using SR-IOV were significantly less than when using paravirtual I/O.

Terminology notes:

  • VM – virtual machine
  • guest – encapsulated operating system instance, typically running in a VM.
  • assigned I/O – network hardware driven directly and exclusively by guests
  • paravirtual I/O – network hardware driven by hosts, indirectly by guests via paravirtualized drivers
  • SR-IOV – single root i/o virtualization; virtualized network interfaces provided by network hardware, driven directly by guests.
  • LDom – logical domain (previous name for Oracle VM Server for SPARC)

Performance Landscape

The following tables show the results for TCP and UDP Netperf Latency and Bandwidth tests (single stream). Netperf latency, often called the round-trip time, is measured in microseconds (usec) (smaller is better).

TCP
Networking
Method
Netperf Latency
(usec)
Bandwidth
(Mb/sec)
MTU=1500MTU=9000 MTU=1500MTU=9000
Native/Bare Metal 5858 91009900
assigned I/O 5151 94009900
SR-IOV 5859 94009900
paravirtual I/O 9191 48009800


UDP
Networking
Method
Netperf Latency
(usec)
Bandwidth
(Mb/sec)
MTU=1500MTU=9000 MTU=1500MTU=9000
Native/Bare Metal 5757 91009900
assigned I/O 5151 94009900
SR-IOV 6663 94009900
paravirtual I/O 9897 48009800
Specifically, the Netperf benchmark latency:
  • is the average request/response time computed by inverse of the throughput reported by the program,
  • is measured within the program from 20 sample-runs of 30 seconds each,
  • uses single-in-flight [i.e. non-burst] 1 byte messages,
  • sends between separate servers connected by 10 GbE,
  • for each test, uses servers connected back-to-back (no network switch) and configured identically: native or guest VM.

Configuration Summary

System Under Test:

2 x SPARC T7-1 servers, each with
1 x SPARC M7 processor (4.13 GHz)
256 GB memory (16 x 16 GB)
2 x 600 GB 10K RPM SAS-2 HDD
10 GbE (on-board and PCIe network devices)
Oracle Solaris 11.3
Oracle VM Server for SPARC 3.2

Benchmark Description

Using the Netperf 2.6.0 benchmark to evaluate native and virtualized (LDoms) network performance. Netperf is a client/server benchmark measuring network performance providing a number of independent tests, including the omni Request/Response (aka ping-pong) test with TCP or UDP protocols used here to obtain the Netperf latency measurements, and TCP stream for bandwidth. Netperf was run between separate servers connected back-to-back (no network switch) by 10 GbE network interconnection.

To measure the cost of virtualization, for each test the servers were configured identically: native (without virtualization) or guest VM. When in a virtual environment, in similar identical fashion on each server, some representative methods were configured to connect the environment to the network hardware (e.g. assigned I/O, paravirtualization, SR-IOV).

Key Points and Best Practices

  • Oracle VM Server for SPARC requires explicit partitioning of guests into Logical Domains of bound CPUs and memory, typically chosen to be local, and does not provide dynamic load balancing between guests on a host.

  • Oracle VM Server for SPARC guests (LDoms) were assigned 32 virtual CPUs (4 complete processor cores) and 64 GB of memory. The control domain served as the I/O domain (for paravirtualized I/O) and was assigned 4 cores and 64 GB of memory.

  • Each latency average reported was computed from the inverse of the reported throughput (similar to the transaction rate) of a Netperf Request/Response test run using 20 samples (aka iterations) of 30 second measurements of non-concurrent 1 byte messages.

  • To obtain a meaningful average latency from a Netperf Request/Response test, it is important that the transactions consist of single messages, which is Netperf's default. If, for instance, Netperf options for burst and TCP_NODELAY are turned on, multiple messages can overlap in the transactions and the reported transaction rate or throughput cannot be used to compute the latency.

  • All results were obtained with interrupt coalescence (aka interrupt throttling, interrupt blanking) turned on in the physical NIC, and if applicable, for the attachment driver in the guest. Also, interrupt coalescence turned on is the default for all the platforms used here.

  • All the results were obtained with large receive offload (LRO) turned off in the physical NIC, and, if applicable, for the attachment driver in the guest, in order to reduce the network latency between the two guests.

  • The netperf bandwidth test used send and receive 1MB (1048576 Bytes) messages.

  • The paravirtual variation of the measurements refers to the use of a paravirtualized network driver in the guest instance. IP traffic consequently is routed across the guest, the virtualization subsystem in the host, a virtual network switch or bridge (depending upon the platform), and the network interface card.

  • The assigned I/O variation of the measurements refers to the use of the card's driver in the guest instance itself. This use is possible by exclusively assigning the device to the guest. Device assignment results in less (software) routing for IP traffic and consequently less overhead than using paravirtualized drivers, but virtualization still can impose significant overhead. Note also NICs used in this way cannot be shared amongst guests, and may obviate the use of certain other VM features like migration. The T7-1 system has four on-board 10 GbE devices, but all of them are connected to the same PCIe branch, making it impossible to configure them as assigned I/O devices. Using a PCIe 10 GbE NIC allows configuring it as an assigned I/O device.

  • In the context of Oracle VM Server for SPARC and these tests, assigned I/O refers to PCI endpoint device assignment, while paravirtualized I/O refers to virtual I/O using a virtual network device (vnet) in the guest connected to a virtual switch (vsw) through the I/O domain to the physical network device (NIC).

See Also

Disclosure Statement

Copyright 2015, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 25 October 2015.

Wednesday Mar 05, 2014

SPARC T5-2 Delivers World Record 2-Socket SPECvirt_sc2010 Benchmark

Oracle's SPARC T5-2 server delivered a world record two-chip SPECvirt_sc2010 result of 4270 @ 264 VMs, establishing performance superiority in virtualized environments of the SPARC T5 processors with Oracle Solaris 11, which includes as standard virtualization products Oracle VM for SPARC and Oracle Solaris Zones.

  • The SPARC T5-2 server has 2.3x better performance than an HP BL620c G7 blade server (with two Westmere EX processors) which used VMware ESX 4.1 U1 virtualization software (best SPECvirt_sc2010 result on two-chip servers using VMware software).

  • The SPARC T5-2 server has 1.6x better performance than an IBM Flex System x240 server (with two Sandy Bridge processors) which used Kernel-based Virtual Machines (KVM).

  • This is the first SPECvirt_sc2010 result using Oracle production level software: Oracle Solaris 11.1, Oracle WebLogic Server 10.3.6, Oracle Database 11g Enterprise Edition, Oracle iPlanet Web Server 7 and Oracle Java Development Kit 7 (JDK). The only exception for the Dovecot mail server.

Performance Landscape

Complete benchmark results are at the SPEC website, SPECvirt_sc2010 Results. The following table highlights the leading two-chip results for the benchmark, bigger is better.

SPECvirt_sc2010
Leading Two-Chip Results
System Processor Result @ VMs Virtualization Software
SPARC T5-2 2 x SPARC T5, 3.6 GHz 4270 @ 264 Oracle VM Server for SPARC 3.0
Oracle Solaris Zones
IBM Flex System x240 2 x Intel E5-2690, 2.9 GHz 2741 @ 168 Red Hat Enterprise Linux 6.4 KVM
HP Proliant BL6200c G7 2 x Intel E7-2870, 2.4 GHz 1878 @ 120 VMware ESX 4.1 U1

Configuration Summary

System Under Test Highlights:

1 x SPARC T5-2 server, with
2 x 3.6 GHz SPARC T5 processors
1 TB memory
Oracle Solaris 11.1
Oracle VM Server for SPARC 3.0
Oracle iPlanet Web Server 7.0.15
Oracle PHP 5.3.14
Dovecot 2.1.17
Oracle WebLogic Server 11g (10.3.6)
Oracle Database 11g (11.2.0.3)
Java HotSpot(TM) 64-Bit Server VM on Solaris, version 1.7.0_51

Benchmark Description

The SPECvirt_sc2010 benchmark is SPEC's first benchmark addressing performance of virtualized systems. It measures the end-to-end performance of all system components that make up a virtualized environment.

The benchmark utilizes several previous SPEC benchmarks which represent common tasks which are commonly used in virtualized environments. The workloads included are derived from SPECweb2005, SPECjAppServer2004 and SPECmail2008. Scaling of the benchmark is achieved by running additional sets of virtual machines until overall throughput reaches a peak. The benchmark includes a quality of service criteria that must be met for a successful run.

Key Points and Best Practices

  • The SPARC T5 server running the Oracle Solaris 11.1, utilizes embedded virtualization products as the Oracle VM for SPARC and Oracle Solaris Zones, which provide a low overhead, flexible, scalable and manageable virtualization environment.

  • In order to provide a high level of data integrity and availability, all the benchmark data sets are stored on mirrored (RAID1) storage.

See Also

Disclosure Statement

SPEC and the benchmark name SPECvirt_sc are registered trademarks of the Standard Performance Evaluation Corporation. Results from www.spec.org as of 3/5/2014. SPARC T5-2, SPECvirt_sc2010 4270 @ 264 VMs; IBM Flex System x240, SPECvirt_sc2010 2741 @ 168 VMs; HP Proliant BL620c G7, SPECvirt_sc2010 1878 @ 120 VMs.

Friday Feb 14, 2014

SPARC M6-32 Delivers Oracle E-Business and PeopleSoft World Record Benchmarks, Linear Data Warehouse Scaling in a Virtualized Configuration

This result demonstrates how the combination of Oracle virtualization technologies for SPARC and Oracle's SPARC M6-32 server allow the deployment and concurrent high performance execution of multiple Oracle applications and databases sized for the Enterprise.

  • In an 8-chip Dynamic Domain (also known as PDom), the SPARC M6-32 server set a World Record E-Business 12.1.3 X-Large world record with 14,660 online users running five simultaneous E-Business modules.

  • In a second 8-chip Dynamic Domain, the SPARC M6-32 server set a World Record PeopleSoft HCM 9.1 HR Self-Service online supporting 35,000 users while simultaneously running a batch workload in 29.17 minutes. This was done with a database of 600,480 employees. Two other separate tests were run, one supporting 40,000 online users only and another a batch-only workload that was run in 18.27 min.

  • In a third Dynamic Domain with 16-chips on the SPARC M6-32 server, a data warehouse test was run that showed near-linear scaling.

  • On the SPARC M6-32 server, several critical applications instances were virtualized: an Oracle E-Business application and database, an Oracle's PeopleSoft application and database, and a Decision Support database instance using Oracle Database 12c.

  • In this Enterprise Virtualization benchmark a SPARC M6-32 server utilized all levels of Oracle Virtualization features available for SPARC servers. The 32-chip SPARC M6 based server was divided in three separate Dynamic Domains (also known as PDoms), available only on the SPARC Enterprise M-Series systems, which are completely electrically isolated and independent hardware partitions. Each PDom was subsequently split into multiple hypervisor-based Oracle VM for SPARC partitions (also known as LDoms), each one running its own Oracle Solaris kernel and managing its own CPUs and I/O resources. The hardware resources allocated to each Oracle VM for SPARC partition were then organized in various Oracle Solaris Zones, to further refine application tier isolation and resources management. The three PDoms were dedicated to the enterprise applications as follows:

    • Oracle E-Business PDom: Oracle E-Business 12.1.3 Suite World Record Extra-Large benchmark, exercising five Online Modules: Customer Service, Human Resources Self Service, iProcurement, Order Management and Financial, with 14,660 users and an average user response time under 2 seconds.

    • PeopleSoft PDom: PeopleSoft Human Capital Management (HCM) 9.1 FP2 World Record Benchmark, using PeopleTools 8.52 and an Oracle Database 11g Release 2, with 35,000 users, at an average user Search Time of 1.46 seconds and Save Time of 0.93 seconds. An online run with 40,000 users, had an average user Search Time of 2.17 seconds and Save Time of 1.39 seconds, and a Payroll batch run completed in 29.17 minutes elapsed time for more than 500,000 employees.

    • Decision Support PDom: An Oracle Database 12c instance executing a Decision Support workload on about 30 billion rows of data and achieving linear scalability, i.e. on the 16 chips comprising the PDom, the workload ran 16x faster than on a single chip. Specifically, the 16-chip PDom processed about 320M rows/sec whereas a single chip could process about 20M rows/sec.

  • The SPARC M6-32 server is ideally suited for large-memory utilization. In this virtualized environment, three critical applications made use of 16 TB of physical memory. Each of the Oracle VM Server for SPARC environments utilized from 4 to 8 TB of memory, more than the limits of other virtualization solutions.

  • SPARC M6-32 Server Virtualization Layout Highlights

    • The Oracle E-Business application instances were run in a dedicated Dynamic Domain consisting of 8 SPARC M6 processors and 4 TB of memory. The PDom was split into four symmetric Oracle VM Server for SPARC (LDoms) environments of 2 chips and 1 TB of memory each, two dedicated to the Application Server tier and the other two to the Database Server tier. Each Logical Domain was subsequently divided into two Oracle Solaris Zones, for a total of eight, one for each E-Business Application server and one for each Oracle Database 11g instance.

    • The PeopleSoft application was run in a dedicated Dynamic Domain (PDom) consisting of 8 SPARC M6 processors and 4 TB of memory. The PDom was split into two Oracle VM Server for SPARC (LDoms) environments one of 6 chips and 3 TB of memory, reserved for the Web and Application Server tiers, and a second one of 2 chips and 1 TB of memory, reserved for the Database tier. Two PeopleSoft Application Servers, a Web Server instance, and a single Oracle Database 11g instance were each executed in their respective and exclusive Oracle Solaris Zone.

    • The Oracle Database 12c Decision Support workload was run in a Dynamic Domain consisting of 16 SPARC M6 processors and 8 TB of memory.

  • All the Oracle Applications and Database instances were running at high level of performance and concurrently in a virtualized environment. Running three Enterprise level application environments on a single SPARC M6-32 server offers centralized administration, simplified physical layout, high availability and security features (as each PDom and LDom runs its own Oracle Solaris operating system copy physically and logically isolated from the other environments), enabling the coexistence of multiple versions Oracle Solaris and application software on a single physical server.

  • Dynamic Domains and Oracle VM Server for SPARC guests were configured with independent direct I/O domains, allowing for fast and isolated I/O paths, providing secure and high performance I/O access.

Performance Landscape

Oracle E-Business Test using Oracle Database 11g
SPARC M6-32 PDom, 8 SPARC M6 Processors, 4 TB Memory
Total Online Users Weighted Average
Response Time (sec)
90th Percentile
Response Time (s)
14,660 0.81 0.88
Multiple Online Modules X-Large Configuration (HR Self-Service, Order Management, iProcurement, Customer Service, Financial)

PeopleSoft HR Self-Service Online Plus Payroll Batch using Oracle Database 11g
SPARC M6-32 PDom, 8 SPARC M6 Processors, 4 TB Memory
HR Self-Service Payroll Batch
Elapsed (min)
Online Users Average User
Search / Save
Time (sec)
Transactions
per Second
35,000 1.46 / 0.93 116 29.17

HR Self-Service Only Payroll Batch Only
Elapsed (min)
40,000 2.17 / 1.39 132 18.27

Oracle Database 12c Decision Support Query Test
SPARC M6-32 PDom, 16 SPARC M6 Processors, 8 TB Memory
Parallelism
Chips Used
Rows Processing Rate
(rows/s)
Scaling Normalized to 1 Chip
16 319,981,734 15.9
8 162,545,303 8.1
4 80,943,271 4.0
2 40,458,329 2.0
1 20,086,829 1.0

Configuration Summary

System Under Test:

SPARC M6-32 server with
32 x SPARC M6 processors (3.6 GHz)
16 TB memory

Storage Configuration:

6 x Sun Storage 2540-M2 each with
8 x Expansion Trays (each tray equipped with 12 x 300 GB SAS drives)
7 x Sun Server X3-2L each with
2 x Intel Xeon E5-2609 2.4 GHz Processors
16 GB Memory
4 x Sun Flash Accelerator F40 PCIe 400 GB cards
Oracle Solaris 11.1 (COMSTAR)
1 x Sun Server X3-2L with
2 x Intel Xeon E5-2609 2.4 GHz Processors
16 GB Memory
12 x 3 TB SAS disks
Oracle Solaris 11.1 (COMSTAR)

Software Configuration:

Oracle Solaris 11.1 (11.1.10.5.0), Oracle E-Business
Oracle Solaris 11.1 (11.1.10.5.0), PeopleSoft
Oracle Solaris 11.1 (11.1.9.5.0), Decision Support
Oracle Database 11g Release 2, Oracle E-Business and PeopleSoft
Oracle Database 12c Release 1, Decision Support
Oracle E-Business Suite 12.1.3
PeopleSoft Human Capital Management 9.1 FP2
PeopleSoft PeopleTools 8.52.03
Oracle Java SE 6u32
Oracle Tuxedo, Version 10.3.0.0, 64-bit, Patch Level 043
Oracle WebLogic Server 11g (10.3.4)

Oracle Dynamic Domains (PDoms) resources:


Oracle E-Business PeopleSoft Oracle DSS
Processors 8 8 16
Memory 4 TB 4 TB 8 TB
Oracle Solaris 11.1 (11.1.10.5.0) 11.1 (11.1.10.5.0) 11.1 (11.1.9.5.0)
Oracle Database 11g 11g 12c
Oracle VM for SPARC /
Oracle Solaris Zones
4 LDom / 8 Zones 2 LDom / 4 Zones None
Storage 7 x Sun Server X3-2L 1 x Sun Server X3-2L
(12 x 3 TB SAS )
2 x Sun Storage 2540-M2 / 2501 pairs
4 x Sun Storage 2540-M2/2501 pairs

Benchmark Description

This benchmark consists of three different applications running concurrently. It shows that large, enterprise workloads can be run on a single system and without performance impact between application environments.

The three workloads are:

  • Oracle E-Business Suite Online

    • This test simulates thousands of online users executing transactions typical of an internal Enterprise Resource Processing, including 5 application modules: Customer Service, Human Resources Self Service, Procurement, Order Management and Financial.

    • Each database tier uses a database instance of about 600 GB in size, and supporting thousands of application users, accessing hundreds of objects (tables, indexes, SQL stored procedures, etc.).

    • The application tier includes multiple web and application server instances, specifically Apache Web Server, Oracle Application Server 10g and Oracle Java SE 6u32.

  • PeopleSoft Human Capital Management

    • This test simulates thousands of online employees, managers and Human Resource administrators executing transactions typical of a Human Resources Self Service application for the Enterprise. Typical transactions are: viewing paychecks, promoting and hiring employees, updating employee profiles, etc.

    • The database tier uses a database instance of about 500 GB in size, containing information for 500,480 employees.

    • The application tier for this test includes web and application server instances, specifically Oracle WebLogic Server 11g, PeopleSoft Human Capital Management 9.1 and Oracle Java SE 6u32.

  • Decision Support Workload using the Oracle Database.

    • The query processes 30 billion rows stored in the Oracle Database, making heavy use of Oracle parallel query processing features. It performs multiple aggregations and summaries by reading and processing all the rows of the database.

Key Points and Best Practices

Oracle E-Business Environment

The Oracle E-Business Suite setup consisted 4 Oracle E-Business environments running 5 online Oracle E-Business modules simultaneously.

The Oracle E-Business environments were deployed on 4 Oracle VM for SPARC, respectively 2 for the Application tier and 2 for the Database tier. Each LDom included 2 SPARC M6 processor chips. The Application LDom was further split into 2 Oracle Solaris Zones, each one containing one Oracle E-Business Application instance. Similarly, on the Database tier, each LDom was further divided into 2 Oracle Solaris Zones, each containing an Oracle Database instance. Applications on the same LDom shared a 10 GbE network link to connect to the Database tier LDom. Each Application in a Zone was connected to its own dedicated Database Zone. The communication between the two Zones was implemented via Oracle Solaris 11 virtual network, which provides high performance, low latency transfers at memory speed using large frames (9000 bytes vs typical 1500 bytes frames).

The Oracle E-Business setup made use of the Oracle Database Shared Server feature in order to limit memory utilization, as well as the number of database Server processes. The Oracle Database configuration and optimization was substantially out-of-the-box, except for proper sizing the Oracle Database memory areas (System Global Area and Program Global Area).

In the Oracle E-Business Application LDom handling Customer Service and HR Self Service modules, 28 Forms servers and 8 OC4J application servers were hosted in the two separate Oracle Solaris Zones, for a total of 56 forms servers and 16 applications servers.

All the Oracle Database server processes and the listener processes were executed in the Oracle Solaris FX scheduler class.

PeopleSoft Environment

The PeopleSoft Application Oracle VM for SPARC had one Oracle Solaris Zone of 12 cores containing the web tier and two Oracle Solaris Zones of 57 cores total containing the Application tier. The Database tier was contained in an Oracle VM for SPARC consisting of one Oracle Solaris Zone of 24 cores. One core, in the Application Oracle VM, was dedicated to network and disk interrupt handling.

All database data files, recovery files and Oracle Clusterware files for the PeopleSoft test were created with the Oracle Automatic Storage Management (Oracle ASM) volume manager for the added benefit of the ease of management provided by Oracle ASM integrated storage management solution.

In the application tier, 5 PeopleSoft domains with 350 application servers (70 per each domain) were hosted in the two separate Oracle Solaris Zones for a total of 10 domains with 700 application server processes.

All PeopleSoft Application processes and Web Server JVM instances were executed in the Oracle Solaris FX scheduler class.

Oracle Decision Support Environment

The decision support workload showed how the combination of a large memory (8 TB) and a large number of processors (16 chips comprising 1536 virtual CPUs) together with Oracle parallel query facility can linearly increase the performance of certain decision support queries as the number of CPUs increase.

The large memory was used to cache the entire 30 billion row Oracle table in memory. There are a number of ways to accomplish this. The method deployed in this test was to allocate sufficient memory for Oracle's "keep cache" and direct the table to the "keep cache."

To demonstrate scalability, it was necessary to ensure that the number of Oracle parallel servers was always equal to the number of available virtual CPUs. This was accomplished by the combination of providing a degree of parallelism hint to the query and setting both parallel_max_servers and parallel_min_servers to the number of virtual CPUs.

The number of virtual CPUs for each stage of the scalability test was adjusted using the psradm command available in Oracle Solaris.

See Also

Disclosure Statement

Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. PeopleSoft results as of 02/14/2014. Other results as of 09/22/2013.

Oracle E-Business Suite R12 extra-large multiple-online module benchmark, SPARC M6-32, SPARC M6, 3.6 GHz, 8 chips, 96 cores, 768 threads, 4 TB memory, 14,660 online users, average response time 0.81 sec, 90th percentile response time 0.88 sec, Oracle Solaris 11.1, Oracle Solaris Zones, Oracle VM for SPARC, Oracle E-Business Suite 12.1.3, Oracle Database 11g Release 2, Results as of 9/22/2013.

Thursday Sep 26, 2013

SPARC M6-32 Delivers Oracle E-Business and PeopleSoft World Record Benchmarks, Linear Data Warehouse Scaling in a Virtualized Configuration

This result has been superceded.  Please see the latest result.

 This result demonstrates how the combination of Oracle virtualization technologies for SPARC and Oracle's SPARC M6-32 server allow the deployment and concurrent high performance execution of multiple Oracle applications and databases sized for the Enterprise.

  • In an 8-chip Dynamic Domain (also known as PDom), the SPARC M6-32 server set a World Record E-Business 12.1.3 X-Large world record with 14,660 online users running five simultaneous E-Business modules.

  • In a second 8-chip Dynamic Domain, the SPARC M6-32 server set a World Record PeopleSoft HCM 9.1 HR Self-Service online supporting 34,000 users while simultaneously running a batch workload in 29.7 minutes. This was done with a database of 600,480 employees. In a separate test running a batch-only workload was run in 21.2 min.

  • In a third Dynamic Domain with 16-chips on the SPARC M6-32 server, a data warehouse test was run that showed near-linear scaling.

  • On the SPARC M6-32 server, several critical applications instances were virtualized: an Oracle E-Business application and database, an Oracle's PeopleSoft application and database, and a Decision Support database instance using Oracle Database 12c.

  • In this Enterprise Virtualization benchmark a SPARC M6-32 server utilized all levels of Oracle Virtualization features available for SPARC servers. The 32-chip SPARC M6 based server was divided in three separate Dynamic Domains (also known as PDoms), available only on the SPARC Enterprise M-Series systems, which are completely electrically isolated and independent hardware partitions. Each PDom was subsequently split into multiple hypervisor-based Oracle VM for SPARC partitions (also known as LDoms), each one running its own Oracle Solaris kernel and managing its own CPUs and I/O resources. The hardware resources allocated to each Oracle VM for SPARC partition were then organized in various Oracle Solaris Zones, to further refine application tier isolation and resources management. The three PDoms were dedicated to the enterprise applications as follows:

    • Oracle E-Business PDom: Oracle E-Business 12.1.3 Suite World Record Extra-Large benchmark, exercising five Online Modules: Customer Service, Human Resources Self Service, iProcurement, Order Management and Financial, with 14,660 users and an average user response time under 2 seconds.

    • PeopleSoft PDom: PeopleSoft Human Capital Management (HCM) 9.1 FP2 World Record Benchmark, using PeopleTools 8.52 and an Oracle Database 11g Release 2, with 34,000 users, at an average user Search Time of 1.11 seconds and Save Time of 0.77 seconds, and a Payroll batch run completed in 29.7 minutes elapsed time for more than 500,000 employees.

    • Decision Support PDom: An Oracle Database 12c instance executing a Decision Support workload on about 30 billion rows of data and achieving linear scalability, i.e. on the 16 chips comprising the PDom, the workload ran 16x faster than on a single chip. Specifically, the 16-chip PDom processed about 320M rows/sec whereas a single chip could process about 20M rows/sec.

  • The SPARC M6-32 server is ideally suited for large-memory utilization. In this virtualized environment, three critical applications made use of 16 TB of physical memory. Each of the Oracle VM Server for SPARC environments utilized from 4 to 8 TB of memory, more than the limits of other virtualization solutions.

  • SPARC M6-32 Server Virtualization Layout Highlights

    • The Oracle E-Business application instances were run in a dedicated Dynamic Domain consisting of 8 SPARC M6 processors and 4 TB of memory. The PDom was split into four symmetric Oracle VM Server for SPARC (LDoms) environments of 2 chips and 1 TB of memory each, two dedicated to the Application Server tier and the other two to the Database Server tier. Each Logical Domain was subsequently divided into two Oracle Solaris Zones, for a total of eight, one for each E-Business Application server and one for each Oracle Database 11g instance.

    • The PeopleSoft application was run in a dedicated Dynamic Domain (PDom) consisting of 8 SPARC M6 processors and 4 TB of memory. The PDom was split into two Oracle VM Server for SPARC (LDoms) environments one of 6 chips and 3 TB of memory, reserved for the Web and Application Server tiers, and a second one of 2 chips and 1 TB of memory, reserved for the Database tier. Two PeopleSoft Application Servers, a Web Server instance, and a single Oracle Database 11g instance were each executed in their respective and exclusive Oracle Solaris Zone.

    • The Oracle Database 12c Decision Support workload was run in a Dynamic Domain consisting of 16 SPARC M6 processors and 8 TB of memory.

  • All the Oracle Applications and Database instances were running at high level of performance and concurrently in a virtualized environment. Running three Enterprise level application environments on a single SPARC M6-32 server offers centralized administration, simplified physical layout, high availability and security features (as each PDom and LDom runs its own Oracle Solaris operating system copy physically and logically isolated from the other environments), enabling the coexistence of multiple versions Oracle Solaris and application software on a single physical server.

  • Dynamic Domains and Oracle VM Server for SPARC guests were configured with independent direct I/O domains, allowing for fast and isolated I/O paths, providing secure and high performance I/O access.

Performance Landscape

Oracle E-Business Test using Oracle Database 11g
SPARC M6-32 PDom, 8 SPARC M6 Processors, 4 TB Memory
Total Online Users Weighted Average
Response Time (sec)
90th Percentile
Response Time (s)
14,660 0.81 0.88
Multiple Online Modules X-Large Configuration (HR Self-Service, Order Management, iProcurement, Customer Service, Financial)

PeopleSoft HR Self-Service Online Plus Payroll Batch using Oracle Database 11g
SPARC M6-32 PDom, 8 SPARC M6 Processors, 4 TB Memory
HR Self-Service Payroll Batch
Elapsed (min)
Online Users Average User
Search / Save
Time (sec)
Transactions
per Second
34,000 1.11 / 0.77 113 29.7

Payroll Batch Only
Elapsed (min)
21.17

Oracle Database 12c Decision Support Query Test
SPARC M6-32 PDom, 16 SPARC M6 Processors, 8 TB Memory
Parallelism
Chips Used
Rows Processing Rate
(rows/s)
Scaling Normalized to 1 Chip
16 319,981,734 15.9
8 162,545,303 8.1
4 80,943,271 4.0
2 40,458,329 2.0
1 20,086,829 1.0

Configuration Summary

System Under Test:

SPARC M6-32 server with
32 x SPARC M6 processors (3.6 GHz)
16 TB memory

Storage Configuration:

6 x Sun Storage 2540-M2 each with
8 x Expansion Trays (each tray equipped with 12 x 300 GB SAS drives)
7 x Sun Server X3-2L each with
2 x Intel Xeon E5-2609 2.4 GHz Processors
16 GB Memory
4 x Sun Flash Accelerator F40 PCIe 400 GB cards
Oracle Solaris 11.1 (COMSTAR)
1 x Sun Server X3-2L with
2 x Intel Xeon E5-2609 2.4 GHz Processors
16 GB Memory
12 x 3 TB SAS disks
Oracle Solaris 11.1 (COMSTAR)

Software Configuration:

Oracle Solaris 11.1 (11.1.10.5.0), Oracle E-Business
Oracle Solaris 11.1 (11.1.10.5.0), PeopleSoft
Oracle Solaris 11.1 (11.1.9.5.0), Decision Support
Oracle Database 11g Release 2, Oracle E-Business and PeopleSoft
Oracle Database 12c Release 1, Decision Support
Oracle E-Business Suite 12.1.3
PeopleSoft Human Capital Management 9.1 FP2
PeopleSoft PeopleTools 8.52.03
Oracle Java SE 6u32
Oracle Tuxedo, Version 10.3.0.0, 64-bit, Patch Level 043
Oracle WebLogic Server 11g (10.3.4)

Oracle Dynamic Domains (PDoms) resources:


Oracle E-Business PeopleSoft Oracle DSS
Processors 8 8 16
Memory 4 TB 4 TB 8 TB
Oracle Solaris 11.1 (11.1.10.5.0) 11.1 (11.1.10.5.0) 11.1 (11.1.9.5.0)
Oracle Database 11g 11g 12c
Oracle VM for SPARC /
Oracle Solaris Zones
4 LDom / 8 Zones 2 LDom / 4 Zones None
Storage 7 x Sun Server X3-2L 1 x Sun Server X3-2L
(12 x 3 TB SAS )
2 x Sun Storage 2540-M2 / 2501 pairs
4 x Sun Storage 2540-M2/2501 pairs

Benchmark Description

This benchmark consists of three different applications running concurrently. It shows that large, enterprise workloads can be run on a single system and without performance impact between application environments.

The three workloads are:

  • Oracle E-Business Suite Online

    • This test simulates thousands of online users executing transactions typical of an internal Enterprise Resource Processing, including 5 application modules: Customer Service, Human Resources Self Service, Procurement, Order Management and Financial.

    • Each database tier uses a database instance of about 600 GB in size, and supporting thousands of application users, accessing hundreds of objects (tables, indexes, SQL stored procedures, etc.).

    • The application tier includes multiple web and application server instances, specifically Apache Web Server, Oracle Application Server 10g and Oracle Java SE 6u32.

  • PeopleSoft Human Capital Management

    • This test simulates thousands of online employees, managers and Human Resource administrators executing transactions typical of a Human Resources Self Service application for the Enterprise. Typical transactions are: viewing paychecks, promoting and hiring employees, updating employee profiles, etc.

    • The database tier uses a database instance of about 500 GB in size, containing information for 500,480 employees.

    • The application tier for this test includes web and application server instances, specifically Oracle WebLogic Server 11g, PeopleSoft Human Capital Management 9.1 and Oracle Java SE 6u32.

  • Decision Support Workload using the Oracle Database.

    • The query processes 30 billion rows stored in the Oracle Database, making heavy use of Oracle parallel query processing features. It performs multiple aggregations and summaries by reading and processing all the rows of the database.

Key Points and Best Practices

Oracle E-Business Environment

The Oracle E-Business Suite setup consisted 4 Oracle E-Business environments running 5 online Oracle E-Business modules simultaneously. The Oracle E-Business environments were deployed on 4 Oracle VM for SPARC, respectively 2 for the Application tier and 2 for the Database tier. Each LDom included 2 SPARC M6 processor chips. The Application LDom was further split into 2 Oracle Solaris Zones, each one containing one Oracle E-Business Application instance. Similarly, on the Database tier, each LDom was further divided into 2 Oracle Solaris Zones, each containing an Oracle Database instance. Applications on the same LDom shared a 10 GbE network link to connect to the Database tier LDom. Each Application in a Zone was connected to its own dedicated Database Zone. The communication between the two Zones was implemented via Oracle Solaris 11 virtual network, which provides high performance, low latency transfers at memory speed using large frames (9000 bytes vs typical 1500 bytes frames).

The Oracle E-Business setup made use of the Oracle Database Shared Server feature in order to limit memory utilization, as well as the number of database Server processes. The Oracle Database configuration and optimization was substantially out-of-the-box, except for proper sizing the Oracle Database memory areas (System Global Area and Program Global Area).

In the Oracle E-Business Application LDom handling Customer Service and HR Self Service modules, 28 Forms servers and 8 OC4J application servers were hosted in the two separate Oracle Solaris Zones, for a total of 56 forms servers and 16 applications servers.

All the Oracle Database server processes and the listener processes were executed in the Oracle Solaris FX scheduler class.

PeopleSoft Environment

The PeopleSoft Application Oracle VM for SPARC had one Oracle Solaris Zone of 12 cores containing the web tier and two Oracle Solaris Zones of 28 cores each containing the Application tier. The Database tier was contained in an Oracle VM for SPARC consisting of one Oracle Solaris Zone of 24 cores. One and a half cores, in the Application Oracle VM, were dedicated to network and disk interrupt handling.

All database data files, recovery files and Oracle Clusterware files for the PeopleSoft test were created with the Oracle Automatic Storage Management (Oracle ASM) volume manager for the added benefit of the ease of management provided by Oracle ASM integrated storage management solution.

In the application tier, 5 PeopleSoft domains with 350 application servers (70 per each domain) were hosted in the two separate Oracle Solaris Zones for a total of 10 domains with 700 application server processes.

All PeopleSoft Application processes and Web Server JVM instances were executed in the Oracle Solaris FX scheduler class.

Oracle Decision Support Environment

The decision support workload showed how the combination of a large memory (8 TB) and a large number of processors (16 chips comprising 1536 virtual CPUs) together with Oracle parallel query facility can linearly increase the performance of certain decision support queries as the number of CPUs increase.

The large memory was used to cache the entire 30 billion row Oracle table in memory. There are a number of ways to accomplish this. The method deployed in this test was to allocate sufficient memory for Oracle's "keep cache" and direct the table to the "keep cache."

To demonstrate scalability, it was necessary to ensure that the number of Oracle parallel servers was always equal to the number of available virtual CPUs. This was accomplished by the combination of providing a degree of parallelism hint to the query and setting both parallel_max_servers and parallel_min_servers to the number of virtual CPUs.

The number of virtual CPUs for each stage of the scalability test was adjusted using the psradm command available in Oracle Solaris.

See Also

Disclosure Statement

Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 09/22/2013.

Oracle E-Business Suite R12 extra-large multiple-online module benchmark, SPARC M6-32, SPARC M6, 3.6 GHz, 8 chips, 96 cores, 768 threads, 4 TB memory, 14,660 online users, average response time 0.81 sec, 90th percentile response time 0.88 sec, Oracle Solaris 11.1, Oracle Solaris Zones, Oracle VM for SPARC, Oracle E-Business Suite 12.1.3, Oracle Database 11g Release 2, Results as of 9/20/2013.

Tuesday Mar 26, 2013

SPARC T5-2 Achieves JD Edwards EnterpriseOne Benchmark World Records

Oracle produced World Record batch throughput for single system results on Oracle's JD Edwards EnterpriseOne Day-in-the-Life benchmark using Oracle's SPARC T5-2 server running Oracle Solaris Containers and consolidating JD Edwards EnterpriseOne, Oracle WebLogic servers and the Oracle Database 11g Release 2. There are two workloads tested: online plus batch workload and batch-only workload.

Online plus batch workload:

  • The SPARC T5-2 server delivered a result of 12,000 online users at 180 msec average response time while concurrently executing a mix of JD Edwards EnterpriseOne long and short batch processes at 198.5 UBEs/min (Universal Batch Engines per minute).

  • The SPARC T5-2 server online plus batch throughput is 2.7x higher than the IBM Power 770 server, both running 12,000 online users.

  • The SPARC T5-2 server online plus batch throughput is 6x higher per chip than the IBM Power 770 server. The SPARC T5-2 server has 2 chips and the IBM Power 770 has 4 chips, both ran 12,000 online users.

  • The SPARC T5-2 server online plus batch throughput is 3x higher per core than the IBM Power 770 server. Both servers have 32 cores and ran 12,000 online users.

Batch-only workload:

  • The SPARC T5-2 server delivered throughput of 880 UBEs/min while executing the batch-only workload (Long and Short batch processes).

  • The SPARC T5-2 server batch-only throughput is 2.7x faster per chip than the IBM Power 770 server. The SPARC T5-2 server has 2 chips and the IBM Power 770 has 4 chips.

  • The SPARC T5-2 server batch-only throughput is 1.4x higher per core than the IBM Power 770 server. Both servers have 32 cores.

  • The SPARC T5-2 server batch-only throughput is 61% faster than the Cisco multiple system solution.

  • The SPARC T5-2 server batch-only throughput is 5x faster per chip than the Cisco UCS B200/B250 M2 servers. The SPARC T5-2 server has 2 chips and the Cisco 3 server solution has 6 chips.

  • The SPARC T5-2 server batch-only throughput is 18x higher per core than the Cisco UCS B200/B250 M2 servers. The SPARC T5-2 server has 32 cores while the Cisco solution utilized 36 cores.

Both workloads:

  • The SPARC T5-2 server offers a 5.4x cost savings for the application server when compared to the IBM Power 770 application server.

  • The SPARC T5-2 server running Oracle Solaris Containers and consolidating JD Edwards EnterpriseOne, Oracle WebLogic servers and the Oracle Database 11g Release 2 utilized a maximum 65% of the available CPU power, leaving headroom for additional processing.

  • The database server in a shared-server configuration allows for optimized CPU resource utilization and significant memory savings on the SPARC T5-2 server without sacrificing performance.

Performance Landscape

JD Edwards EnterpriseOne Day in the Life (DIL) Benchmark
Consolidated Online with Batch Workload
System Rack
Units (U)
Batch
Rate
(UBEs/min)
Online
Users
Users/
U
UBEs/
Core
UBEs/
Chip
Version
SPARC T5-2 (2 x SPARC T5, 3.6 GHz) 3 198.5 12000 4000 6.2 99 9.0.2
IBM Power 770 (4 x POWER7, 3.3 GHz) 8 65 12000 1500 2.0 16 9.0.2

Batch Rate (UBEs/min) — Batch transaction rate in UBEs per minute.

JD Edwards EnterpriseOne Batch Only Benchmark
System Rack
Units (U)
Batch
Rate
(UBEs/min)
UBEs/
U
UBEs/
Core
UBEs/
Chip
Version
SPARC T5-2 (2 x SPARC T5, 3.6 GHz) 3 880 267 25 440 9.0.2
IBM Power 770 (4 x POWER7, 3.3 GHz) 8 643 81 20 161 9.0.2
2 x Cisco B200 M2 (2 x X5690, 3.46 GHz)
1 x Cisco B250 M2 (2 x X5680, 3.33 GHz)
3 546 182 15 91 9.0.2

Configuration Summary

Hardware Configuration:

1 x SPARC T5-2 server with
2 x SPARC T5 processors, 3.6 GHz
512 GB memory
4 x 300 GB 10K RPM SAS internal disk
2 x 300 GB internal SSD
4 x Sun Flash Accelerator F40 PCIe Card (4 x 93 GB)

Software Configuration:

Oracle Solaris 10 1/13
Oracle Solaris Containers
JD Edwards EnterpriseOne 9.0.2
JD Edwards EnterpriseOne Tools (8.98.4.2)
Oracle WebLogic Server 11g (10.3.4)
Oracle HTTP Server 11g
Oracle Database 11g Release 2 (11.2.0.3)

Benchmark Description

JD Edwards EnterpriseOne is an integrated applications suite of Enterprise Resource Planning (ERP) software. Oracle offers 70 JD Edwards EnterpriseOne application modules to support a diverse set of business operations.

Oracle's Day in the Life (DIL) kit is a suite of scripts that exercises most common transactions of JD Edwards EnterpriseOne applications, including business processes such as payroll, sales order, purchase order, work order, and manufacturing processes, such as ship confirmation. These are labeled by industry acronyms such as SCM, CRM, HCM, SRM and FMS. The kit's scripts execute transactions typical of a mid-sized manufacturing company.

  • The workload consists of online transactions and the UBE – Universal Business Engine workload of 61 short and 4 long UBEs.

  • LoadRunner runs the DIL workload, collects the user’s transactions response times and reports the key metric of Combined Weighted Average Transaction Response time.

  • The UBE processes workload runs from the JD Enterprise Application server.

    • Oracle's UBE processes come as three flavors:
      • Short UBEs < 1 minute engage in Business Report and Summary Analysis,
      • Mid UBEs > 1 minute create a large report of Account, Balance, and Full Address,
      • Long UBEs > 2 minutes simulate Payroll, Sales Order, night only jobs.
    • The UBE workload generates large numbers of PDF files reports and log files.
    • The UBE Queues are categorized as the QBATCHD, a single threaded queue for large and medium UBEs, and the QPROCESS queue for short UBEs run concurrently.

Oracle's UBE process performance metric is Number of Maximum Concurrent UBE processes at transaction rate, UBEs/minute.

Key Points and Best Practices

Four Oracle Solaris processors sets were used with Oracle Solaris Containers assigned to the processor sets as follows:

  • one JD Edwards EnterpriseOne Application server, two Oracle WebLogic Servers 11g Release 1 each coupled with an Oracle Web Tier HTTP server instances (online workload), each in an Oracle Solaris Container (three total),

  • one JD Edwards EnterpriseOne Application server (for batch only workload) in an Oracle Solaris Container,

  • Oracle Database 11g Release 2.0.3 database in an Oracle Solaris Container,

  • the Oracle database log writer.

Other items of note:

  • Each Oracle WebLogic vertical cluster, with twelve managed instances, was configured in a dedicated webserver container in order to load balance users' requests and to provide the infrastructure to support high number of users with ease of deployment and high availability.

  • The database redo logs were configured on the raw disk partitions.

  • The mixed batch workload of 44 short UBEs and 8 long UBEs was executed concurrently with the 12,000 online application users, producing a sustained rate of 198.5 UBE/min.

See Also

Disclosure Statement

Copyright 2013, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 03/26/2013

SPARC T5-2 (SPARC T5-2 Server base package, 2xSPARC T5 16-core processors, 32x16GB-1066 DIMMS, 4x600GB 10K RPM 2.5. SAS-2 HDD,2x300GB SSDs, 4x Sun Flash Accelerator F40 PCIe Cards, 2x Power Cables) List Price $98,190. IBM Power 770 (IBM Power 770:9917 Model MMC, 2x3.3GHz 16-core, 32x one processor activation, 2xCEC Enclosure with IBM Bezel, I/O Backplane and System Midplane,2x Service Processor, 16x 0/64GB DDR3 Memory (4x16GB) DIMMS-1066MHz Power7 CoD Memory, 24x Activation of 1 GB DDR3 Power7 Memory, 10x Activation of 100GB DDR3 Power7 Memory, 2x Disk/Media Backplane. 2x 300GB SAS 15K RPM 2.5. HDD (AIX/Linux only), 1x SATA slimline DVD-RAM drive, 4x AC Power Supply 1925W) List Price $532,143. Source: ibm.com, collected 03/18/2013.

SPARC T5-2 Scores Siebel CRM Benchmark World Record

Oracle set a new world record for the Siebel Platform Sizing and Performance Program (PSPP) benchmark using Oracle's SPARC T5-2 servers for the application server with Oracle's Siebel CRM 8.1.1.4 Industry Applications and Oracle Database 11g Release 2 running on Oracle Solaris.

  • The SPARC T5-2 servers running the application tier achieved 40,000 users with sub-second response time and with throughput of 333,339 business transactions per hour on the Siebel PSPP benchmark.

  • The SPARC T5-2 servers in the application tier delivered 2 times better performance on a per chip basis compared to earlier published SPARC T4 numbers.

  • The Siebel 8.1.1.4 PSPP workload includes Siebel Call Center and Order Management System.

  • The SPARC T5-2 server used Oracle Solaris Zones which provide flexible, scalable and manageable virtualization to scale the application within and across multiple nodes.

Performance Landscape

Application Server Transactions/
hour
Users Users/
Core
Call
Center
Order
Mgmt
Response Times (sec)
2 x SPARC T5-2 (2 x SPARC T5 3.6 GHz) 333,339 40,000 625 0.110 0.608
3 x SPARC T4-2 (2 x SPARC T4 2.85 GHz) 239,748 29,000 604 0.165 0.925
2 x IBM Power 750 (POWER7 3.55 GHz, 16 active cores) 176,185 21,000 656 0.052 0.250

Oracle:
Call Center + Order Management
Transactions: 273,786 + 59,553
Users: 28,000 + 12,000

IBM:
Call Center + Order Management
Transactions: 144,457 + 31,728
Users: 14,700 + 6,300

Configuration Summary

Application Server Configuration:

2 x SPARC T5-2 servers, each with
2 x SPARC T5 processors, 3.6 GHz
512 GB memory
6 x 300 GB SAS internal disks
Oracle Solaris 10 8/11
Siebel CRM 8.1.1.4 SIA

Web Server Configuration:

1 x SPARC T4-1 server
1 x SPARC T4 processor, 2.85 GHz
128 GB memory
Oracle Solaris 10 8/11
iPlanet Web Server 7

Database Server Configuration:

1 x SPARC T4-2 server
2 x SPARC T4 processors, 2.85 GHz
256 GB memory
Flash Storage
Oracle Solaris 10 8/11
Oracle Database 11g Release 2 (11.2.0.2)

Benchmark Description

Siebel PSPP benchmark includes Call Center and Order Management:

  • Siebel Financial Services Call Center – Provides the most complete solution for sales and service, allowing customer service and telesales representatives to provide superior customer support, improve customer loyalty, and increase revenues through cross-selling and up-selling.

    High-level description of the use cases tested: Incoming Call Creates Opportunity, Quote and Order and Incoming Call Creates Service Request. Three complex business transactions are executed simultaneously for specific number of concurrent users. The ratios of these 3 scenarios were 30%, 40%, 30% respectively, which together were totaling 70% of all transactions simulated in this benchmark. Between each user operation and the next one, the think time averaged approximately 10, 13, and 35 seconds respectively.

  • Siebel Order Management – Oracle's Siebel Order Management allows employees such as salespeople and call center agents to create and manage quotes and orders through their entire life cycle. Siebel Order Management can be tightly integrated with back-office applications allowing users to perform tasks such as checking credit, confirming availability, and monitoring the fulfillment process.

    High-level description of the use cases tested: Order & Order Items Creation and Order Updates. Two complex Order Management transactions were executed simultaneously for specific number of concurrent users concurrently with aforementioned three Call Center scenarios above. The ratio of these 2 scenarios was 50% each, which together were totaling 30% of all transactions simulated in this benchmark. Between each user operation and the next one, the think time averaged approximately 20 and 67 seconds respectively.

Key Points and Best Practices

  • No processor cores or cache were activated or deactivated on the SPARC T-Series systems to achieve special benchmark effects.

See Also

Disclosure Statement

Copyright 2013, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 26 March 2013.

Tuesday Oct 02, 2012

World Record Siebel PSPP Benchmark on SPARC T4 Servers

Oracle's SPARC T4 servers set a new World Record for Oracle's Siebel Platform Sizing and Performance Program (PSPP) benchmark suite. The result used Oracle's Siebel Customer Relationship Management (CRM) Industry Applications Release 8.1.1.4 and Oracle Database 11g Release 2 running Oracle Solaris on three SPARC T4-2 and two SPARC T4-1 servers.

  • The SPARC T4 servers running the Siebel PSPP 8.1.1.4 workload which includes Siebel Call Center and Order Management System demonstrates impressive throughput performance of the SPARC T4 processor by achieving 29,000 users.

  • This is the first Siebel PSPP 8.1.1.4 benchmark supporting 29,000 concurrent users with a rate of 239,748 Business Transactions/hour.

  • The benchmark demonstrates vertical and horizontal scalability of Siebel CRM Release 8.1.1.4 on SPARC T4 servers.

Performance Landscape

Systems Txn/hr Users Call Center Order
Management
Response Times (sec)
1 x SPARC T4-1 (1 x SPARC T4 2.85 GHz) – Web
3 x SPARC T4-2 (2 x SPARC T4 2.85 GHz) – App/Gateway
1 x SPARC T4-1 (1 x SPARC T4 2.85 GHz) – DB
239,748 29,000 0.165 0.925

Oracle:
Call Center + Order Management
Transactions: 197,128 + 42,620
Users: 20300 + 8700

Configuration Summary

Web Server Configuration:

1 x SPARC T4-1 server
1 x SPARC T4 processor, 2.85 GHz
128 GB memory
Oracle Solaris 10 8/11
iPlanet Web Server 7

Application Server Configuration:

3 x SPARC T4-2 servers, each with
2 x SPARC T4 processor, 2.85 GHz
256 GB memory
3 x 300 GB SAS internal disks
Oracle Solaris 10 8/11
Siebel CRM 8.1.1.4 SIA

Database Server Configuration:

1 x SPARC T4-1 server
1 x SPARC T4 processor, 2.85 GHz
128 GB memory
Oracle Solaris 11 11/11
Oracle Database 11g Release 2 (11.2.0.2)

Storage Configuration:

1 x Sun Storage F5100 Flash Array
80 x 24 GB flash modules

Benchmark Description

Siebel 8.1 PSPP benchmark includes Call Center and Order Management:

  • Siebel Financial Services Call Center – Provides the most complete solution for sales and service, allowing customer service and telesales representatives to provide superior customer support, improve customer loyalty, and increase revenues through cross-selling and up-selling.

    High-level description of the use cases tested: Incoming Call Creates Opportunity, Quote and Order and Incoming Call Creates Service Request . Three complex business transactions are executed simultaneously for specific number of concurrent users. The ratios of these 3 scenarios were 30%, 40%, 30% respectively, which together were totaling 70% of all transactions simulated in this benchmark. Between each user operation and the next one, the think time averaged approximately 10, 13, and 35 seconds respectively.

  • Siebel Order Management – Oracle's Siebel Order Management allows employees such as salespeople and call center agents to create and manage quotes and orders through their entire life cycle. Siebel Order Management can be tightly integrated with back-office applications allowing users to perform tasks such as checking credit, confirming availability, and monitoring the fulfillment process.

    High-level description of the use cases tested: Order & Order Items Creation and Order Updates. Two complex Order Management transactions were executed simultaneously for specific number of concurrent users concurrently with aforementioned three Call Center scenarios above. The ratio of these 2 scenarios was 50% each, which together were totaling 30% of all transactions simulated in this benchmark. Between each user operation and the next one, the think time averaged approximately 20 and 67 seconds respectively.

Key Points and Best Practices

  • No processor cores or cache were activated or deactivated on the SPARC T-Series systems to achieve special benchmark effects.

See Also

Disclosure Statement

Copyright 2012, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 30 September 2012.

Monday Oct 01, 2012

World Record Batch Rate on Oracle JD Edwards Consolidated Workload with SPARC T4-2

Oracle produced a World Record batch throughput for single system results on Oracle's JD Edwards EnterpriseOne Day-in-the-Life benchmark using Oracle's SPARC T4-2 server running Oracle Solaris Containers and consolidating JD Edwards EnterpriseOne, Oracle WebLogic servers and the Oracle Database 11g Release 2. The workload includes both online and batch workload.

  • The SPARC T4-2 server delivered a result of 8,000 online users while concurrently executing a mix of JD Edwards EnterpriseOne Long and Short batch processes at 95.5 UBEs/min (Universal Batch Engines per minute).

  • In order to obtain this record benchmark result, the JD Edwards EnterpriseOne, Oracle WebLogic and Oracle Database 11g Release 2 servers were executed each in separate Oracle Solaris Containers which enabled optimal system resources distribution and performance together with scalable and manageable virtualization.

  • One SPARC T4-2 server running Oracle Solaris Containers and consolidating JD Edwards EnterpriseOne, Oracle WebLogic servers and the Oracle Database 11g Release 2 utilized only 55% of the available CPU power.

  • The Oracle DB server in a Shared Server configuration allows for optimized CPU resource utilization and significant memory savings on the SPARC T4-2 server without sacrificing performance.

  • This configuration with SPARC T4-2 server has achieved 33% more Users/core, 47% more UBEs/min and 78% more Users/rack unit than the IBM Power 770 server.

  • The SPARC T4-2 server with 2 processors ran the JD Edwards "Day-in-the-Life" benchmark and supported 8,000 concurrent online users while concurrently executing mixed batch workloads at 95.5 UBEs per minute. The IBM Power 770 server with twice as many processors supported only 12,000 concurrent online users while concurrently executing mixed batch workloads at only 65 UBEs per minute.

  • This benchmark demonstrates more than 2x cost savings by consolidating the complete solution in a single SPARC T4-2 server compared to earlier published results of 10,000 users and 67 UBEs per minute on two SPARC T4-2 and SPARC T4-1.

  • The Oracle DB server used mirrored (RAID 1) volumes for the database providing high availability for the data without impacting performance.

Performance Landscape

JD Edwards EnterpriseOne Day in the Life (DIL) Benchmark
Consolidated Online with Batch Workload

System Rack
Units
(U)
Batch
Rate
(UBEs/m)
Online
Users
Users
/ U
Users
/ Core
Version
SPARC T4-2 (2 x SPARC T4, 2.85 GHz) 3 95.5 8,000 2,667 500 9.0.2
IBM Power 770 (4 x POWER7, 3.3 GHz, 32 cores) 8 65 12,000 1,500 375 9.0.2

Batch Rate (UBEs/m) — Batch transaction rate in UBEs per minute

Configuration Summary

Hardware Configuration:

1 x SPARC T4-2 server with
2 x SPARC T4 processors, 2.85 GHz
256 GB memory
4 x 300 GB 10K RPM SAS internal disk
2 x 300 GB internal SSD
2 x Sun Storage F5100 Flash Arrays

Software Configuration:

Oracle Solaris 10
Oracle Solaris Containers
JD Edwards EnterpriseOne 9.0.2
JD Edwards EnterpriseOne Tools (8.98.4.2)
Oracle WebLogic Server 11g (10.3.4)
Oracle HTTP Server 11g
Oracle Database 11g Release 2 (11.2.0.1)

Benchmark Description

JD Edwards EnterpriseOne is an integrated applications suite of Enterprise Resource Planning (ERP) software. Oracle offers 70 JD Edwards EnterpriseOne application modules to support a diverse set of business operations.

Oracle's Day in the Life (DIL) kit is a suite of scripts that exercises most common transactions of JD Edwards EnterpriseOne applications, including business processes such as payroll, sales order, purchase order, work order, and manufacturing processes, such as ship confirmation. These are labeled by industry acronyms such as SCM, CRM, HCM, SRM and FMS. The kit's scripts execute transactions typical of a mid-sized manufacturing company.

  • The workload consists of online transactions and the UBE – Universal Business Engine workload of 61 short and 4 long UBEs.

  • LoadRunner runs the DIL workload, collects the user’s transactions response times and reports the key metric of Combined Weighted Average Transaction Response time.

  • The UBE processes workload runs from the JD Enterprise Application server.

    • Oracle's UBE processes come as three flavors:

      • Short UBEs < 1 minute engage in Business Report and Summary Analysis,

      • Mid UBEs > 1 minute create a large report of Account, Balance, and Full Address,

      • Long UBEs > 2 minutes simulate Payroll, Sales Order, night only jobs.

    • The UBE workload generates large numbers of PDF files reports and log files.

    • The UBE Queues are categorized as the QBATCHD, a single threaded queue for large and medium UBEs, and the QPROCESS queue for short UBEs run concurrently.

Oracle's UBE process performance metric is Number of Maximum Concurrent UBE processes at transaction rate, UBEs/minute.

Key Points and Best Practices

Two JD Edwards EnterpriseOne Application Servers, two Oracle WebLogic Servers 11g Release 1 coupled with two Oracle Web Tier HTTP server instances and one Oracle Database 11g Release 2 database on a single SPARC T4-2 server were hosted in separate Oracle Solaris Containers bound to four processor sets to demonstrate consolidation of multiple applications, web servers and the database with best resource utilizations.

  • Interrupt fencing was configured on all Oracle Solaris Containers to channel the interrupts to processors other than the processor sets used for the JD Edwards Application server, Oracle WebLogic servers and the database server.

  • A Oracle WebLogic vertical cluster was configured on each WebServer Container with twelve managed instances each to load balance users' requests and to provide the infrastructure that enables scaling to high number of users with ease of deployment and high availability.

  • The database log writer was run in the real time RT class and bound to a processor set.

  • The database redo logs were configured on the raw disk partitions.

  • The Oracle Solaris Container running the Enterprise Application server completed 61 Short UBEs, 4 Long UBEs concurrently as the mixed size batch workload.

  • The mixed size UBEs ran concurrently from the Enterprise Application server with the 8,000 online users driven by the LoadRunner.

See Also

Disclosure Statement

Copyright 2012, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 09/30/2012.

Wednesday Sep 28, 2011

SPARC T4 Servers Set World Record on PeopleSoft HRMS 9.1

Oracle's SPARC T4-4 servers running Oracle's PeopleSoft HRMS Self-Service 9.1 benchmark and Oracle Database 11g Release 2 achieved World Record performance on Oracle Solaris 10.

  • Using two SPARC T4-4 servers to run the application and database tiers and one SPARC T4-2 server to run the webserver tier, Oracle demonstrated world record performance of 15,000 concurrent users running the PeopleSoft HRMS Self-Service 9.1 benchmark.

  • The combination of the SPARC T4 servers running the PeopleSoft HRMS 9.1 benchmark supports 3.8x more online users with faster response time compared to the best published result from IBM on the previous PeopleSoft HRMS 8.9 benchmark.

  • The average CPU utilization on the SPARC T4-4 server in the application tier handling 15,000 users was less than 50%, leaving significant room for application growth.

  • The SPARC T4-4 server on the application tier used Oracle Solaris Containers which provide a flexible, scalable and manageable virtualization environment.

Performance Landscape

PeopleSoft HRMS Self-Service 9.1 Benchmark
Systems Processors Users Ave Response -
Search (sec)
Ave Response -
Save (sec)
SPARC T4-2 (web)
SPARC T4-4 (app)
SPARC T4-4 (db)
2 x SPARC T4, 2.85 GHz
4 x SPARC T4, 3.0 GHz
4 x SPARC T4, 3.0 GHz
15,000 1.01 0.63
PeopleSoft HRMS Self-Service 8.9 Benchmark
IBM Power 570 (web/app)
IBM Power 570 (db)
12 x POWER5, 1.9 GHz
4 x POWER5, 1.9 GHz
4,000 1.74 1.25
IBM p690 (web)
IBM p690 (app)
IBM p690 (db)
4 x POWER4, 1.9 GHz
12 x POWER4, 1.9 GHz
6 x 4392 MPIS/Gen1
4,000 1.35 1.01

The main differences between version 9.1 and version 8.9 of the benchmark are:

  • the database expanded from 100K employees and 20K managers to 500K employees and 100K managers,
  • the manager data was expanded,
  • a new transaction, "Employee Add Profile," was added, the percent of users executing it is less then 2%, and the transaction has a heavier footprint,
  • version 9.1 has a different benchmark metric (Average Response search/save time for x number of users) versus single user search/save time,
  • newer versions of the PeopleSoft application and PeopleTools software are used.

Configuration Summary

Application Server:

1 x SPARC T4-4 server
4 x SPARC T4 processors 3.0 GHz
512 GB main memory
5 x 300 GB SAS internal disks,
2 x 100 GB internal SSDs
1 x 300 GB internal SSD
Oracle Solaris 10 8/11
PeopleSoft PeopleTools 8.51.02
PeopleSoft HCM 9.1
Oracle Tuxedo, Version 10.3.0.0, 64-bit, Patch Level 031
Java HotSpot(TM) 64-Bit Server VM on Solaris, version 1.6.0_20

Web Server:

1 x SPARC T4-2 server
2 x SPARC T4 processors 2.85 GHz
256 GB main memory
1 x 300 GB SAS internal disks
1 x 300 GB internal SSD
Oracle Solaris 10 8/11
PeopleSoft PeopleTools 8.51.02
Oracle WebLogic Server 11g (10.3.3)
Java HotSpot(TM) 64-Bit Server VM on Solaris, version 1.6.0_20

Database Server:

1 x SPARC T4-4 server
4 x SPARC T4 processors 3.0 GHz
256 GB main memory
3 x 300 GB SAS internal disks
1 x Sun Storage F5100 Flash Array (80 flash modules)
Oracle Solaris 10 8/11
Oracle Database 11g Release 2

Benchmark Description

The purpose of the PeopleSoft HRMS Self-Service 9.1 benchmark is to measure comparative online performance of the selected processes in PeopleSoft Enterprise HCM 9.1 with Oracle Database 11g. The benchmark kit is an Oracle standard benchmark kit run by all platform vendors to measure the performance. It's an OLTP benchmark with no dependency on remote COBOL calls, there is no batch workload, and DB SQLs are moderately complex. The results are certified by Oracle and a white paper is published.

PeopleSoft defines a business transaction as a series of HTML pages that guide a user through a particular scenario. Users are defined as corporate Employees, Managers and HR administrators. The benchmark consists of 14 scenarios which emulate users performing typical HCM transactions such as viewing paychecks, promoting and hiring employees, updating employee profiles and other typical HCM application transactions.

All these transactions are well-defined in the PeopleSoft HR Self-Service 9.1 benchmark kit. The benchmark metric is the Average Response Time for search and save for 15,000 users..

Key Points and Best Practices

  • The application tier was configured with two PeopleSoft application server instances on the SPARC T4-4 server hosted in two separate Oracle Solaris Containers to demonstrate consolidation of multiple application, ease of administration, and load balancing.

  • Each PeopleSoft Application Server instance running in an Oracle Solaris Container was configured to run 5 application server Domains with 30 application server instances to be able to effectively handle the 15,000 users workload with zero application server queuing and minimal use of resources.

  • The web tier was configured with 20 WebLogic instances and with 4 GB JVM heap size to load balance transactions across 10 PeopleSoft Domains. That enables equitable distribution of transactions and scaling to high number of users.

  • Internal SSDs were configured in the application tier to host PeopleSoft Application Servers object CACHE file systems and in the web tier for WebLogic servers' logging providing near zero millisecond service time and faster server response time.

See Also

Disclosure Statement

Oracle's PeopleSoft HRMS 9.1 benchmark, www.oracle.com/us/solutions/benchmark/apps-benchmark/peoplesoft-167486.html, results 9/26/2011.

Tuesday Sep 27, 2011

SPARC T4-2 Servers Set World Record on JD Edwards EnterpriseOne Day in the Life Benchmark with Batch, Outperforms IBM POWER7

Using Oracle's SPARC T4-2 server for the application tier and a SPARC T4-1 server for the database tier, a world record result was produced running the Oracle's JD Edwards EnterpriseOne application Day in the Life (DIL) benchmark concurrently with a batch workload.

  • The SPARC T4-2 server running online and batch with JD Edwards EnterpriseOne 9.0.2 is 1.7x faster and has better response time than the IBM Power 750 system which only ran the online component of JD Edwards EnterpriseOne 9.0 Day in the Life test.

  • The combination of SPARC T4 servers delivered a Day in the Life benchmark result of 10,000 online users with 0.35 seconds of average transaction response time running concurrently with 112 Universal Batch Engine (UBE) processes at 67 UBEs/minute.

  • This is the first JD Edwards EnterpriseOne benchmark for 10,000 users and payroll batch on a SPARC T4-2 server for the application tier and the database tier with Oracle Database 11g Release 2. All servers ran with the Oracle Solaris 10 operating system.

  • The single-thread performance of the SPARC T4 processor produced sub-second response for the online components and provided dramatic performance for the batch jobs.

  • The SPARC T4 servers, JD Edwards EnterpriseOne 9.0.2, and Oracle WebLogic Server 11g Release 1 support 17% more users per JAS (Java Application Server) than the SPARC T3-1 server for this benchmark.

  • The SPARC T4-2 server provided a 6.7x better batch processing rate than the previous SPARC T3-1 server record result and had 2.5x faster response time.

  • The SPARC T4-2 server used Oracle Solaris Containers, which provide flexible, scalable and manageable virtualization.

  • JD Edwards EnterpriseOne uses Oracle Fusion Middleware WebLogic Server 11g R1 and Oracle Fusion Middleware Cluster Web Tier Utilities 11g HTTP server.

  • The combination of the SPARC T4-2 server and Oracle JD Edwards EnterpriseOne in the application tier with a SPARC T4-1 server in the database tier measured low CPU utilization providing headroom for growth.

Performance Landscape

JD Edwards EnterpriseOne Day in the Life Benchmark
Online with Batch Workload

System Online
Users
Resp
Time (sec)
Batch
Concur
(# of UBEs)
Batch
Rate
(UBEs/m)
Version
2xSPARC T4-2 (app+web)
SPARC T4-1 (db)
10000 0.35 112 67 9.0.2
SPARC T3-1 (app+web)
SPARC Enterprise M3000 (db)
5000 0.88 19 10 9.0.1

Resp Time (sec) — Response time of online jobs reported in seconds
Batch Concur (# of UBEs) — Batch concurrency presented in the number of UBEs
Batch Rate (UBEs/m) — Batch transaction rate in UBEs per minute

Edwards EnterpriseOne Day in the Life Benchmark
Online Workload Only

System Online
Users
Response
Time (sec)
Version
SPARC T3-1, 1 x SPARC T3 (1.65 GHz), Solaris 10 (app)
M3000, 1 x SPARC64 VII (2.75 GHz), Solaris 10 (db)
5000 0.52 9.0.1
IBM Power 750, POWER7 (3.55 GHz) (app+db) 4000 0.61 9.0

IBM result from http://www-03.ibm.com/systems/i/advantages/oracle/, IBM used WebSphere

Configuration Summary

Application Tier Configuration:

1 x SPARC T4-2 server with
2 x 2.85 GHz SPARC T4 processors
128 GB main memory
6 x 300 GB 10K RPM SAS internal HDD
Oracle Solaris 10 9/10
JD Edwards EnterpriseOne 9.0.2 with Tools 8.98.3.3

Web Tier Configuration:

1 x SPARC T4-2 server with
2 x 2.85 GHz SPARC T4 processors
256 GB main memory
2 x 300 GB SSD
4 x 300 GB 10K RPM SAS internal HDD
Oracle Solaris 10 9/10
Oracle WebLogic Server 11g Release 1

Database Tier Configuration:

1 x SPARC T4-1 server with
1 x 2.85 GHz SPARC T4 processor
128 GB main memory
6 x 300 GB 10K RPM SAS internal HDD
2 x Sun Storage F5100 Flash Array
Oracle Solaris 10 9/10
Oracle Database 11g Release 2

Benchmark Description

JD Edwards EnterpriseOne is an integrated applications suite of Enterprise Resource Planning (ERP) software. Oracle offers 70 JD Edwards EnterpriseOne application modules to support a diverse set of business operations.

Oracle's Day in the Life (DIL) kit is a suite of scripts that exercises most common transactions of JD Edwards EnterpriseOne applications, including business processes such as payroll, sales order, purchase order, work order, and manufacturing processes, such as ship confirmation. These are labeled by industry acronyms such as SCM, CRM, HCM, SRM and FMS. The kit's scripts execute transactions typical of a mid-sized manufacturing company.

  • The workload consists of online transactions and the UBE – Universal Business Engine workload of 42 short, 8 medium and 4 long UBEs.

  • LoadRunner runs the DIL workload, collects the user’s transactions response times and reports the key metric of Combined Weighted Average Transaction Response time.

  • The UBE processes workload runs from the JD Enterprise Application server.

    • Oracle's UBE processes come as three flavors:
      • Short UBEs < 1 minute engage in Business Report and Summary Analysis,
      • Mid UBEs > 1 minute create a large report of Account, Balance, and Full Address,
      • Long UBEs > 2 minutes simulate Payroll, Sales Order, night only jobs.
    • The UBE workload generates large numbers of PDF files reports and log files.
    • The UBE Queues are categorized as the QBATCHD, a single threaded queue for large and medium UBEs, and the QPROCESS queue for short UBEs run concurrently.

Oracle’s UBE process performance metric is Number of Maximum Concurrent UBE processes at transaction rate, UBEs/minute.

Key Points and Best Practices

One JD Edwards EnterpriseOne Application Server and two Oracle WebLogic Servers 11g R1 coupled with two Oracle Fusion Middleware 11g Web Tier HTTP Server instances on the SPARC T4-2 servers were hosted in three separate Oracle Solaris Containers to demonstrate consolidation of multiple application and web servers.

  • Interrupt fencing was configured on all Oracle Solaris Containers to channel the interrupts to processors other than the processor sets used for the JD Edwards Application server and WebLogic servers.

  • Processor 0 was left alone for clock interrupts.

  • The applications were executed in the FX scheduling class to improve performance by reducing the frequency of context switches.

  • A WebLogic vertical cluster was configured on each WebServer Container with twelve managed instances each to load balance users' requests and to provide the infrastructure that enables scaling to high number of users with ease of deployment and high availability.

  • The database server was run in an Oracle Solaris Container hosted on the SPARC T4-2 server.

  • The database log writer was run in the real time RT class and bound to a processor set.

  • The database redo logs were configured on the raw disk partitions.

  • The private network between the SPARC T4-2 servers was configured with a 10 GbE interface.

  • The Oracle Solaris Container on the Enterprise Application server ran 42 Short UBEs, 8 Medium UBEs and 4 Long UBEs concurrently as the mixed size batch workload.

  • The mixed size UBEs ran concurrently from the application server with the 10000 online users driven by the LoadRunner.

See Also

Disclosure Statement

Copyright 2011, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 9/26/2011.

Friday Jul 01, 2011

SPARC T3-1 Record Results Running JD Edwards EnterpriseOne Day in the Life Benchmark with Added Batch Component

Using Oracle's SPARC T3-1 server for the application tier and Oracle's SPARC Enterprise M3000 server for the database tier, a world record result was produced running the Oracle's JD Edwards EnterpriseOne applications Day in the Life benchmark run concurrently with a batch workload.

  • The SPARC T3-1 server based result has 25% better performance than the IBM Power 750 POWER7 server even though the IBM result did not include running a batch component.

  • The SPARC T3-1 server based result has 25% better space/performance than the IBM Power 750 POWER7 server as measured by the online component.

  • The SPARC T3-1 server based result is 5x faster than the x86-based IBM x3650 M2 server system when executing the online component of the JD Edwards EnterpriseOne 9.0.1 Day in the Life benchmark. The IBM result did not include a batch component.

  • The SPARC T3-1 server based result has 2.5x better space/performance than the x86-based IBM x3650 M2 server as measured by the online component.

  • The combination of SPARC T3-1 and SPARC Enterprise M3000 servers delivered a Day in the Life benchmark result of 5000 online users with 0.875 seconds of average transaction response time running concurrently with 19 Universal Batch Engine (UBE) processes at 10 UBEs/minute. The solution exercises various JD Edwards EnterpriseOne applications while running Oracle WebLogic Server 11g Release 1 and Oracle Web Tier Utilities 11g HTTP server in Oracle Solaris Containers, together with the Oracle Database 11g Release 2.

  • The SPARC T3-1 server showed that it could handle the additional workload of batch processing while maintaining the same number of online users for the JD Edwards EnterpriseOne Day in the Life benchmark. This was accomplished with minimal loss in response time.

  • JD Edwards EnterpriseOne 9.0.1 takes advantage of the large number of compute threads available in the SPARC T3-1 server at the application tier and achieves excellent response times.

  • The SPARC T3-1 server consolidates the application/web tier of the JD Edwards EnterpriseOne 9.0.1 application using Oracle Solaris Containers. Containers provide flexibility, easier maintenance and better CPU utilization of the server leaving processing capacity for additional growth.

  • A number of Oracle advanced technology and features were used to obtain this result: Oracle Solaris 10, Oracle Solaris Containers, Oracle Java Hotspot Server VM, Oracle WebLogic Server 11g Release 1, Oracle Web Tier Utilities 11g, Oracle Database 11g Release 2, the SPARC T3 and SPARC64 VII+ based servers.

  • This is the first published result running both online and batch workload concurrently on the JD Enterprise Application server. No published results are available from IBM running the online component together with a batch workload.

  • The 9.0.1 version of the benchmark saw some minor performance improvements relative to 9.0. When comparing between 9.0.1 and 9.0 results, the reader should take this into account when the difference between results is small.

Performance Landscape

JD Edwards EnterpriseOne Day in the Life Benchmark
Online with Batch Workload

This is the first publication on the Day in the Life benchmark run concurrently with batch jobs. The batch workload was provided by Oracle's Universal Batch Engine.

System Rack
Units
Online
Users
Resp
Time (sec)
Batch
Concur
(# of UBEs)
Batch
Rate
(UBEs/m)
Version
SPARC T3-1, 1xSPARC T3 (1.65 GHz), Solaris 10
M3000, 1xSPARC64 VII+ (2.86 GHz), Solaris 10
4 5000 0.88 19 10 9.0.1

Resp Time (sec) — Response time of online jobs reported in seconds
Batch Concur (# of UBEs) — Batch concurrency presented in the number of UBEs
Batch Rate (UBEs/m) — Batch transaction rate in UBEs/minute.

JD Edwards EnterpriseOne Day in the Life Benchmark
Online Workload Only

These results are for the Day in the Life benchmark. They are run without any batch workload.

System Rack
Units
Online
Users
Response
Time (sec)
Version
SPARC T3-1, 1xSPARC T3 (1.65 GHz), Solaris 10
M3000, 1xSPARC64 VII (2.75 GHz), Solaris 10
4 5000 0.52 9.0.1
IBM Power 750, 1xPOWER7 (3.55 GHz), IBM i7.1 4 4000 0.61 9.0
IBM x3650M2, 2xIntel X5570 (2.93 GHz), OVM 2 1000 0.29 9.0

IBM result from http://www-03.ibm.com/systems/i/advantages/oracle/, IBM used WebSphere

Configuration Summary

Hardware Configuration:

1 x SPARC T3-1 server
1 x 1.65 GHz SPARC T3
128 GB memory
16 x 300 GB 10000 RPM SAS
1 x Sun Flash Accelerator F20 PCIe Card, 96 GB
1 x 10 GbE NIC
1 x SPARC Enterprise M3000 server
1 x 2.86 SPARC64 VII+
64 GB memory
1 x 10 GbE NIC
2 x StorageTek 2540 + 2501

Software Configuration:

JD Edwards EnterpriseOne 9.0.1 with Tools 8.98.3.3
Oracle Database 11g Release 2
Oracle 11g WebLogic server 11g Release 1 version 10.3.2
Oracle Web Tier Utilities 11g
Oracle Solaris 10 9/10
Mercury LoadRunner 9.10 with Oracle Day in the Life kit for JD Edwards EnterpriseOne 9.0.1
Oracle’s Universal Batch Engine - Short UBEs and Long UBEs

Benchmark Description

JD Edwards EnterpriseOne is an integrated applications suite of Enterprise Resource Planning (ERP) software. Oracle offers 70 JD Edwards EnterpriseOne application modules to support a diverse set of business operations.

Oracle's Day in the Life (DIL) kit is a suite of scripts that exercises most common transactions of JD Edwards EnterpriseOne applications, including business processes such as payroll, sales order, purchase order, work order, and other manufacturing processes, such as ship confirmation. These are labeled by industry acronyms such as SCM, CRM, HCM, SRM and FMS. The kit's scripts execute transactions typical of a mid-sized manufacturing company.

  • The workload consists of online transactions and the UBE workload of 15 short and 4 long UBEs.

  • LoadRunner runs the DIL workload, collects the user’s transactions response times and reports the key metric of Combined Weighted Average Transaction Response time.

  • The UBE processes workload runs from the JD Enterprise Application server.

    • Oracle's UBE processes come as three flavors:

      • Short UBEs < 1 minute engage in Business Report and Summary Analysis,
      • Mid UBEs > 1 minute create a large report of Account, Balance, and Full Address,
      • Long UBEs > 2 minutes simulate Payroll, Sales Order, night only jobs.
    • The UBE workload generates large numbers of PDF files reports and log files.

    • The UBE Queues are categorized as the QBATCHD, a single threaded queue for large UBEs, and the QPROCESS queue for short UBEs run concurrently.

  • One of the Oracle Solaris Containers ran 4 Long UBEs, while another Container ran 15 short UBEs concurrently.

  • The mixed size UBEs ran concurrently from the SPARC T3-1 server with the 5000 online users driven by the LoadRunner.

  • Oracle’s UBE process performance metric is Number of Maximum Concurrent UBE processes at transaction rate, UBEs/minute.

Key Points and Best Practices

Two JD Edwards EnterpriseOne Application Servers and two Oracle Fusion Middleware WebLogic Servers 11g R1 coupled with two Oracle Fusion Middleware 11g Web Tier HTTP Server instances on the SPARC T3-1 server were hosted in four separate Oracle Solaris Containers to demonstrate consolidation of multiple application and web servers.

See Also

Disclosure Statement

Copyright 2011, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 6/27/2011.

Wednesday Mar 23, 2011

SPARC T3-1B Doubles Performance on Oracle Fusion Middleware WebLogic Avitek Medical Records Sample Application

The Oracle WebLogic Server 11g software was used to demonstrate the performance of the Avitek Medical Records sample application. A configuration using SPARC T3-1B and SPARC Enterprise M5000 servers from Oracle was used and showed excellent scaling of different configurations as well as doubling previous generation SPARC blade performance.

  • A SPARC T3-1B server, running a typical real-world J2EE application on Oracle WebLogic Server 11g, together with a SPARC Enterprise M5000 server running the Oracle database, had 2.1x times the transactional throughput over the previous generation UltraSPARC T2 processor based Sun Blade T6320 server module.

  • The SPARC T3-1B server shows linear scaling as the number of cores in the SPARC T3 processor used in the SPARC T3-1B system module are doubled.

  • The Avitek Medical Records application instances were deployed in Oracle Solaris zones on the SPARC T3-1B server, allowing for flexible, scalable and lightweight architecture of the application tier.

Performance Landscape

Performance for the application tier is presented. Results are the maximum transactions per second (TPS).

Server Processor Memory Maximum TPS
SPARC T3-1B 1 x SPARC T3, 1.65 GHz, 16 cores 128 GB 28,156
SPARC T3-1B 1 x SPARC T3, 1.65 GHz, 8 cores 128 GB 14,030
Sun Blade T6320 1 x UltraSPARC T2, 1.4 GHz, 8 cores 64 GB 13,386

The same SPARC Enterprise M5000 server from Oracle was used in each case as the database server. Internal disk storage was used.

Configuration Summary

Hardware Configuration:

1 x SPARC T3-1B
1 x 1.65 GHz SPARC T3
128 GB memory

1 x Sun Blade T6320
1 x 1.4Ghz GHz SPARC T2
64 GB memory

1 x SPARC Enterprise M5000
8 x 2.53 SPARC64 VII
128 GB memory

Software Configuration:

Avitek Medical Records
Oracle Database 10g Release 2
Oracle WebLogic Server 11g R1 version 10.3.3 (Oracle Fusion Middleware)
Oracle Solaris 10 9/10
HP Mercury LoadRunner 9.5

Benchmark Description

Avitek Medical Records (or MedRec) is an Oracle WebLogic Server 11g sample application suite that demonstrates all aspects of the J2EE platform. MedRec showcases the use of each J2EE component, and illustrates best practice design patterns for component interaction and client development. Oracle WebLogic server 11g is a key component of Oracle Fusion Middleware 11g.

The MedRec application provides a framework for patients, doctors, and administrators to manage patient data using a variety of different clients. Patient data includes:

  • Patient profile information: A patient's name, address, social security number, and log-in information.

  • Patient medical records: Details about a patient's visit with a physician, such as the patient's vital signs and symptoms as well as the physician's diagnosis and prescriptions.

MedRec comprises of two main Java EE applications supporting different user scenarios:

medrecEar – Patients log in to the web application (patientWebApp) to register their profile or edit. Patients can also view medical records or their prior visits. Administrators use the web application (adminWebApp) to approve or deny new patient profile requests. medrecEar also provides all of the controller and business logic used by the MedRec application suite, as well as the Web Service used by different clients.

physicianEar – Physicians and nurses login to the web application (physicianWebApp) to search and access patient profiles, create and review medical records, and prescribe medicine to patients. The physician application is designed to communicate using the Web Service provided in the medrecEar.

The medrecEAR and physicianEar application are deployed to Oracle WebLogic Server 11g instance called MedRecServer. The physicianEAR application communicates with the controller components of medrecEAR using Web Services.

The workload injected into the MedRec applications measures the average transactions per second for the following sequence:

  1. A client opens page http://{host}:7011/Start.jsp (MedRec)
  2. Patient completes Registration process
  3. Administrator login, approves the patient profile, and logout
  4. Physician connect to the on-line system and logs in
  5. Physician performs search for a patient and looks up patient's visit information
  6. Physician logs out
  7. Patient logs in and reviews the profile
  8. Patient makes changes to the profile and updates the information
  9. Patient logs out

Each of the above steps constitutes a single transaction.

Key Points and Best Practices

Please see the Oracle documentation on the Oracle Technical Network for tuning your Oracle WebLogic Server 11g deployment.

See Also

Disclosure Statement

Copyright 2011, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 3/22/2011.

Thursday Feb 17, 2011

SPARC T3-1 takes JD Edwards "Day In the Life" benchmark lead, beats IBM Power7 by 25%

Oracle's SPARC T3-1 server, running the application, together with Oracle's SPARC Enterprise M3000 server running the database, have achieved a record result of 5000 users, with 0.523 seconds of average transaction response time, for the online component of the "Day in the Life" JD Edwards EnterpriseOne benchmark.

  • The "Day in the Life" benchmark tests the Oracle JD Edwards EnterpriseOne applications, running Oracle Fusion Middleware WebLogic Server 11g R1, Oracle Fusion Middleware Web Tier Utilities 11g HTTP server and JD Edwards EnterpriseOne 9.0.1 in Oracle Solaris Containers, together with the Oracle Database 11g Release 2.

  • The SPARC T3-1 server is 25% faster and has better response time than the IBM P750 POWER7 system, when executing the JD Edwards EnterpriseOne 9.0.1 Day in the Life test, online component.

  • The SPARC T3-1 server had 25% better space/performance than the IBM P750 POWER7 server.

  • The SPARC T3-1 server is 5x faster than the x86-based IBM x3650 M2 server system, when executing the JD Edwards EnterpriseOne 9.0.1 Day in the Life test, online component.

  • The SPARC T3-1 server had 2.5x better space/performance than the x86-based IBM x3650 M2 server.

  • The SPARC T3-1 server consolidated the application/web tier of the JD Edwards EnterpriseOne 9.0.1 application using Oracle Solaris Containers. Containers provide flexibility, easier maintenance and better CPU utilization of the server leaving processing capacity for additional growth.

  • The SPARC Enterprise M3000 server provides enterprise class RAS features for customers deploying the Oracle 11g Release 2 database software.

  • To obtain this leading result, a number of Oracle advanced technology and features were used: Oracle Solaris 10, Oracle Solaris Containers, Oracle Java Hotspot Server VM, Oracle Fusion Middleware WebLogic Server 11g R1, Oracle Fusion Middleware Web Tier Utilities 11g, Oracle Database 11g Release 2, the SPARC T3 and the SPARC64 VII based servers.

Performance Landscape

JD Edwards EnterpriseOne DIL Online Component Performance Chart

System Memory OS #user JD Edwards
Version
Rack
Units
Response
Time
(sec)
SPARC T3-1, 1x1.65 GHz SPARC T3 128 Solaris 10 5000 9.0.1 2U 0.523
\*IBM Power 750, 1x3.55 GHz POWER7 120 IBM i7.1 4000 9.0 4U 0.61
IBM Power 570, 4x4.2 GHz POWER6 128 IBM i6.1 2400 8.12 4U 1.129
IBM x3650M2, 2x2.93 GHz X5570 64 OVM 1000 9.0 2U 0.29

\* from http://www-03.ibm.com/systems/i/advantages/oracle/, IBM used Websphere

Configuration Summary

Hardware Configuration:

1 x SPARC T3-1 server
1 x 1.65 GHz SPARC T3
128 GB memory
16 x 300 GB 10000 RPM SAS
1 x 1 GbE NIC
1 x SPARC Enterprise M3000
1 x 2.75 SPARC 64 VII
64 GB memory
1 x 1 GbE NIC
2 x StorageTek 2540/2501

Software Configuration:

JD Edwards EnterpriseOne 9.0.1 with Tools 8.98.3.3
Oracle Database 11g Release 2
Oracle Fusion Middleware 11g WebLogic server 11g R1 version 10.3.2
Oracle Fusion Middleware Web Tier Utilities 11g
Oracle Solaris 10 9/10
Mercury LoadRunner 9.10 with Oracle DIL kit for JD Edwards EnterpriseOne 9.0 update 1

Benchmark Description

Oracle's JD Edwards EnterpriseOne is an integrated applications suite of Enterprise Resource Planning software.

  • Oracle offers 70 JD Edwards EnterpriseOne application modules to support a diverse set of business operations.
  • Oracle 's Day-In-Life (DIL) kit is a suite of scripts that exercises most common transactions of J.D. Edwards EnterpriseOne applications including business processes such as payroll, sales order, purchase order, work order, and other manufacturing processes, such as ship confirmation. These are labeled by industry acronyms such as SCM, CRM, HCM, SRM and FMS.
  • Oracle's DIL kit's scripts execute transactions typical of a mid-sized manufacturing company.
  • The workload consists of online transactions. It does not include the batch processing job components.
  • LoadRunner is used to run the workload and collect the users' transactions response times against increasing numbers of users from 500 to 5000.
  • Key metric used to evaluate performance is the transaction response time which is reported by LoadRunner.

Key Points and Best Practices

Two JD Edwards EnterpriseOne and two Oracle Fusion Middleware WebLogic Servers 11g R1 coupled with two Fusion Middleware 11g Web Tier HTTP Servers instances on the SPARC T3-1 server were hosted in four separate Oracle Solaris Containers to demonstrate consolidation of multiple application and web servers.

  • Each Oracle Solaris container was bound to a separate processor set with 40 virtual processors allocated to each EnterpriseOne Server, 16 virtual processors allocated to each WebServer container and 16 to the default set. This was done to improve performance by using the physical memory closest to the processors, thereby, reducing memory access latency and reducing processor cross calls. The default processor set was used for network and disk interrupt handling.

  • The applications were executed in the FX scheduling class to improve performance by reducing the frequency of context switches.

  • A WebLogic Vertical cluster was configured on each WebServer container with seven managed instances each to load balance users' requests and to provide the infrastructure that enables scaling to high number of users with ease of deployment and high availability.

  • The database server was run in an Oracle Solaris Container hosted on the Oracle's SPARC Enterprise M3000 server.

See Also

Disclosure Statement

Copyright 2011, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 2/16/2011.

Thursday Sep 30, 2010

Consolidation of 30 x86 Servers onto One SPARC T3-2

One of Oracle's SPARC T3-2 servers was able to consolidate the database workloads off of thirty older x86 servers in a secure virtualized environment.

  • The thirty x86 servers required 6.7 times more power than the consolidated workload on the SPARC T3-2 server.

  • The x86 configuration used 10 times the rack space than the consolidated workload did on the SPARC T3-2 server.

  • In addition to power & space considerations, there are also administrative cost savings resulting from having to manage just one server, as opposed to thirty servers.

  • Gartner says, "They need to realize that removing a single x86 server from a data center will result in savings of more than $400 a year in energy costs alone".

  • The total transaction throughput for the SPARC T3 server (132,000) was almost the same as the aggregate throughput achieved by the thirty x86 servers (138,000), where each x86 running at 10% utilization.

  • The average transaction response time on the SPARC T3-2 server (24 ms) was just a little higher than the average transaction response time on the Intel servers (19.5 ms).

Performance Landscape

System Oracle
Instances
Average
System
Utilization
Transactions/
min/system
Average
Response
time (ms)
watts/
system
OS
Sun Fire X4250
2x 3.0GHz Xeon
1 10% 4,600 19.5 320 Linux
SPARC T3-2
1x 1.65GHz SPARC T3
30 80% 132,000 24.0 1400\* Solaris

\* power consumption includes storage and periperal devices

Notes:
total throughput for 30 Intel systems = 30 \* 4600 = 138,000
total watts for 30 Intel systems = 30 \* 320 = 9600

Results and Configuration Summary

x86 Server Configuration:

30 x Sun Fire X4250 servers, each with
2 X Intel 3.0 GHz E5450 processors
16 GB memory
6 x internal 146 GB 15K SAS disks
RedHat Linux 5.3
Oracle Database 11g Release 2

SPARC T3 Server Configuration:

1 x SPARC T3-2 server
2 x 1.65 GHz SPARC T3 processors
256 GB memory
2 X 10K 300 GB internal SAS disks
1 x Sun Storage F5100 Flash Array storage
1 x Sun Fires X4270 server as COMSTAR target
Oracle Solaris 10 9/10
Oracle Database 11g Release 2

Benchmark Description

This demonstration was designed to show the benefits of virtualization when upgrading from older X86 systems to one of Oracle's T-series servers. A 30:1 consolidation was shown moving from thirty X86 Linux servers to a single T-Series server running Oracle Solaris in a secure virtualized environment. After the consolidation, there was still 20% headroom in the SPARC T3-2 server for additional growth in the workload.

The 200 scale iGen OLTP workload was used to test the consolidation. The x86 system was loaded with iGen clients up to a level of 10% cpu utilization. This load level for x86 systems is typically found in many data centers.

Thirty Oracle Solaris zones (containers) were created on the SPARC T3-2 server, with each zone configured identically as the Oracle configuration on the x86 server. The throughput on each zone was ramped up to the same level as on the Intel base server.

The overall CPU utilization on the SPARC T3-2 server, together with the average iGen transaction response times were then measured along with the power consumption.

Key Points and Best Practices

  • Each Oracle Solaris container was assigned to a processor set consisting of eight virtual CPUs. This use of processor sets was critical to obtaining the reported performance number. Without processor set, the performance was reduced to about one-half the reported performance number.

  • Once the first container was completely configured (with Oracle 11g and iGen installed), the remaining containers were created by a simple cloning procedure, which took no more than a few minutes for each container.

  • Setting up a standalone x86 server with Linux, Oracle and iGen is a far more time consuming task than setting up additional containers once the first container has been created.

See Also

Disclosure Statement

Copyright 2010, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 9/20/2010.

Wednesday Oct 14, 2009

Oracle Open World (OOW) BestPerf Index 14 October 2009

Here is a BestPerf blog index to a variety of benchmarks announced at Oracle Open World and others talked about at the conference.

Colors used:

Benchmark
Best Practices
Other

ORACLEOPENWORLD

CMT Servers

Oct 11, 2009 \* TPC-C World Record Sun - Oracle \*
Oct 13, 2009 Sun T5440 Oracle BI EE Sun T5440 World Record
Oct 13, 2009 SPECweb200 Sun T5440 World Record, Solaris Containers and Sun Storage F5100
Sep 01, 2009 String Searching - Sun T5240 & T5440 Outperform IBM Cell Broadband Engine
Aug 27, 2009 Sun T5240 Beats 4-Chip IBM Power 570 POWER6 System on SPECjbb2005
Aug 26, 2009 Sun T5220 Sets Single Chip World Record on SPECjbb2005
Aug 12, 2009 SPECmail2009 on Sun T5240 and Sun Java System Messaging Server 6.3
Jul 23, 2009 World Record Performance of Sun CMT Servers
Jul 22, 2009 Why does 1.6 beat 4.7?
Jul 21, 2009 Zeus ZXTM Traffic Manager World Record on Sun T5240
Jul 21, 2009 Sun T5440 World Record SAP-SD 4-Processor Two-tier SAP ERP 6.0 EP4 (Unicode)

SPARC64 Servers

Oct 13, 2009 SAP 2-tier SD Benchmark on Sun M9000/32 SPARC64 VII
Oct 13, 2009 Oracle PeopleSoft Payroll Sun M4000 and Sun Storage F5100 World Record Performance
Oct 12, 2009 Best Practices: M4000 Sun Storage F5100 is a good option for Peoplesoft Payroll
Oct 13, 2009 Oracle Hyperion Sun M5000 and Sun Storage 7410
Oct 13, 2009 SPECcpu2006 Results On MSeries Servers, New SPARC64 VII

X86 Servers

Oct 13, 2009 SAP 2-tier SD-Parallel on Sun Blade X6270 1-node, 2-node and 4-node
Aug 28, 2009 Sun X4270 World Record SAP-SD 2-Processor Two-tier SAP ERP 6.0 EP 4 (Unicode)
Oct 02, 2009 Sun X4270 VMware VMmark benchmark achieves excellent result
Sep 22, 2009 Sun X4270 Virtualized for Two-tier SAP ERP 6.0 EP4 (Unicode) Standard Sales and Distribution Benchmark

HPC Benchmarks

Oct 13, 2009 Halliburton ProMAX Oil & Gas Appl on Sun 6048/X6275 Cluster and Oracle Database
Oct 13, 2009 MCAE ABAQUS faster on Sun F5100 and Sun X4270 - Single Node World Record
Oct 12, 2009 MCAE ANSYS faster on Sun F5100 and Sun X4270
Oct 12, 2009 MCAE MCS/NASTRAN faster on Sun F5100 and Fire X4270
Oct 13, 2009 CP2K Life Sciences, Ab-initio Chem - Sun C48 with Sun Blade X6275 - QDR InfiniBand
Oct 09, 2009 X6275 Cluster Demonstrates Performance and Scalability on WRF 2.5km CONUS Dataset

Specific Storage Benchmarks

Oct 12, 2009 SPC-2 Sun Storage 6180 RAID 5 & RAID 6 Over 70% Better $/Performance than IBM
Oct 12, 2009 SPC-1 Sun Storage 6180 Over 70% Better $/Performance than IBM
Oct 12, 2009 1.6 Million 4K IOPS in 1RU on Sun Storage F5100 Flash Array

Additional CMT Server Benchmarks

Jul 21, 2009 1.6 GHz SPEC CPU2006 - Rate Benchmarks
Jul 21, 2009 Sun Blade T6320 World Record SPECjbb2005 performance
Jul 21, 2009 Sun T5440 SPECjbb2005 Beats IBM POWER6 Chip-to-Chip

Friday Oct 02, 2009

Sun X4270 VMware VMmark benchmark achieves excellent result

The Sun Fire X4270 server delivered an excellent result on the virtualization benchmark VMmark from VMware for 8 core platforms running VMware ESX 4.0 OS.

The Sun Fire X4270 server powered by two 2.93GHz Quad-Core Intel Xeon X5570 processors achieved a score of 24.18 @ 17 tiles, supporting 102 fully fledged Virtual Machine instances (17 Tiles).

With this competitive result of 24.18 @ 17 tiles for the VMmark virtualization benchmark, the Sun Fire X4270 server is within 1% of the top score of 24.35 @ 17 tiles for 8 core platforms with equivalent 1066 MHz memory.

The Sun and VMware partnership offers one of the best virtualization platforms in the industry with the performance and scalability features available on the Sun Fire X4270 server.

Under the heavy load conditions of the VMmark benchmark, the Sun Fire X4270 server delivers near linear scalability.

Consolidating multiple applications onto the Sun Fire X4270 server helps IT organizations cut cost and complexity, increase agility, and reduce data center power and cooling.

Customers can consolidate several Solaris 10 OS, Linux, and Microsoft Windows applications onto a single server using VMware Virtual Infrastructure technology

The Sun Fire X4270 server achieved the competitive result of  24.18 @17 tiles with a simple I/O configuration consisting of One single port 10Gbe network card and One 4Gb dual port FC HBA and One SAS/SATA combo HBA for supporting 8 internal SATA SSDs.

Competitive Landscape Performance

VMmark 8 Core Results (sorted by score, bigger is better)


System
CPU (GHz\*) GB ESX ver Spindles RAID Tiles Score Pub Date
HP BL490c G6 2 x Xeon X5570 (2.93) 96 4.0 #164009 133 0 17 24.54 09/22/09
Lenovo R525 G2 2 x Xeon X5570 (2.93) 96 4.0 #164009 55 0 17 24.35 06/30/09
Dell PowerEdge R710 2 x Xeon X5570 (2.93) 96 4.0 #164009 98 0 17 24.27 09/08/09
HP BL490 G6 2 x Xeon X5570 (2.93) 96 4.0 #158725 132 0 17 24.24 05/19/09
Fujitsu RX200 S5 2 x Xeon X5570 (2.93) 96 4.0 #164009 291 0 17 24.20 08/11/09
Sun Fire X4270 2 x Xeon X5570 (2.93) 96 4.0 #164009 235 0 17 24.18 09/28/09
HP DL380 G6 2 x Xeon X5570 (2.93) 96 4.0 #148783 120 0 17 24.15 05/19/09
Cisco B200-M1 2 x Xeon X5570 (2.93) 96 4.0 #151628 20 0 17 24.14 04/21/09
IBM BladeCenter HS22 2 x Xeon X5570 (2.93) 96 4.0 #161959 289 0 17 24.05 06/30/09
Dell PowerEdge R710 2 x Xeon X5570 (2.93) 96 4.0 #150817 170 0 17 24.00 04/21/09

Notes:
\* Intel Turbo Boost up to 3.33GHz

Configuration Summary

Hardware Configuration:

  1. Sun Fire X4270 Server
  2. 2 x 2.93GHz 4-Core Intel Xeon X5570 EP processors
    96GB memory (12x 8GB DIMMs)
    1x 32GB SATA SSD for OS
    7x 32GB SATA SSD for database VMs.
    1x QLE2462 4Gb dual port Fiber Channel Host Adapter
    1x Intel Pro/10GbE-SR

  3. Storage
  4. 9x STK2540 + 9x STK2501 RAID level 0, each with
    12x 146GB SAS 15k rpm drives
    1x STK2540 RAID level 0 with
    12x 146GB SAS 15k rpm drives

  5. Clients:
  6. Sun Blade 6000 Chassis with 10x Sun Blade X6240
    Sun Blade 6000 Chassis with 7x Sun Blade X6240
    Each X6240 equipped with 2 x 2.5 GHz Quad Core AMD Opteron 2380,
    32GB memory, 1x 73GB 15K rpm SAS Disk

Software Configuration:

  1. VMware OS and Benchmark Software
  2. VMware ESX 4.0 build #164009
    VMmark 1.1.1

  3. VMmark Virtual machines
    1. Mail server
    2. Windows 2003 32-bit Enterprise Edition
      2 Virtual CPUs (vcpu)
      24 GB disk
      1 GB of memory
      Exchange 2003
    3. Java server
    4. Windows 2003 64-bit Enterprise Edition
      2 VCPUs
      8 GB disk
      1 GB of memory
      SPECjbb2005
    5. Standby server
    6. Windows 2003 32-bit Enterprise Edition
      1 VCPUs
      4 GB disk
      256 MB of memory
      No application
    7. Web server
    8. SLES 10 64-bit
      2 Virtual CPUs (vcpu)
      8 GB disk
      512 MB of memory
      SPECweb2005
    9. Database server
    10. SLES 10 64-bit
      2 Virtual CPUs (vcpu)
      10 GB disk
      2 GB of memory
      MySQL
    11. File server
    12. SLES 10 32-bit
      1 Virtual CPUs (vcpu)
      8 GB disk
      256 MB of memory
      dbbench

  4. Clients
  5. Windows 2003 32-bit Enterprise Edition
    LoadSim2003, Microsoft Outlook 2003
    SPECjbb Monior
    Idle VM test
    SPECweb2005 client
    MySQL, Sysbench
    dbbench based tbench_srv.exe
    BEA JRockit 5.0 JVM JDK
    VMmark Harness
    STAF framework and STAX execution engine.

Benchmark Description

VMmark is a benchmark developed, distributed and owned by VMware. The purpose of this benchmark is to measure performance and scalability of a pre-established mix of workloads (a Tile), which allows comparisons among similar platforms.

A Tile consists of 6 fixed workload applications, each running in its own Virtual Machine (VM) (6 VMs per Tile) such as Mail, Java, Web, Database and File Serving plus a standby server (spare Virtual Machine).

VMmark benchmark provides two key performance metrics:

  1. The Number of TILES supported by a system, which is an indication of how many systems/applications can be consolidated on one platform (the higher the number of tiles supported the higher the number of consolidated systems.

  2. The Score, which is an overall measure of the amount of work that is accomplished by all the Tiles in the system at a specified level of service of all the workloads during a benchmark run. The Score or Amount of Work is a composition of Actions/minute(Mail server), New Orders/minute(Java server), Access/minute(web server), Commits/minute(Database), MB/sec(file server).

Thus, among systems with the same number of tiles, the system with the higher score is the system that is capable of producing the greater amount of work. For detailed description of VMmark, tiles and score definition, please refer to http://www.vmware.com/products/vmmark/features.html.

See Also

Disclosure Statement

VMware(R) VMmark(tm) is a product of VMware, Inc. VMmark utilizes SPECjbb(r)2005 and SPECweb(r)2005, which are available from the Standard Performance Evaluation Corporation (SPEC). Results from http://www.vmware.com/products/vmmark/ as of September 29, 2009.

Thursday Jul 23, 2009

World Record Performance of Sun CMT Servers

This week, Sun continues to highlight the record-breaking performance of its latest update to the chip multi-threaded (CMT) Sun SPARC Enterprise server family running Solaris.  Some of these benchmarks leverage the use of a variety of Sun's unique technologies including ZFS, SSD, various Storage Products and many more. These benchmarks were blogged about by various members or our team and the URLs are shown below.

Messages

  • Sun's CMT is the most powerful CPU regardless of architectural/implementation details (#transistors, #cores, threads, MHz, etc.)!
  • Performance tests show that Sun can outperform IBM Power6 by more than 2x on a variety of benchmarks.
  • Performance tests show Sun's new 1.6GHz CMT systems can be 20% faster than Sun's previous generation 1.4GHz processors, given Sun's continual advancements in both hardware and software.

Benchmark Results Recently Blogged

Sun T5440 Oracle BI EE World Record Performance
http://blogs.sun.com/BestPerf/entry/sun_t5440_oracle_bi_ee

Sun T5440 World Record SAP-SD 4-Processor Two-tier SAP ERP 6.0 EP 4 (Unicode), Beats IBM POWER6 (note1)
http://blogs.sun.com/BestPerf/entry/sun_t5440_world_record_sap

Zeus ZXTM Traffic Manager World Record on Sun T5240
http://blogs.sun.com/BestPerf/entry/top_performance_on_sun_sparc

Sun T5440 SPECjbb2005, Sun 1.6GHz T2 Plus chip is 2.3x IBM 4.7GHz POWER6 chip
http://blogs.sun.com/BestPerf/entry/sun_t5440_specjbb2005_beats_ibm

New SPECjAppServer2004 Performance on the Sun SPARC Enterprise T5440
http://blogs.sun.com/BestPerf/entry/new_specjappserver2004_performance_on_sun

1.6 GHz SPEC CPU2006: World Record 4-chip system, Rate Benchmarks, Beats IBM POWER6
http://blogs.sun.com/BestPerf/entry/1_6_ghz_spec_cpu2006

Sun Blade T6320 World Record 1-chip SPECjbb2005 performance, Sun 1.6GHz T2 Plus chip is 2.6x IBM 4.7GHz POWER6 chip
http://blogs.sun.com/BestPerf/entry/new_specjbb2005_performance_on_the

Comparison Table

Benchmark Sun CMT Tier Software Key Messages
Oracle BI EE Sun T5440 Appl,
Database
Oracle 11g,
Oracle BIEE,
ZFS,
Solaris
  • World Record: T5440
  • Achieved 28,000 users
  • Reference
SAP-SD 2-Tier Sun T5440 Appl,
Database
SAP ECC 6.0,EP4
Oracle 10g,
Solaris
  • World Record 4-socket: T5440
  • T5440 Beats 4-socket IBM 550 5GHz Power6 by 26% (note1)
  • T5440 Beats HP DL585 G6 4-socket Opteron (note1)
  • Unicode version
SPECjAppServer
2004
Sun T5440 Appl, Database Oracle WebLogic,
Oracle 11g,
JDK 1.6.0_14,
Solaris
  • World Record Single System (Appl Tier): T5440
  • T5440 is 6.4x faster of IBM Power 570 4.7GHz Power6
  • T5440 is 73% faster than HP DL 580 G5 Xeon 6C
  • Oracle Fusion Middleware
Sun T5440
SPECjbb2005
Sun T5440 Appl Java HotSpot,
OpenSolaris
  • 1.6GHz US T2 Plus CPU is 2.3x faster of IBM 4.7GHz Power6 CPU
  • 1.6GHz US T2 Plus CPU is 21% faster than previous generation 1.4GHz US T2 Plus CPU
  • Sun T5440 has 2.3x better power/perf than the IBM 570 (8 4.7GHz Power6)
Sun Blade T6320 SPECjbb2005 Sun T6320 Appl Java HotSpot,
OpenSolaris
  • World Record 1-socket: T6320
  • 1.6GHz US T2 Plus CPU is 2.6x faster than IBM 4.7GHz Power6 CPU
  • T6320 is 3% faster than Fujitsu 3.16GHz Xeon QC
SPEC CPU2006 Sun T5440,
Sun T5240,
Sun T5220,
Sun T5120,
Sun T6320
all tiers Sun Studio12,
Solaris,
ZFS
  • World Record 4-socket: T5440
  • 1.6GHz US T2 Plus CPU is 2.6x faster than IBM 4.7GHz Power6 CPU
  • T6320 is 3% faster than Fujitsu 3.16GHz Xeon QC
Zeus ZXTM
Traffic Manager
Sun T5240 Web Zeus ZXTM v5.1r1,
Solaris
  • World Record: T5240
  • T5240 Beats f5 BIG-IP VIPRON by 34%; 2.6x better $/perf
  • T5240 Beats f5 BIG-IP 8800 by 91%; 2.7x better $/perf⁞
  • T5240 Beats Citrix 12000 by 2.2x; 3.3x better $/perf
  • No IBM result

Virtualization

Sun's announcement also included updated virtualization software (LDOMs 1.1). Downloads are available to existing SPARC Enterprise server customers at: http://www.sun.com/servers/coolthreads/ldoms/index.jsp.  Also look the the blog posting "LDoms for Dummies" at http://blogs.sun.com/PierreReynes/entry/ldoms_for_dummies

Try & Buy Program

Sun is also offering free 60-day trials on Sun CMT servers with with a very popular Try and Buy program: http://www.sun.com/tryandbuy.

Benchmark Performance Disclosure Statements (the URLs listed above go into more detail on each of these benchmarks)

Note1: 4-processor world record on the 2-tier SAP SD Standard Application Benchmark with 4720 SD User, as of July 23, 2009, IBM System 550 (4 processors, 8 cores, 16 threads) 3,752 SAP SD Users, 4x 5 GHz Power6, 64 GB memory, DB2 9.5, AIX 6.1, Cert# 2009023. T5440 beats HP new 4-socket Opteron Servers (HPDL585 G6 with 4665 SD User and HP BL685c G6 with 4422 SD User)

Two-tier SAP Sales and Distribution (SD) standard SAP ERP 6.0 2005/EP4 (Unicode) application benchmarks as of 07/21/09: Sun SPARC Enterprise T5440 Server (4 processors, 32 cores, 256 threads) 4,720 SAP SD Users, 4x 1.6 GHz UltraSPARC T2 Plus, 256 GB memory, Oracle10g, Solaris10, Cert# 2009026. HP ProLiant DL585 G6 (4 processors, 24 cores, 24 threads) 4,665 SAP SD Users, 4x 2.8 GHz AMD Opteron Processor 8439 SE, 64 GB memory, SQL Server 2008, Windows Server 2008 Enterprise Edition, Cert# 2009025. HP ProLiant BL685c G6 (4 processors, 24 cores, 24 threads) 4,422 SAP SD Users, 4x 2.6 GHz AMD Opteron Processor 8435, 64 GB memory, SQL Server 2008, Windows Server 2008 Enterprise Edition, Cert# 2009021. IBM System 550 (4 processors, 8 cores, 16 threads) 3,752 SAP SD Users, 4x 5 GHz Power6, 64 GB memory, DB2 9.5, AIX 6.1, Cert# 2009023. HP ProLiant DL585 G5 (4 processors, 16 cores, 16 threads) 3,430 SAP SD Users, 4x 3.1 GHz AMD Opteron Processor 8393 SE, 64 GB memory, SQL Server 2008, Windows Server 2008 Enterprise Edition, Cert# 2009008. HP ProLiant BL685 G6 (4 processors, 16 cores, 16 threads) 3,118 SAP SD Users, 4x 2.9 GHz AMD Opteron Processor 8389, 64 GB memory, SQL Server 2008, Windows Server 2008 Enterprise Edition, Cert# 2009007. NEC Express5800 (4 processors, 24 cores, 24 threads) 2,957 SAP SD Users, 4x 2.66 GHz Intel Xeon Processor X7460, 64 GB memory, SQL Server 2008, Windows Server 2008 Enterprise Edition, Cert# 2009018. Dell PowerEdge M905 (4 processors, 16 cores, 16 threads) 2,129 SAP SD Users, 4x 2.7 GHz AMD Opteron Processor 8384, 96 GB memory, SQL Server 2005, Windows Server 2003 Enterprise Edition, Cert# 2009017. Sun Fire X4600M2 (8 processors, 32 cores, 32 threads) 7,825 SAP SD Users, 8x 2.7 GHz AMD Opteron 8384, 128 GB memory, MaxDB 7.6, Solaris 10, Cert# 2008070. IBM System x3650 M2 (2 Processors, 8 Cores, 16 Threads) 5,100 SAP SD users,2x 2.93 Ghz Intel Xeon X5570, DB2 9.5, Windows Server 2003 Enterprise Edition, Cert# 2008079. HP ProLiant DL380 G6 (2 processors, 8 cores, 16 threads) 4,995 SAP SD Users, 2x 2.93 GHz Intel Xeon x5570, 48 GB memory, SQL Server 2005, Windows Server 2003 Enterprise Edition, Cert# 2008071. SAP, R/3, reg TM of SAP AG in Germany and other countries. More info www.sap.com/benchmark.

Oracle Business Intelligence Enterprise Edition benchmark, see http://www.oracle.com/solutions/business_intelligence/resource-library-whitepapers.html for more. Results as of 7/20/09.

Zeus is TM of Zeus Technology Limited. Results as of 7/21/2009 on http://www.zeus.com/news/press_articles/zeus-price-performance-press-release.html?gclid=CLn4jLuuk5cCFQsQagod7gTkJA.

SPEC, SPECint, SPECfp reg tm of Standard Performance Evaluation Corporation. Competitive results from www.spec.org as of 16 July 2009. Sun's new results quoted on this page have been submitted to SPEC. Sun Blade T6320 89.2 SPECint_rate_base2006, 96.7 SPECint_rate2006, 64.1 SPECfp_rate_base2006, 68.5 SPECfp_rate2006; Sun SPARC Enterprise T5220/T5120 89.1 SPECint_rate_base2006, 97.0 SPECint_rate2006, 64.1 SPECfp_rate_base2006, 68.5 SPECfp_rate2006; Sun SPARC Enterprise T5240 172 SPECint_rate_base2006, 183 SPECint_rate2006, 124 SPECfp_rate_base2006, 133 SPECfp_rate2006; Sun SPARC Enterprise T5440 338 SPECint_rate_base2006, 360 SPECint_rate2006, 254 SPECfp_rate_base2006, 270 SPECfp_rate2006; Sun Blade T6320 76.4 SPECint_rate_base2006, 85.5 SPECint_rate2006, 58.1 SPECfp_rate_base2006, 62.3 SPECfp_rate2006; Sun SPARC Enterprise T5220/T5120 76.2 SPECint_rate_base2006, 83.9 SPECint_rate2006, 57.9 SPECfp_rate_base2006, 62.3 SPECfp_rate2006; Sun SPARC Enterprise T5240 142 SPECint_rate_base2006, 157 SPECint_rate2006, 111 SPECfp_rate_base2006, 119 SPECfp_rate2006; Sun SPARC Enterprise T5440 270 SPECint_rate_base2006, 301 SPECint_rate2006, 212 SPECfp_rate_base2006, 230 SPECfp_rate2006; IBM p 570 53.2 SPECint_rate_base2006, 60.9 SPECint_rate2006, 51.5 SPECfp_rate_base2006, 58.0 SPECfp_rate2006; IBM Power 520 102 SPECint_rate_base2006, 124 SPECint_rate2006, 88.7 SPECfp_rate_base2006, 105 SPECfp_rate2006; IBM Power 550 215 SPECint_rate_base2006, 263 SPECint_rate2006, 188 SPECfp_rate_base2006, 222 SPECfp_rate2006; HP Integrity BL870c 114 SPECint_rate_base2006; HP Integrity rx7640 87.4 SPECfp_rate_base2006, 90.8 SPECfp_rate2006.

SPEC, SPECjbb reg tm of Standard Performance Evaluation Corporation. Results as of 7/17/2009 on http://www.spec.org. SPECjbb2005, Sun Blade T6320 229576 SPECjbb2005 bops, 28697 SPECjbb2005 bops/JVM; IBM p 570 88089 SPECjbb2005 bops, 88089 SPECjbb2005 bops/JVM; Fujitsu TX100 223691 SPECjbb2005 bops, 111846 SPECjbb2005 bops/JVM; IBM x3350 194256 SPECjbb2005 bops, 97128 SPECjbb2005 bops/JVM; Sun SPARC Enterprise T5120 192055 SPECjbb2005 bops, 24007 SPECjbb2005 bops/JVM.

SPECjAppServer2004, Sun SPARC Enterprise T5440 (4 chips, 32 cores) 7661.16 SPECjAppServer2004 JOPS@Standard; HP DL580 G5 (4 chips, 24 cores) 4410.07 SPECjAppServer2004 JOPS@Standard; HP DL580 G5 (4 chips, 16 cores) 3339.94 SPECjAppServer2004 JOPS@Standard; Two Dell PowerEdge 2950 (4 chips, 16 cores) 4794.33 SPECjAppServer2004 JOPS@Standard; Dell PowerEdge R610 (2 chips, 8 cores) 3975.13 SPECjAppServer2004 JOPS@Standard; Two Dell PowerEdge R610 (4 chips, 16 cores) 7311.50 SPECjAppServer2004 JOPS@Standard; IBM Power 570 (2 chips, 4 cores) 1197.51 SPECjAppServer2004 JOPS@Standard; SPEC, SPECjAppServer reg tm of Standard Performance Evaluation Corporation. Results from http://www.spec.org as of 7/20/09.

SPECjbb2005 Sun SPARC Enterprise T5440 (4 chips, 32 cores) 841380 SPECjbb2005 bops, 26293 SPECjbb2005 bops/JVM. Results submitted to SPEC. HP DL585 G5 (4 chips, 24 cores) 937207 SPECjbb2005 bops, 234302 SPECjbb2005 bops/JVM. IBM Power 570 (8 chips, 16 cores) 798752 SPECjbb2005 bops, 99844 SPECjbb2005 bops/JVM. Sun SPARC Enterprise T5440 (4 chips, 32 cores) 692736 SPECjbb2005 bops, 21648 SPECjbb2005 bops/JVM. SPEC, SPECjbb reg tm of Standard Performance Evaluation Corporation. Results from www.spec.org as of 7/20/09.

IBM p 570 8P 4.7GHz (4 building blocks) power specifications calculated as 80% of maximum input power reported 7/8/09 in “Facts and Features Report”: ftp://ftp.software.ibm.com/common/ssi/pm/br/n/psb01628usen/PSB01628USEN.PDF

Wednesday Jun 03, 2009

Welcome to BestPerf group blog!

Welcome to BestPerf group blog!  This blog will contain many different performance results and the best practices learned from doing a wide variety of performance work on the broad range of Sun's products.

Over the coming days, you will see many engineers in the Strategic Applications Engineering group posting a wide variety topics and providing useful information to the users of Sun's technologies. Some of the areas explored will be:

world-record, performance, $/Perf, watts, watt/perf, scalability, bandwidth, RAS, virtualization, security, cluster, latency, HPC, Web, Application, Database

About

BestPerf is the source of Oracle performance expertise. In this blog, Oracle's Strategic Applications Engineering group explores Oracle's performance results and shares best practices learned from working on Enterprise-wide Applications.

Index Pages
Search

Archives
« May 2016
SunMonTueWedThuFriSat
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
    
       
Today