Monday Oct 26, 2015

AES Encryption: SPARC T7-2 Beats x86 E5 v3

Oracle's cryptography benchmark measures security performance on important AES security modes. Oracle's SPARC M7 processor with its software in silicon security is faster than x86 servers that have the AES-NI instructions. In this test, the performance of on-processor encryption operations is measured (32 KB encryptions). Multiple threads are used to measure each processor's maximum throughput. Oracle's SPARC T7-2 server shows dramatically faster encryption compared to current x86 two processor servers.

  • SPARC M7 processors running Oracle Solaris 11.3 ran 4.0 times faster executing AES-CFB 256-bit key encryption (in cache) than Intel Xeon E5-2699 v3 processors (with AES-NI) running Oracle Linux 6.5.

  • SPARC M7 processors running Oracle Solaris 11.3 ran 3.7 times faster executing AES-CFB 128-bit key encryption (in cache) than Intel Xeon E5-2699 v3 processors (with AES-NI) running Oracle Linux 6.5.

  • SPARC M7 processors running Oracle Solaris 11.3 ran 6.4 times faster executing AES-CFB 256-bit key encryption (in cache) than the Intel Xeon E5-2697 v2 processors (with AES-NI) running Oracle Linux 6.5.

  • SPARC M7 processors running Oracle Solaris 11.3 ran 6.0 times faster executing AES-CFB 128-bit key encryption (in cache) than the Intel Xeon E5-2697 v2 processors (with AES-NI) running Oracle Linux 6.5.

  • AES-CFB encryption is used by Oracle Database for Transparent Data Encryption (TDE) which provides security for database storage.

Oracle has also measured SHA digest performance on the SPARC M7 processor.

Performance Landscape

Presented below are results for running encryption using the AES cipher with the CFB, CBC, GCM and CCM modes for key sizes of 128, 192 and 256. Decryption performance was similar and is not presented. Results are presented as MB/sec (10**6). All SPARC M7 processor results were run as part of this benchmark effort. All other results were run during previous benchmark efforts.

Encryption Performance – AES-CFB (used by Oracle Database)

Performance is presented for in-cache AES-CFB128 mode encryption. Multiple key sizes of 256-bit, 192-bit and 128-bit are presented. The encryption was performance on 32 KB of pseudo-random data (same data for each run).

AES-CFB
Microbenchmark Performance (MB/sec)
Processor GHz Chips Performance Software Environment
AES-256-CFB
SPARC M7 4.13 2 126,948 Oracle Solaris 11.3, libsoftcrypto + libumem
SPARC T5 3.60 2 53,794 Oracle Solaris 11.2, libsoftcrypto + libumem
Intel E5-2699 v3 2.30 2 31,924 Oracle Linux 6.5, IPP/AES-NI
Intel E5-2697 v2 2.70 2 19,964 Oracle Linux 6.5, IPP/AES-NI
AES-192-CFB
SPARC M7 4.13 2 144,299 Oracle Solaris 11.3, libsoftcrypto + libumem
SPARC T5 3.60 2 60,736 Oracle Solaris 11.2, libsoftcrypto + libumem
Intel E5-2699 v3 2.30 2 37,157 Oracle Linux 6.5, IPP/AES-NI
Intel E5-2697 v2 2.70 2 23,218 Oracle Linux 6.5, IPP/AES-NI
AES-128-CFB
SPARC M7 4.13 2 166,324 Oracle Solaris 11.3, libsoftcrypto + libumem
SPARC T5 3.60 2 68,691 Oracle Solaris 11.2, libsoftcrypto + libumem
Intel E5-2699 v3 2.30 2 44,388 Oracle Linux 6.5, IPP/AES-NI
Intel E5-2697 v2 2.70 2 27,755 Oracle Linux 6.5, IPP/AES-NI

Encryption Performance – AES-CBC

Performance is presented for in-cache AES-CBC mode encryption. Multiple key sizes of 256-bit, 192-bit and 128-bit are presented. The encryption was performance on 32 KB of pseudo-random data (same data for each run).

AES-CBC
Microbenchmark Performance (MB/sec)
Processor GHz Chips Performance Software Environment
AES-256-CBC
SPARC M7 4.13 2 134,278 Oracle Solaris 11.3, libsoftcrypto + libumem
SPARC T5 3.60 2 56,788 Oracle Solaris 11.2, libsoftcrypto + libumem
Intel E5-2699 v3 2.30 2 31,894 Oracle Linux 6.5, IPP/AES-NI
Intel E5-2697 v2 2.70 2 19,961 Oracle Linux 6.5, IPP/AES-NI
AES-192-CBC
SPARC M7 4.13 2 152,961 Oracle Solaris 11.3, libsoftcrypto + libumem
SPARC T5 3.60 2 63,937 Oracle Solaris 11.2, libsoftcrypto + libumem
Intel E5-2699 v3 2.30 2 37,021 Oracle Linux 6.5, IPP/AES-NI
Intel E5-2697 v2 2.70 2 23,224 Oracle Linux 6.5, IPP/AES-NI
AES-128-CBC
SPARC M7 4.13 2 175,151 Oracle Solaris 11.3, libsoftcrypto + libumem
SPARC T5 3.60 2 72,870 Oracle Solaris 11.2, libsoftcrypto + libumem
Intel E5-2699 v3 2.30 2 44,103 Oracle Linux 6.5, IPP/AES-NI
Intel E5-2697 v2 2.70 2 27,730 Oracle Linux 6.5, IPP/AES-NI

Encryption Performance – AES-GCM (used by ZFS Filesystem)

Performance is presented for in-cache AES-GCM mode encryption with authentication. Multiple key sizes of 256-bit, 192-bit and 128-bit are presented. The encryption/authentication was performance on 32 KB of pseudo-random data (same data for each run).

AES-GCM
Microbenchmark Performance (MB/sec)
Processor GHz Chips Performance Software Environment
AES-256-GCM
SPARC M7 4.13 2 74,221 Oracle Solaris 11.3, libsoftcrypto + libumem
SPARC T5 3.60 2 34,022 Oracle Solaris 11.2, libsoftcrypto + libumem
Intel E5-2697 v2 2.70 2 15,338 Oracle Solaris 11.1, libsoftcrypto + libumem
AES-192-GCM
SPARC M7 4.13 2 81,448 Oracle Solaris 11.3, libsoftcrypto + libumem
SPARC T5 3.60 2 36,820 Oracle Solaris 11.2, libsoftcrypto + libumem
Intel E5-2697 v2 2.70 2 15,768 Oracle Solaris 11.1, libsoftcrypto + libumem
AES-128-GCM
SPARC M7 4.13 2 86,223 Oracle Solaris 11.3, libsoftcrypto + libumem
SPARC T5 3.60 2 38,845 Oracle Solaris 11.2, libsoftcrypto + libumem
Intel E5-2697 v2 2.70 2 16,405 Oracle Solaris 11.1, libsoftcrypto + libumem

Encryption Performance – AES-CCM (alternative used by ZFS Filesystem)

Performance is presented for in-cache AES-CCM mode encryption with authentication. Multiple key sizes of 256-bit, 192-bit and 128-bit are presented. The encryption/authentication was performance on 32 KB of pseudo-random data (same data for each run).

AES-CCM
Microbenchmark Performance (MB/sec)
Processor GHz Chips Performance Software Environment
AES-256-CCM
SPARC M7 4.13 2 67,669 Oracle Solaris 11.3, libsoftcrypto + libumem
SPARC T5 3.60 2 28,909 Oracle Solaris 11.2, libsoftcrypto + libumem
Intel E5-2697 v2 2.70 2 19,447 Oracle Linux 6.5, IPP/AES-NI
AES-192-CCM
SPARC M7 4.13 2 77,711 Oracle Solaris 11.3, libsoftcrypto + libumem
SPARC T5 3.60 2 33,116 Oracle Solaris 11.2, libsoftcrypto + libumem
Intel E5-2697 v2 2.70 2 22,634 Oracle Linux 6.5, IPP/AES-NI
AES-128-CCM
SPARC M7 4.13 2 90,729 Oracle Solaris 11.3, libsoftcrypto + libumem
SPARC T5 3.60 2 38,529 Oracle Solaris 11.2, libsoftcrypto + libumem
Intel E5-2697 v2 2.70 2 26,951 Oracle Linux 6.5, IPP/AES-NI

Configuration Summary

SPARC T7-2 server
2 x SPARC M7 processor, 4.13 GHz
1 TB memory
Oracle Solaris 11.3

SPARC T5-2 server
2 x SPARC T5 processor, 3.60 GHz
512 GB memory
Oracle Solaris 11.2

Oracle Server X5-2 system
2 x Intel Xeon E5-2699 v3 processors, 2.30 GHz
256 GB memory
Oracle Linux 6.5

Sun Server X4-2 system
2 x Intel Xeon E5-2697 v2 processors, 2.70 GHz
256 GB memory
Oracle Linux 6.5

Benchmark Description

The benchmark measures cryptographic capabilities in terms of general low-level encryption, in-cache and on-chip using various ciphers, including AES-128-CFB, AES-192-CFB, AES-256-CFB, AES-128-CBC, AES-192-CBC, AES-256-CBC, AES-128-CCM, AES-192-CCM, AES-256-CCM, AES-128-GCM, AES-192-GCM and AES-256-GCM.

The benchmark results were obtained using tests created by Oracle which use various application interfaces to perform the various ciphers. They were run using optimized libraries for each platform to obtain the best possible performance. The encryption tests were run with pseudo-random data of size 32 KB. The benchmark tests were designed to run out of cache, so memory bandwidth and latency are not the limitations.

See Also

Disclosure Statement

Copyright 2015, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 10/25/2015.

SHA Digest Encryption: SPARC T7-2 Beats x86 E5 v3

Oracle's cryptography benchmark measures security performance on important Secure Hash Algorithm (SHA) functions. Oracle's SPARC M7 processor with its security software in silicon is faster than current and recent x86 servers. In this test, the performance of on-processor digest operations is measured for three sizes of plaintext inputs (64, 1024 and 8192 bytes) using three SHA2 digests (SHA512, SHA384, SHA256) and the older, weaker SHA1 digest. Multiple parallel threads are used to measure each processor's maximum throughput. Oracle's SPARC T7-2 server shows dramatically faster digest computation compared to current x86 two processor servers.

  • SPARC M7 processors running Oracle Solaris 11.3 ran 17 times faster computing multiple parallel SHA512 digests of 8 KB inputs (in cache) than Cryptography for Intel Integrated Performance Primitives for Linux (library) on Intel Xeon E5-2699 v3 processors running Oracle Linux 6.5.

  • SPARC M7 processors running Oracle Solaris 11.3 ran 14 times faster computing multiple parallel SHA256 digests of 8 KB inputs (in cache) than Cryptography for Intel Integrated Performance Primitives for Linux (library) on Intel Xeon E5-2699 v3 processors running Oracle Linux 6.5.

  • SPARC M7 processors running Oracle Solaris 11.3 ran 4.8 times faster computing multiple parallel SHA1 digests of 8 KB inputs (in cache) than Cryptography for Intel Integrated Performance Primitives for Linux (library) on Intel Xeon E5-2699 v3 processors running Oracle Linux 6.5.

  • SHA1 and SHA2 operations are an integral part of Oracle Solaris, while on Linux they are performed using the add-on Cryptography for Intel Integrated Performance Primitives for Linux (library).

Oracle has also measured AES (CFB, GCM, CCM, CBC) cryptographic performance on the SPARC M7 processor.

Performance Landscape

Presented below are results for computing SHA1, SHA256, SHA384 and SHA512 digests for input plaintext sizes of 64, 1024 and 8192 bytes. Results are presented as MB/sec (10**6). All SPARC M7 processor results were run as part of this benchmark effort. All other results were run during previous benchmark efforts.

Digest Performance – SHA512

Performance is presented for SHA512 digest. The digest was computed for 64, 1024 and 8192 bytes of pseudo-random input data (same data for each run).

Processors Performance (MB/sec)
64B input 1024B input 8192B input
2 x SPARC M7, 4.13 GHz 39,201 167,072 184,944
2 x SPARC T5, 3.6 GHz 18,717 73,810 78,997
2 x Intel Xeon E5-2699 v3, 2.3 GHz 3,949 9,214 10,681
2 x Intel Xeon E5-2697 v2, 2.7 GHz 2,681 6,631 7,701

Digest Performance – SHA384

Performance is presented for SHA384 digest. The digest was computed for 64, 1024 and 8192 bytes of pseudo-random input data (same data for each run).

Processors Performance (MB/sec)
64B input 1024B input 8192B input
2 x SPARC M7, 4.13 GHz 39,697 166,898 185,194
2 x SPARC T5, 3.6 GHz 18,814 73,770 78,997
2 x Intel Xeon E5-2699 v3, 2.3 GHz 4,061 9,263 10,678
2 x Intel Xeon E5-2697 v2, 2.7 GHz 2,774 6,669 7,706

Digest Performance – SHA256

Performance is presented for SHA256 digest. The digest was computed for 64, 1024 and 8192 bytes of pseudo-random input data (same data for each run).

Processors Performance (MB/sec)
64B input 1024B input 8192B input
2 x SPARC M7, 4.13 GHz 45,148 113,648 119,929
2 x SPARC T5, 3.6 GHz 21,140 49,483 51,114
2 x Intel Xeon E5-2699 v3, 2.3 GHz 3,446 7,785 8,463
2 x Intel Xeon E5-2697 v2, 2.7 GHz 2,404 5,570 6,037

Digest Performance – SHA1

Performance is presented for SHA1 digest. The digest was computed for 64, 1024 and 8192 bytes of pseudo-random input data (same data for each run).

Processors Performance (MB/sec)
64B input 1024B input 8192B input
2 x SPARC M7, 4.13 GHz 47,640 92,515 97,545
2 x SPARC T5, 3.6 GHz 21,052 40,107 41,584
2 x Intel Xeon E5-2699 v3, 2.3 GHz 6,677 18,165 20,405
2 x Intel Xeon E5-2697 v2, 2.7 GHz 4,649 13,245 14,842

Configuration Summary

SPARC T7-2 server
2 x SPARC M7 processor, 4.13 GHz
1 TB memory
Oracle Solaris 11.3

SPARC T5-2 server
2 x SPARC T5 processor, 3.60 GHz
512 GB memory
Oracle Solaris 11.2

Oracle Server X5-2 system
2 x Intel Xeon E5-2699 v3 processors, 2.30 GHz
256 GB memory
Oracle Linux 6.5
Intel Integrated Performance Primitives for Linux, Version 8.2 (Update 1) 07 Nov 2014

Sun Server X4-2 system
2 x Intel Xeon E5-2697 v2 processors, 2.70 GHz
256 GB memory
Oracle Linux 6.5
Intel Integrated Performance Primitives for Linux, Version 8.2 (Update 1) 07 Nov 2014

Benchmark Description

The benchmark measures cryptographic capabilities in terms of general low-level encryption, in-cache and on-chip using various digests, including SHA1 and SHA2 (SHA256, SHA384, SHA512).

The benchmark results were obtained using tests created by Oracle which use various application interfaces to perform the various digests. They were run using optimized libraries for each platform to obtain the best possible performance. The encryption tests were run with pseudo-random data of sizes 64 bytes, 1024 bytes and 8192 bytes. The benchmark tests were designed to run out of cache, so memory bandwidth and latency are not the limitations.

See Also

Disclosure Statement

Copyright 2015, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 10/25/2015.

SPECvirt_sc2013: SPARC T7-2 World Record for 2 and 4 Chip Systems

Oracle has had a new result accepted by SPEC as of November 19, 2015. This new result may be found here.

Oracle's SPARC T7-2 server delivered a world record SPECvirt_sc2013 result for systems with two to four chips.

  • The SPARC T7-2 server produced a result of 3026 @ 168 VMs SPECvirt_sc2013.

  • The two-chip SPARC T7-2 server beat the best two-chip x86 Intel E5-2699 v3 server results by nearly 1.9 times (Huawei FusionServer RH2288H V3, HP ProLiant DL360 Gen9).

  • The two-chip SPARC T7-2 server delivered nearly 2.2 times the performance of the four-chip IBM Power System S824 server solution which used 3.5 GHz POWER8 six core chips.

  • The SPARC T7-2 server running Oracle Solaris 11.3 operating system, utilizes embedded virtualization products as the Oracle Solaris 11 zones, which in turn provide a low overhead, flexible, scalable and manageable virtualization environment.

  • The SPARC T7-2 server result used Oracle VM Server for SPARC 3.3 and Oracle Solaris Zones providing a flexible, scalable and manageable virtualization environment.

Performance Landscape

Complete benchmark results are at the SPEC website, SPECvirt_sc2013 Results. The following table highlights the leading two-, and four-chip results for the benchmark, bigger is better.

SPECvirt_sc2013
Leading Two to Four-Chip Results
System
Processor
Chips Result @ VMs Virtualization Software
SPARC T7-2
SPARC M7 (4.13 GHz, 32core)
2 3026 @ 168 Oracle VM Server for SPARC 3.3
Oracle Solaris Zones
HP DL580 Gen9
Intel E7-8890 v3 (2.5 GHz, 18core)
4 3020 @ 168 Red Hat Enterprise Linux 7.1 KVM
Lenovo System x3850 X6
Intel E7-8890 v3 (2.5 GHz, 18core)
4 2655 @ 147 Red Hat Enterprise Linux 6.6 KVM
Huawei FusionServer RH2288H V3
Intel E5-2699 v3 (2.3 GHz, 18core)
2 1616 @ 95 Huawei FusionSphere V1R5C10
HP DL360 Gen9
Intel E5-2699 v3 (2.3 GHz, 18core)
2 1614 @ 95 Red Hat Enterprise Linux 7.1 KVM
IBM Power S824
POWER8 (3.5 GHz, 6core)
4 1370 @ 79 PowerVM Enterprise Edition 2.2.3

Configuration Summary

System Under Test Highlights:

Hardware:
1 x SPARC T7-2 server, with
2 x 4.13 GHz SPARC M7
1 TB memory
2 Sun Dual Port 10GBase-T Adapter
2 Sun Storage Dual 16 Gb Fibre Channel PCIe Universal HBA

Software:
Oracle Solaris 11.3
Oracle VM Server for SPARC 3.3 (LDom)
Oracle Solaris Zones
Oracle iPlanet Web Server 7.0.20
Oracle PHP 5.3.29
Dovecot v2.2.18
Oracle WebLogic Server Standard Edition Release 10.3.6
Oracle Database 12c Enterprise Edition (12.1.0.2.0)
Java HotSpot(TM) 64-Bit Server VM on Solaris, version 1.7.0_85-b15

Storage:
3 x Oracle Server X5-2L, with
2 x Intel Xeon Processor E5-2630 v3 8-core 2.4 GHz
32 GB memory
4 x Oracle Flash Accelerator F160 PCIe Card
Oracle Solaris 11.3

1 x Oracle Server X5-2L, with
2 x Intel Xeon Processor E5-2630 v3 8-core 2.4 GHz
32 GB memory
4 x Oracle Flash Accelerator F160 PCIe Card
4x 400 GB SSDs
Oracle Solaris 11.3

Benchmark Description

SPECvirt_sc2013 is SPEC's updated benchmark addressing performance evaluation of datacenter servers used in virtualized server consolidation. SPECvirt_sc2013 measures the end-to-end performance of all system components including the hardware, virtualization platform, and the virtualized guest operating system and application software. It utilizes several SPEC workloads representing applications that are common targets of virtualization and server consolidation. The workloads were made to match a typical server consolidation scenario of CPU resource requirements, memory, disk I/O, and network utilization for each workload. These workloads are modified versions of SPECweb2005, SPECjAppServer2004, SPECmail2008, and SPEC CPU2006. The client-side SPECvirt_sc2013 harness controls the workloads. Scaling is achieved by running additional sets of virtual machines, called "tiles", until overall throughput reaches a peak.

Key Points and Best Practices

  • The SPARC T7-2 server running the Oracle Solaris 11.3, utilizes embedded virtualization products as the Oracle VM Server for SPARC and Oracle Solaris Zones, which provide a low overhead, flexible, scalable and manageable virtualization environment.

  • In order to provide a high level of data integrity and availability, all the benchmark data sets are stored on mirrored (RAID1) storage

  • Using Oracle VM Server for SPARC to bind the SPARC M7 processor with its local memory optimized system memory use in this virtual environment.

See Also

Disclosure Statement

SPEC and the benchmark name SPECvirt_sc are registered trademarks of the Standard Performance Evaluation Corporation. Results from www.spec.org as of 10/25/2015. SPARC T7-2, SPECvirt_sc2013 3026@168 VMs; HP DL580 Gen9, SPECvirt_sc2013 3020@168 VMs; Lenovo x3850 X6; SPECvirt_sc2013 2655@147 VMs; Huawei FusionServer RH2288H V3, SPECvirt_sc2013 1616@95 VMs; HP ProLiant DL360 Gen9, SPECvirt_sc2013 1614@95 VMs; IBM Power S824, SPECvirt_sc2013 1370@79 VMs.

Live Migration: SPARC T7-2 Oracle VM Server for SPARC Performance

One of the features that Oracle VM Server for SPARC offers is Live Migration, which is the process of securely moving an active logical domain (LDom, Virtual Machine) between different physical machines while maintaining application services to users. Memory, storage, and network connectivity of the logical domain are transferred from the original logical domain's machine to the destination target machine with all data compressed and encrypted.

  • Oracle's Live Migration is secure by default using SSL (AES256_GCM_SHA384) to encrypt migration network traffic to protect sensitive data from exploitation and to eliminate the requirement for additional hardware and dedicated networks. Additional authentication schemes can be set up to increase security for the source and target machines. VMware vMotion and IBM PowerVM do not support Secure Live Migration by default (see below).

  • An enterprise Java workload with a 74 GB footprint in a 128 GB VM running on Oracle's SPARC T7-2 server migrated to another SPARC T7-2 server in just 95 seconds with 30 seconds suspension time to the user.

Performance Landscape

Results from moving an active workload as well as two different idle workloads. The LDom was allocated 128 GB of memory.

Mission-Critical LDom Live Migration
Benchmark Test Total Migration
Time (sec)
Data Moved
(GB)
Network Bandwidth
(MB/sec)
Enterprise Java Workload/Active 95 74.3 835.3
After Active Workload/Idle 13 1.9 236.1
Out of the Box/Idle 13 1.1 135.4

Enterprise Java Workload Performance
Test Conditions Average Operations per Second
During Live Migration 347,370
No Migration 596,914

Configuration Summary

2 x SPARC T7-2
2 x SPARC M7 processors (4.13 GHz)
512 GB memory (32 x 16 GB DDR4-2133 DIMMs)
6 x 600 GB 10K RPM SAS-2 HDD
10 GbE (built-in network device)
Oracle Solaris 11.3 (11.3.0.26.0)
Oracle VM Server for SPARC ( LDoms v 3.3.0.0 Integration 17 )

The configuration of the LDoms on the source machine is:

Source Machine Configuration
LDom vcpus Memory
Primary/control 128 (16-cores) 128 GB
Guest0 128 (16-cores) 110 GB
Guest1 (Migration) 128 (16-cores) 128 GB
Guest2 128 (16-cores) 110 GB

The configuration of the LDoms on the target machine is:

Target Machine Configuration
LDom vcpus Memory
Primary/control 128 (16-cores) 128 GB

Benchmark Description

By running a Java workload on a logical domain and start a Live Migration process to move this logical domain to a target machine, the values of the major performance metrics of live migration can be measured:

  • Total Migration Time ( the total time it takes to migrate a logical domain ) .
  • Effect on Application Performance ( how much an application's performance degrades because of being migrated ) .

The number of logical domains on the source machine is three (Guest0, Guest1, Guest3) because it could represent a more realistic environment where all the source machine resources (vcpus and memory) are in use, by running the same Java workload on each LDom.

Three different experiments are run:

  • Enterprise Java Workload/Active: starting the same Java workload at the same time on three logical domains (Guest0, Guest1, and Guest2), the Live Migration of Guest1 is executed after an arbitrary amount of time.
  • After Active Workload/Idle: after running a Java workload on three logical domains (Guest0, Guest1, and Guest2), so the memory of each has been touched, and no workload is running on any of them, the Live Migration of Guest1 is executed.
  • Out of the Box/Idle: as soon as the three logical domains are installed or rebooted (Guest0, Guest1, and Guest2) with Oracle Solaris and no workload is running on any of them, the Live Migration of Guest1 is executed.

Key Points and Best Practices

  • The network interconnection between the primaries on source and target machines is 10 GbE built-in network device configured to use Jumbo Frames (MTU=9000) in order to get higher bandwidth during the live migration.

  • The Enterprise Java Workload Performance on the non-migrated logical domains (Guest0, Guest2) was not affected before, during, and after the live migration of Guest1.

  • IBM PowerVM does not support Secure Live Migration by default; the IBM's technology name is Live Partition Mobility and it can be found on Cloud Security Guidelines for IBM Power Systems, January 2015, pp 89 "4.10.1 Live Partition Mobility".

See Also

Disclosure Statement

Copyright 2015, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 25 October 2015.

ZFS Encryption: SPARC T7-1 Performance

Oracle's SPARC T7-1 server can encrypt/decrypt at near clear text throughput. The SPARC T7-1 server can encrypt/decrypt on the fly and have CPU cycles left over for the application.

  • The SPARC T7-1 server performed 475,123 Clear 8k read IOPs. With AES-256-CCM enabled on the file syste, 8K read IOPS only drop 3.2% to 461,038.

  • The SPARC T7-1 server performed 461,038 AES-256-CCM 8K read IOPS and a two-chip x86 E5-2660 v3 server performed 224,360 AES-256-CCM 8K read IOPS. The SPARC M7 processor result is 4.1 times faster per chip.

  • The SPARC T7-1 server performed 460,600 AES-192-CCM 8K read IOPS and a two chip x86 E5-2660 v3 server performed 228,654 AES-192-CCM 8K read IOPS. The SPARC M7 processor result is 4.0 times faster per chip.

  • The SPARC T7-1 server performed 465,114 AES-128-CCM 8K read IOPS and a two chip x86 E5-2660 v3 server performed 231,911 AES-128-CCM 8K read IOPS. The SPARC M7 processor result is 4.0 times faster per chip.

  • The SPARC T7-1 server performed 475,123 clear text 8K read IOPS and a two chip x86 E5-2660 v3 server performed 438,483 clear text 8K read IOPS The SPARC M7 processor result is 2.2 times faster per chip.

Performance Landscape

Results presented below are for random read performance for 8K size. All of the following results were run as part of this benchmark effort.

Read Performance – 8K
Encryption SPARC T7-1 2 x E5-2660 v3
IOPS Resp Time % Busy IOPS Resp Time % Busy
Clear 475,123 0.8 msec 43% 438,483 0.8 msec 95%
AES-256-CCM 461,038 0.83 msec 56% 224,360 1.6 msec 97%
AES-192-CCM 465,114 0.83 msec 56% 228,654 1.5 msec 97%
AES-128-CCM 465,114 0.82 msec 57% 231,911 1.5 msec 96%

IOPS – IO operations per second
Resp Time – response time
% Busy – percent cpu usage

Configuration Summary

SPARC T7-1 server
1 x SPARC M7 processor (4.13 GHz)
256 GB memory (16 x 16 GB)
Oracle Solaris 11.3
4 x StorageTek 8 Gb Fibre Channel PCIe HBA

Oracle Server X5-2L system
2 x Intel Xeon Processor E5-2660 V3 (2.60 GHz)
256 GB memory
Oracle Solaris 11.3
4 x StorageTek 8 Gb Fibre Channel PCIe HBA

Storage SAN
2 x Brocade 300 FC switches
2 x Sun Storage 6780 array with 64 disk drives / 16 GB Cache

Benchmark Description

The benchmark tests the performance of running an encrypted ZFS file system compared to the non-encrypted (clear text) ZFS file system. The tests were executed with Oracle's Vdbench tool Version 5.04.03. Three different encryption methods are tested, AES-256-CCM, AES-192-CCM and AES-128-CCM.

Key Points and Best Practices

  • The ZFS file system was configured with data cache disabled, meta cache enabled, 4 pools, 128 luns, and 192 file systems with 8K record size. Data cache was disable to insure data would be decrypted as it was read from storage. This is not a recommended setting for normal customer operations.

  • The tests were executed with Oracle's Vdbench tool against 192 file systems. Each file system was run with a queue depth of 2. The script used for testing is listed below.

  • hd=default,jvms=16
    sd=sd001,lun=/dev/zvol/rdsk/p1/vol001,size=5g,hitarea=100m
    sd=sd002,lun=/dev/zvol/rdsk/p1/vol002,size=5g,hitarea=100m
    #
    # sd003 through sd191 statements here
    #
    sd=sd192,lun=/dev/zvol/rdsk/p4/vol192,size=5g,hitarea=100m
    
    # VDBENCH work load definitions for run
    # Sequential write to fill storage.
    wd=swrite1,sd=sd*,readpct=0,seekpct=eof
    
    # Random Read work load.
    wd=rread,sd=sd*,readpct=100,seekpct=random,rhpct=100
    
    # VDBENCH Run Definitions for actual execution of load.
    rd=default,iorate=max,elapsed=3h,interval=10
    rd=seqwritewarmup,wd=swrite1,forxfersize=(1024k),forthreads=(16) 
    
    rd=default,iorate=max,elapsed=10m,interval=10
    
    rd=rread8k-50,wd=rread,forxfersize=(8k),iorate=curve, \
    curve=(95,90,80,70,60,50),forthreads=(2)
    

See Also

Disclosure Statement

Copyright 2015, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 10/25/2015.

Virtualized Storage: SPARC T7-1 Performance

Oracle's SPARC T7-1 server using SR-IOV enabled HBAs can achieve near native throughput. The SPARC T7-1 server, with its dramatically improved compute engine, can also achieve near native throughput with Virtual Disk (VDISK).

  • The SPARC T7-1 server is able to produce 604,219 8K read IO/Second (IOPS) with native Oracle Solaris 11.3 using 8 Gb FC HBAs. The SPARC T7-1 server using Oracle VM Server for SPARC 3.1 with 4 LDOM VDISK produced near native performance of 603,766 8K read IOPS. With SR-IOV enabled using 2 LDOMs, the SPARC T7-1 server produced 604,966 8K read IOPS.

  • The SPARC T7-1 server running Oracle VM Server for SPARC 3.1 ran 2.8 times faster virtualized IO throughput than a Sun Server X3-2L system (two Intel Xeon E5-2690, running a popular virtualization product). The virtualized x86 system produced 209,166 8K virtualized reads. The native performance of the x86 system was 338,458 8K read IOPS.

  • The SPARC T7-1 server is able to produce 891,025 4K Read IOPS with native Oracle Solaris 11.3 using 8 Gb FC HBAs. The SPARC T7-1 server using Oracle VM Server for SPARC 3.1 with 4 LDOM VDISK produced near native performance of 849,493 4K read IOPS. With SR-IOV enabled using 2 LDOMs, the SPARC T7-1 server produced 891,338 4K read IOPS.

  • The SPARC T7-1 server running Oracle VM Server for SPARC 3.1 ran 3.8 times faster virtualized IO throughput than a Sun Server X3-2L system (Intel Xeon E5-2690, running a popular virtualization product). The virtualized x86 system produced 219,830 4K virtualized reads. The native performance of the x86 system was 346,868 4K read IOPS.

  • The SPARC T7-1 server running Oracle VM Server for SPARC 3.1 ran 1.3 times faster with 16 Gb HBA compared to 8 Gb HBAs. This is quite impressive considering it was still attached to 8 Gb switches and storage.

Performance Landscape

Results presented below are for read performance for 8K size and then for 4K size. All of the following results were run as part of this benchmark effort.

Read Performance — 8K

System 8K Read IOPS Performance
Native Virtual Disk SR-IOV
SPARC T7-1 (16 Gb FC) 796,849 N/A 797,221
SPARC T7-1 (8 Gb FC) 604,219 603,766 604,966
Sun Server X3-2 (8 Gb FC) 338,458 209,166 N/A

Read Performance — 4K

System 4K Read IOPS Performance
Native Virtual Disk SR-IOV
SPARC T7-1 (16 Gb FC) 1,185,392 N/A 1,231,808
SPARC T7-1 (8 Gb FC) 891,025 849,493 891,338
Sun Server X3-2 (8 Gb FC) 346,868 219,830 N/A

Configuration Summary

SPARC T7-1 server
1 x SPARC M7 processor (4.13 GHz)
256 GB memory (16 x 16 GB)
Oracle Solaris 11.3
Oracle VM Server for SPARC 3.1
4 x Sun Storage 16 Gb Fibre Channel PCIe Universal FC HBA, Qlogic
4 x StorageTek 8 Gb Fibre Channel PCIe HBA

Sun Server X3-2 system
2 x Intel Xeon Processor E5-2690 (2.90 GHz)
128 GB memory
Oracle Solaris 11.2
Popular Virtualization Software
4 x StorageTek 8 Gb Fibre Channel PCIe HBA

Storage SAN
Brocade 5300 Switch
2 x Sun Storage 6780 array with 64 disk drives / 16 GB Cache
2 x Sun Storage 2540-M2 arrays with 36 disk drives / 1.5 GB Cache

Benchmark Description

The benchmark tests operating system IO efficiency of native and virtual machine environments. The test accesses storage devices raw and with no operating system buffering. The storage space accessed fit within the cache controller on the storage arrays for low latency and highest throughput. All accesses were random 4K or 8K reads.

Tests were executed with Oracle's Vdbench Version 5.04.03 tool against 32 LUNs. Each LUN was run with a queue depth of 32.

See Also

Disclosure Statement

Copyright 2015, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 10/25/2015.

Oracle Internet Directory: SPARC T7-2 World Record

Oracle's SPARC T7-2 server running Oracle Internet Directory (OID, Oracle's LDAP Directory Server) on Oracle Solaris 11 on a virtualized processor configuration achieved a record result on the Oracle Internet Directory benchmark.

  • The SPARC T7-2 server, virtualized to use a single processor, achieved world record performance running Oracle Internet Directory benchmark with 50M users.

  • The SPARC T7-2 server and Oracle Internet Directory using Oracle Database 12c running on Oracle Solaris 11 achieved record result of 1.18M LDAP searches/sec with an average latency of 0.85 msec with 1000 clients.

  • The SPARC T7 server demonstrated 25% better throughput and 23% better latency for LDAP search/sec over similarly configured SPARC T5 server benchmark environment.

  • Oracle Internet Directory achieved near linear scalability on the virtualized single processor domain on the SPARC T7-2 server with 79K LDAP searches/sec with 2 cores to 1.18M LDAP searches/sec with 32 cores.

  • Oracle Internet Directory and the virtualized single processor domain on the SPARC T7-2 server achieved up to 22,408 LDAP modify/sec with an average latency of 2.23 msec for 50 clients.

Performance Landscape

A virtualized single SPARC M7 processor in a SPARC T7-2 server was used for the test results presented below. The SPARC T7-2 server and SPARC T5-2 server results were run as part of this benchmark effort. The remaining results were part of a previous benchmark effort.

Oracle Internet Directory Tests
System chips/
cores
Search Modify Add
ops/sec lat (msec) ops/sec lat (msec) ops/sec lat (msec)
SPARC T7-2 1/32 1,177,947 0.85 22,400 2.2 1,436 11.1
SPARC T5-2 2/32 944,624 1.05 16,700 2.9 1,000 15.95
SPARC T4-4 4/32 682,000 1.46 12,000 4.0 835 19.0

Scaling runs were also made on the virtualized single processor domain on the SPARC T7-2 server.

Scaling of Search Tests – SPARC T7-2, One Processor
Cores Clients ops/sec Latency (msec)
32 1000 1,177,947 0.85
24 1000 863,343 1.15
16 500 615,563 0.81
8 500 280,029 1.78
4 100 156,114 0.64
2 100 79,300 1.26

Configuration Summary

System Under Test:

SPARC T7-2
2 x SPARC M7 processors, 4.13 GHz
512 GB memory
6 x 600 GB internal disks
1 x Sun Storage ZS3-2 (used for database and log files)
Flash storage (used for redo logs)
Oracle Solaris 11.3
Oracle Internet Directory 11g Release 1 PS7 (11.1.1.7.0)
Oracle Database 12c Enterprise Edition 12.1.0.2 (64-bit)

Benchmark Description

Oracle Internet Directory (OID) is Oracle's LDAPv3 Directory Server. The throughput for five key operations are measured — Search, Compare, Modify, Mix and Add.

LDAP Search Operations Test

This test scenario involved concurrent clients binding once to OID and then performing repeated LDAP Search operations. The salient characteristics of this test scenario is as follows:

  • SLAMD SearchRate job was used.
  • BaseDN of the search is root of the DIT, the scope is SUBTREE, the search filter is of the form UID=, DN and UID are the required attribute.
  • Each LDAP search operation matches a single entry.
  • The total number concurrent clients was 1000 and were distributed amongst two client nodes.
  • Each client binds to OID once and performs repeated LDAP Search operations, each search operation resulting in the lookup of a unique entry in such a way that no client looks up the same entry twice and no two clients lookup the same entry and all entries are searched randomly.
  • In one run of the test, random entries from the 50 Million entries are looked up in as many LDAP Search operations.
  • Test job was run for 60 minutes.

LDAP Compare Operations Test

This test scenario involved concurrent clients binding once to OID and then performing repeated LDAP Compare operations on userpassword attribute. The salient characteristics of this test scenario is as follows:

  • SLAMD CompareRate job was used.
  • Each LDAP compare operation matches user password of user.
  • The total number concurrent clients was 1000 and were distributed amongst two client nodes.
  • Each client binds to OID once and performs repeated LDAP compare operations.
  • In one run of the test, random entries from the 50 Million entries are compared in as many LDAP compare operations.
  • Test job was run for 60 minutes.

LDAP Modify Operations Test

This test scenario consisted of concurrent clients binding once to OID and then performing repeated LDAP Modify operations. The salient characteristics of this test scenario is as follows:

  • SLAMD LDAP modrate job was used.
  • A total of 50 concurrent LDAP clients were used.
  • Each client updates a unique entry each time and a total of 50 Million entries are updated.
  • Test job was run for 60 minutes.
  • Value length was set to 11.
  • Attribute that is being modified is not indexed.

LDAP Mixed Load Test

The test scenario involved both the LDAP search and LDAP modify clients enumerated above.

  • The ratio involved 60% LDAP search clients, 30% LDAP bind and 10% LDAP modify clients.
  • A total of 1000 concurrent LDAP clients were used and were distributed on 2 client nodes.
  • Test job was run for 60 minutes.

LDAP Add Load Test

The test scenario involved concurrent clients adding new entries as follows.

  • Slamd standard add rate job is used.
  • A total of 500,000 entries were added.
  • A total of 16 concurrent LDAP clients were used.
  • Slamd add's inetorgperson objectclass entry with 21 attributes (includes operational attributes).

See Also

Disclosure Statement

Copyright 2015, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 25 October 2015.

Oracle Stream Explorer DDOS Attack: SPARC T7-4 World Record

A single processor of Oracle's SPARC T7-4 server achieved a world record result running an Oracle Stream Explorer platform benchmark. The Oracle Stream Explorer platform is used to process multiple event streams to detect patterns and trends in real time. The benchmark detects malicious IP addresses that cause a distributed denial of service (DDOS) attack.

  • A single SPARC M7 processor of a SPARC T7-4 server running Oracle Stream Explorer achieved a throughput result of 1.505 million ops/sec.

  • The SPARC M7 processor achieved 2.9 times the throughput of an x86 Intel Xeon Processor E7-8895 v3 based server.

Performance Landscape

All of the following results were run as part of this benchmark effort.

Oracle Stream Explorer Throughput Test
One Processor Performance
System Throughput
SPARC T7-4 1.505 M ops/sec
Oracle Server X5-4 0.522 M ops/sec

Configuration Summary

SPARC Server:

SPARC T7-4
4 x SPARC M7 processors
1 TB memory
Oracle Solaris 11.3
Oracle Stream Explorer 11.1.1.7 (PS6)
Oracle JDK 6

x86 Server:

Oracle Server X5-4
4 x Intel Xeon Processor E7-8895 v3
1 TB memory
Oracle Solaris 11.3
Oracle Stream Explorer 11.1.1.7 (PS6)
Oracle JDK 6

Benchmark Description

The benchmark detects malicious IP addresses that cause a distributed denial of service (DDOS) attack on a system. The benchmark determines which IP address sent the most packets. The benchmark has a dedicated load generator program for each Oracle Stream Explorer platform instance.

The Oracle Stream Explorer platform instance is always in a listening mode. When it receives data on its network socket, it starts incrementing the packet counter. Different Oracle Stream Explorer platform instances are deployed on different network sockets. The packet counter is printed out in regular intervals as the throughput for benchmarking purposes.

Key Points and Best Practices

  • The load generator was run on the system under test. One processor was used for the event processing, the other processors were used for the load generation.

  • On the SPARC T7-4 server, three SPARC M7 processors were assigned the task of running the 200 load generators. This was accomplished using the psrset command.

  • On the Oracle Server X5-4 system, three Intel Xeon Processor E7-8895 v3 were assigned the task of running the 36 load generators.

  • Only 25 cores of the SPARC M7 processor were required to satisfy the workload. The 200 Oracle Stream Explorer applications were bound eight per core.

  • All 18 cores of the Intel Xeon Processor E7-8895 v3 were required to satisfy the workload. The 36 Oracle Stream Explorer applications were bound two per core.

See Also

Disclosure Statement

Copyright 2015, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 25 October 2015.

Oracle FLEXCUBE Universal Banking: SPARC T7-1 World Record

Oracle's SPARC T7-1 servers running Oracle FLEXCUBE Universal Banking Release 12 along with Oracle Database 12c Enterprise Edition with Oracle Real Application Clusters on Oracle Solaris 11 produced record results for two processor solutions.

  • Two SPARC T7-1 servers each running Oracle FLEXCUBE Universal Banking Release 12 (v 12.0.1) and Oracle Real Application Clusters 12c database on Oracle Solaris 11 achieved record End of Year batch processing of 25 million accounts with 200 branches in 4 hrs 34 minutes (total of two processors).

  • A single SPARC T7-1 server running Oracle FLEXCUBE Universal Banking Release 12 processing 100 branches was able to complete the workload in similar time as the two node 200 branches End of Year workload, demonstrating good scaling of the application.

  • The customer representative workload for all 25 million accounts included saving accounts, current accounts, loans and TD accounts were created on the basis 25 million Customer IDs with 200 branches.

  • Oracle's SPARC M7 and T7 Servers running Oracle Solaris 11 with built-in Silicon Secured Memory with Oracle Database 12c can benefit global retail and corporate financial institutions who are running Oracle FLEXCUBE Universal Banking Release 12. The uniquely co-engineered Oracle software and hardware unlock unique agile capabilities demanded by modern business environments.

  • The SPARC T7-1 system and Oracle Solaris are able to provide a combination of uniquely essential characteristics that resonate with core values for a modern financial services institution.

  • The SPARC M7 processor based systems are capable of delivering higher performance and lower total cost of ownership (TCO) than older SPARC infrastructure, without introducing the unseen tax and risk of migrating applications away from older SPARC systems.

Performance Landscape

Oracle FLEXCUBE Universal Banking Release 12
End of Year Batch Processing
System Branches Time in Minutes
2 x SPARC T7-1 200 274 (min)
1 x SPARC T7-1 100 268 (min)

Configuration Summary

Systems Under Test:

2 x SPARC T7-1 each with
1 x SPARC M7 processor, 4.13 GHz
256 GB memory
Oracle Solaris 11.3 (11.3.0.27.0)
Oracle Database 12c (RAC/ASM 12.1.0.2 BP7)
Oracle FLEXCUBE Universal Banking Release 12

Storage Configuration:

Oracle ZFS Storage ZS4-4 appliance

Benchmark Description

The Oracle FLEXCUBE Universal Banking Release 12 benchmark models an actual customer bank with End of Cycle transaction batch jobs which typically execute during non-banking hours. This benchmark includes accrual for savings and term deposit accounts, interest capitalization for saving accounts, interest pay out for term deposit accounts and consumer load processing.

This benchmark helps banks refine their infrastructure requirements for the volumes and scale of operations for business expansion. The end of cycle can be year, month or day, with year having the most processing followed by month and then day.

See Also

Disclosure Statement

Copyright 2015, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 25 October 2015.

PeopleSoft Human Capital Management 9.1 FP2: SPARC M7-8 World Record

This result demonstrates how Oracle's SPARC M7-8 server using Oracle VM Server for SPARC (LDoms) provides mission critical enterprise virtualization.

  • The virtualized two-chip, 1 TB LDom of the SPARC M7-8 server set a world record two-chip PeopleSoft Human Capital Management (HCM) 9.1 FP2 benchmark result, supporting 35,000 HR Self-Service online users with response times under one second, while simultaneously running the Payroll batch workload.

  • The virtualized two-chip LDom of the SPARC M7-8 server demonstrated 4 times better Search and 6 times better Save average response times running nearly double the number of online users along with payroll batch, compared to the ten-chip x86 solution from Cisco.

  • Using only a single chip in the virtualized two-chip LDom on the SPARC M7-8 server, the batch-only run demonstrated 1.8 times better throughput (payments/hour) compared to a four-chip Cisco UCSB460 M4 server.

  • Using only a single chip in the virtualized two-chip LDom on the SPARC M7-8 server, the batch-only run demonstrated 2.3 times better throughput (payments/hour) compared to a nine-chip IBM zEnterprise z196 server (EC 2817-709, 9-way, 8943 MIPS).

  • This record result demonstrates that a two SPARC M7 processor LDom (in SPARC M7-8), can run the same number of online users as a dynamic domain (PDom) of eight SPARC M6 processors (in SPARC M6-32), with better online response times, batch elapsed times and batch throughput (payments/hour).

  • The SPARC M7-8 server provides enterprise applications high availability and security, where each application is executed on its own environment independent of the others.

Performance Landscape

The first table presents the combined results, running both the PeopleSoft HR Self-Service Online and Payroll Batch tests concurrently.

PeopleSoft HR Self-Service Online And Payroll Batch Using Oracle Database 11g
System
Processors
Chips
Used
Users Search/Save Batch Elapsed
Time
Batch Pay/Hr
SPARC M7-8
SPARC M7
LDom1 2 35,000 0.67 sec/0.42 sec 22.71 min 1,322,272
LDom2 2 35,000 0.85 sec/0.50 sec 22.96 min 1,307,875
SPARC M6-32
SPARC M6
8 35,000 1.80 sec/1.12 sec 29.2 min 1,029,440
Cisco 1 x B460 M4, 3 x B200 M3
Intel E7-4890 v2, Intel E5-2697 v2
10 18,000 2.70 sec/2.60 sec 21.70 min 1,383,816

The following results are running only the Peoplesoft HR Self-Service Online test.

PeopleSoft HR Self-Service Online Using Oracle Database 11g
System
Processors
Chips
Used
Users Search/Save
Avg Response Times
SPARC M7-8
SPARC M7
LDom1 2 40,000 0.55 sec/0.33 sec
LDom2 2 40,000 0.56 sec/0.32 sec
SPARC M6-32
SPARC M6
8 40,000 2.73 sec/1.33 sec
Cisco 1 x B460 M4, 3 x B200 M3
Intel E7-4890 v2, Intel E5-2697 v2
10 20,000 0.35 sec/0.17 sec

The following results are running only the Peoplesoft Payroll Batch test. For the SPARC M7-8 server results, only one of the processors was used per LDom. This was accomplished using processor sets to further restrict the test to a single SPARC M7 processor.

PeopleSoft Payroll Batch Using Oracle Database 11g
System
Processors
Chips
Used
Batch Elapsed
Time
Batch Pay/Hr
SPARC M7-8
SPARC M7
LDom1 1 13.06 min 2,299,296
LDom2 1 12.85 min 2,336,872
SPARC M6-32
SPARC M6
2 18.27 min 1,643,612
Cisco UCS B460 M4
Intel E7-4890 v2
4 23.02 min 1,304,655
IBM z196
zEnterprise (5.2 GHz, 8943 MIPS)
9 30.50 min 984,551

Configuration Summary

System Under Test:

SPARC M7-8 server with
8 x SPARC M7 processor (4.13 GHz)
4 TB memory
Virtualized as two Oracle VM Server for SPARC (LDom) each with
2 x SPARC M7 processor (4.13 GHz)
1 TB memory

Storage Configuration:

2 x Oracle ZFS Storage ZS3-2 appliance (DB Data) each with
40 x 300 GB 10K RPM SAS-2 HDD,
8 x Write Flash Accelerator SSD and
2 x Read Flash Accelerator SSD 1.6TB SAS
2 x Oracle Server X5-2L (DB redo logs & App object cache) each with
2 x Intel Xeon Processor E5-2630 v3
32 GB memory
4 x 1.6 TB NVMe SSD

Software Configuration:

Oracle Solaris 11.3
Oracle Database 11g Release 2 (11.2.0.3.0)
PeopleSoft Human Capital Management 9.1 FP2
PeopleSoft PeopleTools 8.52.03
Oracle Java SE 6u32
Oracle Tuxedo, Version 10.3.0.0, 64-bit, Patch Level 043
Oracle WebLogic Server 11g (10.3.5)

Benchmark Description

The PeopleSoft Human Capital Management benchmark simulates thousands of online employees, managers and Human Resource administrators executing transactions typical of a Human Resources Self Service application for the Enterprise. Typical transactions are: viewing paychecks, promoting and hiring employees, updating employee profiles, etc. The database tier uses a database instance of about 500 GB in size, containing information for 500,480 employees. The application tier for this test includes web and application server instances, specifically Oracle WebLogic Server 11g, PeopleSoft Human Capital Management 9.1 FP2 and Oracle Java SE 6u32.

Key Points and Best Practices

In the HR online along with Payroll batch run, each LDom had one Oracle Solaris Zone of 7 cores containing the Web tier, two Oracle Solaris Zones of 16 cores each containing the Application tier and one Oracle Solaris Zone of 23 cores containing the Database tier. Two cores were dedicated to network and disk interrupt handling. In the HR online only run, each LDom had one Oracle Solaris Zone of 12 cores containing the Web tier, two Oracle Solaris Zones of 18 cores each containing the Application tier and one Oracle Solaris Zone of 14 cores containing the Database tier. 2 cores were dedicated to network and disk interrupt handling. In the Payroll batch only run, each LDom had one Oracle Solaris Zone of 31 cores containing the Database tier. 1 core was dedicated to disk interrupt handling.

All database data files, recovery files and Oracle Clusterware files for the PeopleSoft test were created with the Oracle Automatic Storage Management (Oracle ASM) volume manager for the added benefit of the ease of management provided by Oracle ASM integrated storage management solution.

In the application tier on each LDom, 5 PeopleSoft application domains with 350 application servers (70 per domain) were hosted in two separate Oracle Solaris Zones for a total of 10 domains with 700 application server processes.

All PeopleSoft Application processes and the 32 Web Server JVM instances were executed in the Oracle Solaris FX scheduler class.

See Also

Disclosure Statement

Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 10/25/2015.

Oracle Communications ASAP – Telco Subscriber Activation: SPARC T7-2 World Record

Oracle's SPARC T7-2 server delivered world record results on Oracle Communications ASAP. The SPARC T7-2 server ran Oracle Solaris 11 with Oracle Database 11g Release 2, Oracle WebLogic Server 12c and Oracle Communications ASAP version 7.2.

  • Running Oracle Communications ASAP, the SPARC T7-2 server delivered a world record result of 3,018 ASDLs/sec (atomic network activation actions).

  • Oracle's SPARC M7 processor delivered over 2.5 times the throughput per ASDL cost compared to the previous generation SPARC T5 processor.

  • The SPARC T7-2 server running a single instance of the Oracle Communications ASAP application, with both the application and database tiers consolidated onto a single machine, easily supported the service activation volumes of 3,018 ASDLs/sec which is representative of a typical mobile operator with more than 100 million subscribers.

  • Oracle Communications ASAP v7.2.0.4 delivered 35% higher throughput on the SPARC T7-2 server when compared to the SPARC T5-4 server.

Performance Landscape

All of the following results were run as part of this benchmark effort.

ASAP 7.2.0.4 Test Results – 16 NEP
Both tests used 1 cpu for App tier and 1 cpu for DB tier
System ASDLs/sec CPU Usage CPU Cost per ASDL Cost Improvement Ratio
SPARC T7-2 3,018.56 11.4% 1.10 2.6
SPARC T5-4 2,238.97 29.6% 2.15 1.0

CPU Cost per ASDL – computing cost per ASDL (smaller is better)
Cost Improvement Ratio – improvement per cpu of SPARC T7-2 to SPARC T5-4

Configuration Summary

Hardware Configuration:

SPARC T7-2 server
2 x SPARC M7 processors (4.13 GHz)
512 GB memory

SPARC T5-4 server
4 x SPARC T5 processors (3.6 GHz)
512 GB memory

Storage Configuration:

Pillar Axiom

Software Configuration:

Oracle Communications ASAP 7.2.0.4.1
Oracle Solaris 11.2
Oracle Database 12c Release 12.1.0.1.0
Oracle WebLogic Server 10.3.6.0
Oracle JDK 7 update 75

Benchmark Description

Oracle Communications ASAP provides a convergent service activation platform that automatically activates customer services in a heterogeneous network and IT environment. It supports the activation of consumer and business services in fixed and mobile domains against network and IT applications.

ASAP enables rapid service design and network technology introduction by means of its metadata-driven architecture, design-time configuration environment, and catalog of pre-built activation cartridges to reduce deployment time, cost, and risk. The application has been deployed for mobile (3G, 4G and M2M) services and fixed multi-play (broadband, voice, video, and IT) services in telecommunications, cable and satellite environments as well as for business voice, data, and IT cloud services.

It may be deployed in a fully integrated manner as part of the Oracle Communications Service Fulfillment solution or directly integrated with third- party upstream systems. Market-proven for high-volume performance and scalability, Oracle Communications ASAP is deployed by more than 75 service providers worldwide and activates services for approximately 250 million subscribers globally.

The throughput of ASAP is measured in atomic actions per second (or ASDLs/sec). An atomic action is a single command or operation that can be executed on a network element. Atomic actions are grouped together to form a common service action, where each service action typically relates to an orderable item, such as "GSM voice" or "voice mail" or "GSM data". One or more service actions are invoked by an order management system via an activation work order request.

The workload resembles a typical mobile order to activate a GSM subscriber. A single service action to add a subscriber consists of seven atomic actions where each atomic action executes a command on a network element. Each network element was serviced by a dedicated Network Element Processor (NEP). The ASAP benchmark can vary the number of NEPs, which correlate to the complexity of a Telco operator's environment.

See Also

Disclosure Statement

Copyright 2015, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 25 October 2015.

Oracle E-Business Payroll Batch Extra-Large: SPARC T7-1 World Record

Oracle's SPARC T7-1 server set a world record running the Oracle E-Business Suite 12.1.3 Standard Extra-Large (250,000 Employees) Payroll (Batch) workload.

  • The SPARC T7-1 server produced a world record result of 1,527,494 employee records processed per hour (9.82 min elapsed time) on the Oracle E-Business Suite R12 (12.1.3) Extra-Large Payroll (Batch) benchmark.

  • The SPARC T7-1 server equipped with one 4.13 GHz SPARC M7 processor, demonstrated 36% better hourly employee throughput compared to a two-chip Cisco UCS B200 M4 (Intel Xeon E5-2697 v3).

  • The SPARC T7-1 server equipped with one 4.13 GHz SPARC M7 processor, demonstrated 40% better hourly employee throughput compared to two-chip IBM S824 (POWER8 using 12 cores total).

Performance Landscape

This is the world record result for the Payroll Extra-Large model using Oracle E-Business 12.1.3 workload.

Batch Workload: Payroll Extra-Large Model
System Processor Employees/Hr Elapsed Time
SPARC T7-1 1 x SPARC M7 (4.13 GHz) 1,527,494 9.82 minutes
Cisco UCS B200 M4 2 x Intel Xeon Processor E5-2697 v3 1,125,281 13.33 minutes
IBM S824 2 x POWER8 (3.52 GHz) 1,090,909 13.75 minutes
Cisco UCS B200 M3 2 x Intel Xeon Processor E5-2697 v2 1,017,639 14.74 minutes
Cisco UCS B200 M3 2 x Intel Xeon Processor E5-2690 839,865 17.86 minutes
Sun Server X3-2L 2 x Intel Xeon Processor E5-2690 789,473 19.00 minutes

Configuration Summary

Hardware Configuration:

SPARC T7-1 server
1 x SPARC M7 processor (4.13 GHz)
256 GB memory (16 x 16 GB)
Oracle ZFS Storage ZS3-2 appliance (DB Data storage) with
40 x 900 GB 10K RPM SAS-2 HDD,
8 x Write Flash Accelerator SSD and
2 x Read Flash Accelerator SSD 1.6 TB SAS
Oracle Flash Accelerator F160 PCIe Card (1.6 TB NVMe for DB Log storage)

Software Configuration:

Oracle Solaris 11.3
Oracle E-Business Suite R12 (12.1.3)
Oracle Database 11g (11.2.0.3.0)

Benchmark Description

The Oracle E-Business Suite Standard R12 Benchmark combines online transaction execution by simulated users with concurrent batch processing to model a typical scenario for a global enterprise. This benchmark ran one Batch component, Payroll, in the Extra-Large size.

Results can be published in four sizes and use one or more online/batch modules

  • X-large: Maximum online users running all business flows between 10,000 to 20,000; 750,000 order to cash lines per hour and 250,000 payroll checks per hour.
    • Order to Cash Online — 2400 users
      • The percentage across the 5 transactions in Order Management module is:
        • Insert Manual Invoice — 16.66%
        • Insert Order — 32.33%
        • Order Pick Release — 16.66%
        • Ship Confirm — 16.66%
        • Order Summary Report — 16.66%
    • HR Self-Service — 4000 users
    • Customer Support Flow — 8000 users
    • Procure to Pay — 2000 users
  • Large: 10,000 online users; 100,000 order to cash lines per hour and 100,000 payroll checks per hour.
  • Medium: up to 3000 online users; 50,000 order to cash lines per hour and 10,000 payroll checks per hour.
  • Small: up to 1000 online users; 10,000 order to cash lines per hour and 5,000 payroll checks per hour.

Key Points and Best Practices

  • All system optimizations are in the published report which is referenced in the See Also section below.

See Also

Disclosure Statement

Oracle E-Business X-Large Payroll Batch workload, SPARC T7-1, 4.13 GHz, 1 chip, 32 cores, 256 threads, 256 GB memory, elapsed time 9.82 minutes, 1,527,494 hourly employee throughput, Oracle Solaris 11.3, Oracle E-Business Suite 12.1.3, Oracle Database 11g Release 2, Results as of 10/25/2015.

Oracle E-Business Order-To-Cash Batch Large: SPARC T7-1 World Record

Oracle's SPARC T7-1 server set a world record running the Oracle E-Business Suite 12.1.3 Standard Large (100,000 Order/Inventory Lines) Order-To-Cash (Batch) workload.

  • The SPARC T7-1 server produced a world record hourly order line throughput of 273,973 per hour (21.90 min elapsed time) on the Oracle E-Business Suite R12 (12.1.3) Large Order-To-Cash (Batch) benchmark using a SPARC T7-1 server for the database and application tiers running Oracle Database 11g on Oracle Solaris 11.

  • The SPARC T7-1 server demonstrated 12% better hourly order line throughput compared to a two-chip Cisco UCS B200 M4 (Intel Xeon Processor E5-2697 v3).

Performance Landscape

Results for the Oracle E-Business 12.1.3 Order-To-Cash Batch Large model workload.

Batch Workload: Order-To-Cash Large Model
System CPU Employees/Hr Elapsed Time (min)
SPARC T7-1 1 x SPARC M7 processor 273,973 21.90
Cisco UCS B200 M4 2 x Intel Xeon Processor E5-2697 v3 243,803 24.61
Cisco UCS B200 M3 2 x Intel Xeon Processor E5-2690 232,739 25.78

Configuration Summary

Hardware Configuration:

SPARC T7-1 server with
1 x SPARC M7 processor (4.13 GHz)
256 GB memory (16 x 16 GB)
Oracle ZFS Storage ZS3-2 appliance (DB Data storage) with
40 x 900 GB 10K RPM SAS-2 HDD,
8 x Write Flash Accelerator SSD and
2 x Read Flash Accelerator SSD 1.6TB SAS
Oracle Flash Accelerator F160 PCIe Card (1.6 TB NVMe for DB Log storage)

Software Configuration:

Oracle Solaris 11.3
Oracle E-Business Suite R12 (12.1.3)
Oracle Database 11g (11.2.0.3.0)

Benchmark Description

The Oracle E-Business Suite Standard R12 Benchmark combines online transaction execution by simulated users with concurrent batch processing to model a typical scenario for a global enterprise. This benchmark ran one Batch component, Order-To-Cash, in the Large size.

Results can be published in four sizes and use one or more online/batch modules

  • X-large: Maximum online users running all business flows between 10,000 to 20,000; 750,000 order to cash lines per hour and 250,000 payroll checks per hour.
    • Order to Cash Online — 2400 users
      • The percentage across the 5 transactions in Order Management module is:
        • Insert Manual Invoice — 16.66%
        • Insert Order — 32.33%
        • Order Pick Release — 16.66%
        • Ship Confirm — 16.66%
        • Order Summary Report — 16.66%
    • HR Self-Service — 4000 users
    • Customer Support Flow — 8000 users
    • Procure to Pay — 2000 users
  • Large: 10,000 online users; 100,000 order to cash lines per hour and 100,000 payroll checks per hour.
  • Medium: up to 3000 online users; 50,000 order to cash lines per hour and 10,000 payroll checks per hour.
  • Small: up to 1000 online users; 10,000 order to cash lines per hour and 5,000 payroll checks per hour.

Key Points and Best Practices

  • All system optimizations are in the published report, find link in See Also section below.

See Also

Disclosure Statement

Oracle E-Business Large Order-To-Cash Batch workload, SPARC T7-1, 4.13 GHz, 1 chip, 32 cores, 256 threads, 256 GB memory, elapsed time 21.90 minutes, 273,973 hourly order line throughput, Oracle Solaris 11.3, Oracle E-Business Suite 12.1.3, Oracle Database 11g Release 2, Results as of 10/25/2015.

PeopleSoft Enterprise Financials 9.2: SPARC T7-2 World Record

Oracle's SPARC T7-2 server achieved world record performance being the first to publish on Oracle's PeopleSoft Enterprise Financials 9.2 benchmark. This result was obtained using one Oracle VM Server for SPARC (LDom) virtualized system configured with a single SPARC M7 processor.

  • The single processor LDom on the SPARC T7-2 server achieved world record performance executing 200 million Journal Lines in 18.60 minutes.

  • The single processor LDom on the SPARC T7-2 server was able to process General Ledger Journal Edit and Post batch jobs at 10,752,688 journal lines/min which reflects a large customer environment that utilizes a back-end database of nearly 1.0 TB performing highly competitive journal processing for Ledger.

Performance Landscape

Results are presented for PeopleSoft Financials Benchmark 9.2. Results obtained with PeopleSoft Financials Benchmark 9.2 are not comparable to the the previous version of the benchmark, PeopleSoft Financials Benchmark 9.1, due to significant change in data model and supports only batch.

PeopleSoft Financials Benchmark, Version 9.2
Solution Under Test Batch Journal lines/min
SPARC T7-2 (using 1 x SPARC M7, 4.13 GHz) 18.60 min 10,752,688

Configuration Summary

System:

SPARC T7-2 server with
2 x SPARC M7 processors
1 TB memory
4 x Oracle Flash Accelerator F160 PCIe Card (DB Redo, DB undo and DB Data)
4 x 600 GB internal disks
Oracle Solaris 11.3
Oracle Database 11g (11.2.0.4)
PeopleSoft Financials (9.20.348)
PeopleSoft PeopleTools (8.53.09)
Java HotSpot 64-Bit Server VM (build 1.7.0_45-b18)
Oracle Tuxedo, Version 11.1.1.3.0, 64-bit
Oracle WebLogic Server 11g (10.3.6)

LDom Under Test:

Oracle VM Server for SPARC (LDom) virtualized server (APP & DB Tier)
1 x SPARC M7 processor
512 GB memory

Benchmark Description

The PeopleSoft Enterprise Financials 9.2 benchmark emulates a large enterprise that processes and validates a large number of financial journal transactions before posting the journal entry to the ledger. The validation process certifies that the journal entries are accurate, ensuring that ChartFields values are valid, debits and credits equal out, and inter/intra-units are balanced. Once validated, the entries are processed, ensuring that each journal line posts to the correct target ledger, and then changes the journal status to posted. In this benchmark, the Journal Edit & Post is set up to edit and post both Inter-Unit and Regular multi-currency journals. The benchmark processes 200 million journal lines using AppEngine for edits and Cobol for post processes.

Key Points and Best Practices

  • The PeopleSoft Enterprise Financials 9.2 Batch benchmark ran on a one chip LDom consisting of 32 cores, each core had 8 threads. All total there were 256 virtual processors.

  • The LDom contained two Oracle Solaris Zones: a database tier zone and an application tier zone. The application tier zone consisted of 1 core with 8 virtual processors. The database tier zone consisted of 244 virtual processors from 31 cores. The remaining four virtual processors were dedicated to network and disk interrupt handling.

  • Inside of the database tier zone, the database log writer ran under 4 virtual processors and eight virtual processors were dedicated to four database writers.

  • There were 160 PeopleSoft Application instance processes running 320 streams of PeopleSoft Financial workload in the Oracle Solaris Fixed Priority FX class.

See Also

Disclosure Statement

Copyright 2015, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 25 October 2015.

SAP Two-Tier Standard Sales and Distribution SD Benchmark: SPARC T7-2 World Record 2 Processors

Oracle's SPARC T7-2 server produces a world record result for 2-processors on the SAP two-tier Sales and Distribution (SD) Standard Application Benchmark using SAP Enhancement Package 5 for SAP ERP 6.0 (2 chips / 64 cores / 512 threads).

  • The SPARC T7-2 server achieved 30,800 SAP SD benchmark users running the two-tier SAP Sales and Distribution (SD) Standard Application Benchmark using SAP Enhancement Package 5 for SAP ERP 6.0.

  • The SPARC T7-2 server achieved 1.9 times more users than the Dell PowerEdge R730 server result.

  • The SPARC T7-2 server achieved 1.5 times more users than the IBM Power System S824 server result.

  • The SPARC T7-2 server achieved 1.9 times more users than the HP ProLiant DL380 Gen9 server result.

  • The SPARC T7-2 server result was run with Oracle Solaris 11 and used Oracle Database 12c.

Performance Landscape

SAP-SD 2-tier performance table in decreasing performance order for leading two-processor systems and four-processor IBM Power System S824 server, with SAP ERP 6.0 Enhancement Package 5 for SAP ERP 6.0 results (current version of the benchmark as of May, 2012).

SAP SD Two-Tier Benchmark
System
Processor
OS
Database
Users Resp Time
(sec)
Version Cert#
SPARC T7-2
2 x SPARC M7 (2x 32core)
Oracle Solaris 11
Oracle Database 12c
30,800 0.96 EHP5 2015050
IBM Power S824
4 x POWER8 (4x 6core)
AIX 7
DB2 10.5
21,212 0.98 EHP5 2014016
Dell PowerEdge R730
2 x Intel E5-2699 v3 (2x 18core)
Red Hat Enterprise Linux 7
SAP ASE 16
16,500 0.99 EHP5 2014033
HP ProLiant DL380 Gen9
2 x Intel E5-2699 v3 (2x 18core)
Red Hat Enterprise Linux 6.5
SAP ASE 16
16,101 0.99 EHP5 2014032

Version – Version of SAP, EHP5 refers to SAP ERP 6.0 Enhancement Package 5 for SAP ERP 6.0

Number of cores presented are per chip, to get system totals, multiple by the number of chips.

Complete benchmark results may be found at the SAP benchmark website http://www.sap.com/benchmark.

Configuration Summary and Results

Database/Application Server:

1 x SPARC T7-2 server with
2 x SPARC M7 processors (4.13 GHz, total of 2 processors / 64 cores / 512 threads)
1 TB memory
Oracle Solaris 11.3
Oracle Database 12c

Database Storage:
3 x Sun Server X3-2L each with
2 x Intel Xeon Processors E5-2609 (2.4 GHz)
16 GB memory
4 x Sun Flash Accelerator F40 PCIe Card
12 x 3 TB SAS disks
Oracle Solaris 11

REDO log Storage:
1 x Pillar FS-1 Flash Storage System, with
2 x FS1-2 Controller (Netra X3-2)
2 x FS1-2 Pilot (X4-2)
4 x DE2-24P Disk enclosure
96 x 300 GB 10000 RPM SAS Disk Drive Assembly

Certified Results (published by SAP)

Number of SAP SD benchmark users: 30,800
Average dialog response time: 0.96 seconds
Throughput:
  Fully processed order line items per hour: 3,372,000
  Dialog steps per hour: 10,116,000
  SAPS: 168,600
Average database request time (dialog/update): 0.022 sec / 0.047 sec
SAP Certification: 2015050

Benchmark Description

The SAP Standard Application SD (Sales and Distribution) Benchmark is an ERP business test that is indicative of full business workloads of complete order processing and invoice processing, and demonstrates the ability to run both the application and database software on a single system. The SAP Standard Application SD Benchmark represents the critical tasks performed in real-world ERP business environments.

SAP is one of the premier world-wide ERP application providers, and maintains a suite of benchmark tests to demonstrate the performance of competitive systems on the various SAP products.

See Also

Disclosure Statement

Two-tier SAP Sales and Distribution (SD) standard application benchmarks, SAP Enhancement Package 5 for SAP ERP 6.0 as of 10/23/15:

SPARC T7-2 (2 processors, 64 cores, 512 threads) 30,800 SAP SD users, 2 x 4.13 GHz SPARC M7, 1 TB memory, Oracle Database 12c, Oracle Solaris 11, Cert# 2015050.
IBM Power System S824 (4 processors, 24 cores, 192 threads) 21,212 SAP SD users, 4 x 3.52 GHz POWER8, 512 GB memory, DB2 10.5, AIX 7, Cert#2014016
Dell PowerEdge R730 (2 processors, 36 cores, 72 threads) 16,500 SAP SD users, 2 x 2.3 GHz Intel Xeon Processor E5-2699 v3 256 GB memory, SAP ASE 16, RHEL 7, Cert#2014033
HP ProLiant DL380 Gen9 (2 processors, 36 cores, 72 threads) 16,101 SAP SD users, 2 x 2.3 GHz Intel Xeon Processor E5-2699 v3 256 GB memory, SAP ASE 16, RHEL 6.5, Cert#2014032

SAP, R/3, reg TM of SAP AG in Germany and other countries. More info www.sap.com/benchmark

SPARC T7-1 Delivers 1-Chip World Records for SPEC CPU2006 Rate Benchmarks

This page has been updated on November 19, 2015. The SPARC T7-1 server results have been published at www.spec.org.

Oracle's SPARC T7-1 server delivered world record SPEC CPU2006 rate benchmark results for systems with one chip. This was accomplished with Oracle Solaris 11.3 and Oracle Solaris Studio 12.4 software.

  • The SPARC T7-1 server achieved world record scores of 1200 SPECint_rate2006, 1120 SPECint_rate_base2006, 832 SPECfp_rate2006, and 801 SPECfp_rate_base2006.

  • The SPARC T7-1 server beat the 1 chip Fujitsu CELSIUS C740 with an Intel Xeon Processor E5-2699 v3 by 1.7x on the SPECint_rate2006 benchmark. The SPARC T7-1 server beat the 1 chip NEC Express5800/R120f-1M with an Intel Xeon Processor E5-2699 v3 by 1.8x on the SPECfp_rate2006 benchmark.

  • The SPARC T7-1 server beat the 1 chip IBM Power S812LC server with a POWER8 processor by 1.9 times on the SPECint_rate2006 benchmark and by 1.8 times on the SPECfp_rate2006 benchmark.

  • The SPARC T7-1 server beat the 1 chip Fujitsu SPARC M10-4S with a SPARC64 X+ processor by 2.2x on the SPECint_rate2006 benchmark and by 1.6x on the SPECfp_rate2006 benchmark.

  • The SPARC T7-1 server improved upon the previous generation SPARC platform which used the SPARC T5 processor by 2.5 on the SPECint_rate2006 benchmark and by 2.3 on the SPECfp_rate2006 benchmark.

The SPEC CPU2006 benchmarks are derived from the compute-intensive portions of real applications, stressing chip, memory hierarchy, and compilers. The benchmarks are not intended to stress other computer components such as networking, the operating system, or the I/O system. Note that there are many other SPEC benchmarks, including benchmarks that specifically focus on Java computing, enterprise computing, and network file systems.

Performance Landscape

Complete benchmark results are at the SPEC website. The tables below provide the new Oracle results, as well as select results from other vendors.

Presented are single chip SPEC CPU2006 rate results. Only the best results published at www.spec.org per chip type are presented (best Intel, IBM, Fujitsu, Oracle chips).

SPEC CPU2006 Rate Results – One Chip
System Chip Peak Base
  SPECint_rate2006
SPARC T7-1 SPARC M7 (4.13 GHz, 32 cores) 1200 1120
Fujitsu CELSIUS C740 Intel E5-2699 v3 (2.3 GHz, 18 cores) 715 693
IBM Power S812LC POWER8 (2.92 GHz, 10 cores) 642 482
Fujitsu SPARC M10-4S SPARC64 X+ (3.7 GHz, 16 cores) 546 479
SPARC T5-1B SPARC T5 (3.6 GHz, 16 cores) 489 441
IBM Power 710 Express POWER7 (3.55 GHz, 8 cores) 289 255
  SPECfp_rate2006
SPARC T7-1 SPARC M7 (4.13 GHz, 32 cores) 832 801
NEC Express5800/R120f-1M Intel E5-2699 v3 (2.3 GHz, 18 cores) 474 460
IBM Power S812LC POWER8 (2.92 GHz, 10 cores) 468 394
Fujitsu SPARC M10-4S SPARC64 X+ (3.7 GHz, 16 cores) 462 418
SPARC T5-1B SPARC T5 (3.6 GHz, 16 cores) 369 350
IBM Power 710 Express POWER7 (3.55 GHz, 8 cores) 248 229

The following table highlights the performance of the single-chip SPARC M7 processor based server to the best published two-chip POWER8 processor based server.

SPEC CPU2006 Rate Results
Comparing One SPARC M7 Chip to Two POWER8 Chips
System Chip Peak Base
  SPECint_rate2006
SPARC T7-1 1 x SPARC M7 (4.13 GHz, 32core) 1200 1120
IBM Power S822LC 2 x POWER8 (2.92 GHz, 2x 10core) 1100 853
  SPECfp_rate2006
SPARC T7-1 1 x SPARC M7 (4.13 GHz, 32 cores) 832 801
IBM Power S822LC 2 x POWER8 (2.92 GHz, 2x 10core) 888 745

Configuration Summary

System Under Test:

SPARC T7-1
1 x SPARC M7 processor (4.13 GHz)
512 GB memory (16 x 32 GB dimms)
800 GB on 4 x 400 GB SAS SSD (mirrored)
Oracle Solaris 11.3
Oracle Solaris Studio 12.4 with 4/15 Patch Set

Benchmark Description

SPEC CPU2006 is SPEC's most popular benchmark. It measures:

  • Speed — single copy performance of chip, memory, compiler
  • Rate — multiple copy (throughput)

The benchmark is also divided into integer intensive applications and floating point intensive applications:

  • integer: 12 benchmarks derived from applications such as artificial intelligence chess playing, artificial intelligence go playing, quantum computer simulation, perl, gcc, XML processing, and pathfinding
  • floating point: 17 benchmarks derived from applications, including chemistry, physics, genetics, and weather.

It is also divided depending upon the amount of optimization allowed:

  • base: optimization is consistent per compiled language, all benchmarks must be compiled with the same flags per language.
  • peak: specific compiler optimization is allowed per application.

The overall metrics for the benchmark which are commonly used are:

  • SPECint_rate2006, SPECint_rate_base2006: integer, rate
  • SPECfp_rate2006, SPECfp_rate_base2006: floating point, rate
  • SPECint2006, SPECint_base2006: integer, speed
  • SPECfp2006, SPECfp_base2006: floating point, speed

Key Points and Best Practices

  • Jobs were bound using pbind.

See Also

Disclosure Statement

SPEC and the benchmark names SPECfp and SPECint are registered trademarks of the Standard Performance Evaluation Corporation. Results as of November 19, 2015 from www.spec.org.
SPARC T7-1: 1200 SPECint_rate2006, 1120 SPECint_rate_base2006, 832 SPECfp_rate2006, 801 SPECfp_rate_base2006; SPARC T5-1B: 489 SPECint_rate2006, 440 SPECint_rate_base2006, 369 SPECfp_rate2006, 350 SPECfp_rate_base2006; Fujitsu SPARC M10-4S: 546 SPECint_rate2006, 479 SPECint_rate_base2006, 462 SPECfp_rate2006, 418 SPECfp_rate_base2006. IBM Power 710 Express: 289 SPECint_rate2006, 255 SPECint_rate_base2006, 248 SPECfp_rate2006, 229 SPECfp_rate_base2006; Fujitsu CELSIUS C740: 715 SPECint_rate2006, 693 SPECint_rate_base2006; NEC Express5800/R120f-1M: 474 SPECfp_rate2006, 460 SPECfp_rate_base2006; IBM Power S822LC: 1100 SPECint_rate2006, 853 SPECint_rate_base2006, 888 SPECfp_rate2006, 745 SPECfp_rate_base2006; IBM Power S812LC: 642 SPECint_rate2006, 482 SPECint_rate_base2006, 468 SPECfp_rate2006, 394 SPECfp_rate_base2006.

SPARC T7-4 Delivers 4-Chip World Record for SPEC OMP2012

Oracle's SPARC T7-4 server delivered world record performance on the SPEC OMP2012 benchmark for systems with four chips. This was accomplished with Oracle Solaris 11.3 and Oracle Solaris Studio 12.4 software.

  • The SPARC T7-4 server delivered world record for systems with four chips of 27.9 SPECompG_peak2012 and 26.4 SPECompG_base2012.

  • The SPARC T7-4 server beat the four chip HP ProLiant DL580 Gen9 with Intel Xeon Processor E7-8890 v3 by 29% on the SPECompG_peak2012 benchmark.

  • This SPEC OMP2012 benchmark result demonstrates that the SPARC M7 processor performs well on floating-point intensive technical computing and modeling workloads.

Performance Landscape

Complete benchmark results are at the SPEC website, SPEC OMP2012 Results. The table below provides the new Oracle result as well as the previous best four chip results.

SPEC OMP2012 Results
Four Chip Results
System Processor Peak Base
SPARC T7-4 SPARC M7, 4.13 GHz 27.9 26.4
HP ProLiant DL580 Gen9 Intel Xeon E7-8890 v3, 2.5 GHz 21.5 20.4
Cisco UCS C460 M4 Intel Xeon E7-8890 v3, 2.5 GHz -- 20.8

Configuration Summary

Systems Under Test:

SPARC T7-4
4 x 4.13 GHz SPARC M7 processors
2 TB memory (64 x 32 GB dimms)
4 x 600 GB SAS 10,000 RPM HDD (mirrored)
Oracle Solaris 11.3 (11.3.0.30.0)
Oracle Solaris Studio 12.4 with 4/15 Patch Set

Benchmark Description

The following was taken from the SPEC website.

SPEC OMP2012 focuses on compute intensive performance, which means these benchmarks emphasize the performance of:

  • the computer processor (CPU),
  • the memory architecture,
  • the parallel support libraries, and
  • the compilers.

It is important to remember the contribution of the latter three components. SPEC OMP performance intentionally depends on more than just the processor.

SPEC OMP2012 contains a suite that focuses on parallel computing performance using the OpenMP parallelism standard.

The suite can be used to measure along the following vector:

  • Compilation method: Consistent compiler options across all programs of a given language (the base metrics) and, optionally, compiler options tuned to each program (the peak metrics).

SPEC OMP2012 is not intended to stress other computer components such as networking, the operating system, graphics, or the I/O system. Note that there are many other SPEC benchmarks, including benchmarks that specifically focus on graphics, distributed Java computing, webservers, and network file systems.

Key Points and Best Practices

  • Jobs were bound using OMP_PLACES.

See Also

Disclosure Statement

SPEC and the benchmark name SPEC OMP are registered trademarks of the Standard Performance Evaluation Corporation. Results as of November 11, 2015 from www.spec.org. SPARC T7-4 (4 chips, 128 cores, 1024 threads): 27.9 SPECompG_peak2012, 26.4 SPECompG_base2012; HP ProLiant DL580 Gen9 (4 chips, 72 cores, 144 threads): 21.5 SPECompG_peak2012, 20.4 SPECompG_base2012; Cisco UCS C460 M7 (4 chips, 72 cores, 144 threads): 20.8 SPECompG_base2012.

Virtualized Network Performance: SPARC T7-1

Oracle's SPARC T7-1 server using Oracle VM Server for SPARC exhibits lower network latency under virtualization. The network latency and bandwidth were measured using the Netperf benchmark.

  • TCP network latency between two Oracle VM Server for SPARC guests running on separate SPARC T7-1 servers each using SR-IOV is similar to that of two SPARC T7-1 servers without virtualization (native/bare metal).

  • TCP and UDP network latencies between two Oracle VM Server for SPARC guests running on separate SPARC T7-1 servers each using assigned I/O were significantly less than the other two I/O configurations (SR-IOV and paravirtual I/O).

  • TCP and UDP network latencies between two Oracle VM Server for SPARC guests running on separate SPARC T7-1 servers each using SR-IOV were significantly less than when using paravirtual I/O.

Terminology notes:

  • VM – virtual machine
  • guest – encapsulated operating system instance, typically running in a VM.
  • assigned I/O – network hardware driven directly and exclusively by guests
  • paravirtual I/O – network hardware driven by hosts, indirectly by guests via paravirtualized drivers
  • SR-IOV – single root i/o virtualization; virtualized network interfaces provided by network hardware, driven directly by guests.
  • LDom – logical domain (previous name for Oracle VM Server for SPARC)

Performance Landscape

The following tables show the results for TCP and UDP Netperf Latency and Bandwidth tests (single stream). Netperf latency, often called the round-trip time, is measured in microseconds (usec) (smaller is better).

TCP
Networking
Method
Netperf Latency
(usec)
Bandwidth
(Mb/sec)
MTU=1500MTU=9000 MTU=1500MTU=9000
Native/Bare Metal 5858 91009900
assigned I/O 5151 94009900
SR-IOV 5859 94009900
paravirtual I/O 9191 48009800


UDP
Networking
Method
Netperf Latency
(usec)
Bandwidth
(Mb/sec)
MTU=1500MTU=9000 MTU=1500MTU=9000
Native/Bare Metal 5757 91009900
assigned I/O 5151 94009900
SR-IOV 6663 94009900
paravirtual I/O 9897 48009800
Specifically, the Netperf benchmark latency:
  • is the average request/response time computed by inverse of the throughput reported by the program,
  • is measured within the program from 20 sample-runs of 30 seconds each,
  • uses single-in-flight [i.e. non-burst] 1 byte messages,
  • sends between separate servers connected by 10 GbE,
  • for each test, uses servers connected back-to-back (no network switch) and configured identically: native or guest VM.

Configuration Summary

System Under Test:

2 x SPARC T7-1 servers, each with
1 x SPARC M7 processor (4.13 GHz)
256 GB memory (16 x 16 GB)
2 x 600 GB 10K RPM SAS-2 HDD
10 GbE (on-board and PCIe network devices)
Oracle Solaris 11.3
Oracle VM Server for SPARC 3.2

Benchmark Description

Using the Netperf 2.6.0 benchmark to evaluate native and virtualized (LDoms) network performance. Netperf is a client/server benchmark measuring network performance providing a number of independent tests, including the omni Request/Response (aka ping-pong) test with TCP or UDP protocols used here to obtain the Netperf latency measurements, and TCP stream for bandwidth. Netperf was run between separate servers connected back-to-back (no network switch) by 10 GbE network interconnection.

To measure the cost of virtualization, for each test the servers were configured identically: native (without virtualization) or guest VM. When in a virtual environment, in similar identical fashion on each server, some representative methods were configured to connect the environment to the network hardware (e.g. assigned I/O, paravirtualization, SR-IOV).

Key Points and Best Practices

  • Oracle VM Server for SPARC requires explicit partitioning of guests into Logical Domains of bound CPUs and memory, typically chosen to be local, and does not provide dynamic load balancing between guests on a host.

  • Oracle VM Server for SPARC guests (LDoms) were assigned 32 virtual CPUs (4 complete processor cores) and 64 GB of memory. The control domain served as the I/O domain (for paravirtualized I/O) and was assigned 4 cores and 64 GB of memory.

  • Each latency average reported was computed from the inverse of the reported throughput (similar to the transaction rate) of a Netperf Request/Response test run using 20 samples (aka iterations) of 30 second measurements of non-concurrent 1 byte messages.

  • To obtain a meaningful average latency from a Netperf Request/Response test, it is important that the transactions consist of single messages, which is Netperf's default. If, for instance, Netperf options for burst and TCP_NODELAY are turned on, multiple messages can overlap in the transactions and the reported transaction rate or throughput cannot be used to compute the latency.

  • All results were obtained with interrupt coalescence (aka interrupt throttling, interrupt blanking) turned on in the physical NIC, and if applicable, for the attachment driver in the guest. Also, interrupt coalescence turned on is the default for all the platforms used here.

  • All the results were obtained with large receive offload (LRO) turned off in the physical NIC, and, if applicable, for the attachment driver in the guest, in order to reduce the network latency between the two guests.

  • The netperf bandwidth test used send and receive 1MB (1048576 Bytes) messages.

  • The paravirtual variation of the measurements refers to the use of a paravirtualized network driver in the guest instance. IP traffic consequently is routed across the guest, the virtualization subsystem in the host, a virtual network switch or bridge (depending upon the platform), and the network interface card.

  • The assigned I/O variation of the measurements refers to the use of the card's driver in the guest instance itself. This use is possible by exclusively assigning the device to the guest. Device assignment results in less (software) routing for IP traffic and consequently less overhead than using paravirtualized drivers, but virtualization still can impose significant overhead. Note also NICs used in this way cannot be shared amongst guests, and may obviate the use of certain other VM features like migration. The T7-1 system has four on-board 10 GbE devices, but all of them are connected to the same PCIe branch, making it impossible to configure them as assigned I/O devices. Using a PCIe 10 GbE NIC allows configuring it as an assigned I/O device.

  • In the context of Oracle VM Server for SPARC and these tests, assigned I/O refers to PCI endpoint device assignment, while paravirtualized I/O refers to virtual I/O using a virtual network device (vnet) in the guest connected to a virtual switch (vsw) through the I/O domain to the physical network device (NIC).

See Also

Disclosure Statement

Copyright 2015, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 25 October 2015.

Thursday Mar 27, 2014

SPARC M6-32 Produces SAP SD Two-Tier Benchmark World Record for 32-Processor Systems

Oracle's SPARC M6-32 server produced a world record result for 32-processors on the SAP two-tier Sales and Distribution (SD) Standard Application Benchmark using SAP Enhancement Package 5 for SAP ERP 6.0 (32 chips / 384 cores / 3072 threads).

  • SPARC M6-32 server achieved 140,000 SAP SD benchmark users with a low average dialog response time of 0.58 seconds running the SAP two-tier Sales and Distribution (SD) Standard Application Benchmark using SAP Enhancement package 5 for SAP ERP 6.0.

  • The SPARC M6-32 delivered 2.5 times more users than the IBM Power 780 result using SAP Enhancement Package 5 for SAP ERP 6.0. The IBM result also had 1.7 times worse average dialog response time compared to the SPARC M6-32 server result.

  • The SPARC M6-32 delivered 3.0 times more users than the Fujitsu PRIMEQUEST 2800E (with Intel Xeon E7-8890 v2 processors) result. The Fujitsu result also had 1.7 times worse average dialog response time compared to the SPARC M6-32 server result.

  • The SPARC M6-32 server solution was run with Oracle Solaris 11 and used Oracle Database 11g.

Performance Landscape

SAP-SD 2-Tier Performance Table (in decreasing performance order). With SAP ERP 6.0 Enhancement Package 4 for SAP ERP 6.0 (Old version of the benchmark, obsolete at the end of April, 2012), and SAP ERP 6.0 Enhancement Package 5 for SAP ERP 6.0 results (current version of the benchmark as of May, 2012).

System
Processor
Ch / Co / Th — Memory
OS
Database
Users Resp Time
(sec)
Version Cert#
Fujitsu SPARC M10-4S
SPARC64 X @3.0 GHz
40 / 640 / 1280 — 10 TB
Solaris 11
Oracle 11g
153,000 0.87 EHP5 2013014
SPARC M6-32 Server
SPARC M6 @3.6 GHz
32 / 384 / 3072 — 16 TB
Solaris 11
Oracle 11g
140,000 0.58 EHP5 2014008
IBM Power 795
POWER7 @4 GHz
32 / 256 / 1024 — 4 TB
AIX 7.1
DB2 9.7
126,063 0.98 EHP4 2010046
IBM Power 780
POWER7+ @3.72 GHz
12 / 96 / 834 — 1536 GB
AIX 7.1
DB2 10
57,024 0.98 EHP5 2012033
Fujitsu PRIMEQUEST 2800E
Intel Xeon E7-8890 v2 @2.8 GHz
8 / 120 / 240 — 1024 GB
Windows Server 2012 SE
SQL Server 2012
47,500 0.97 EHP5 2014003
IBM Power 760
POWER7+ @3.41 GHz
8 / 48 / 192 — 1024 GB
AIX 7.1
DB2 10
25,488 0.99 EHP5 2013004

Version – Version of SAP, EHP5 refers to SAP ERP 6.0 Enhancement Package 5 for SAP ERP 6.0 and EHP4 refers to SAP ERP 6.0 Enhancement Package 4 for SAP ERP 6.0

Ch / Co / Th – Total chips, coreas and threads

Complete benchmark results may be found at the SAP benchmark website http://www.sap.com/benchmark.

Configuration Summary and Results

Hardware Configuration:

1 x SPARC M6-32 server with
32 x 3.6 GHz SPARC M6 processors (total of 32 processors / 384 cores / 3072 threads)
16 TB memory
6 x Sun Server X3-2L each with
2 x Intel Xeon E5-2609 2.4 GHz Processors
16 GB Memory
4 x Flash Accelerator F40
12 x 3 TB SAS disks
2 x Sun Server X3-2L each with
2 x Intel Xeon E5-2609 2.4 GHz Processors
16 GB Memory
1 x 8-Port 6Gbps SAS-2 RAID PCI Express HBA
12 x 3 TB SAS disks

Software Configuration:

Oracle Solaris 11
SAP Enhancement Package 5 for SAP ERP 6.0
Oracle Database 11g Release 2

Certified Results (published by SAP)

Number of SAP SD benchmark users:
140,000
Average dialog response time:
0.58 seconds
Throughput:

  Fully processed order line items per hour:
15,878,670
  Dialog steps per hour:
47,636,000
  SAPS:
793,930
Average database request time (dialog/update):
0.020 sec / 0.041 sec
SAP Certification:
2014008

Benchmark Description

The SAP Standard Application SD (Sales and Distribution) Benchmark is an ERP business test that is indicative of full business workloads of complete order processing and invoice processing, and demonstrates the ability to run both the application and database software on a single system. The SAP Standard Application SD Benchmark represents the critical tasks performed in real-world ERP business environments.

SAP is one of the premier world-wide ERP application providers, and maintains a suite of benchmark tests to demonstrate the performance of competitive systems on the various SAP products.

See Also

Disclosure Statement

Two-tier SAP Sales and Distribution (SD) standard application benchmarks, SAP Enhancement Package 5 for SAP ERP 6.0 as of 3/26/14:

SPARC M6-32 (32 processors, 384 cores, 3072 threads) 140,000 SAP SD users, 32 x 3.6 GHz SPARC M6, 16 TB memory, Oracle Database 11g, Oracle Solaris 11, Cert# 2014008. Fujitsu SPARC M10-4S (40 processors, 640 cores, 1280 threads) 153,000 SAP SD users, 40 x 3.0 GHz SPARC65 X, 10 TB memory, Oracle Database 11g, Oracle Solaris 11, Cert# 2013014. IBM Power 780 (12 processors, 96 cores, 384 threads) 57,024 SAP SD users, 12 x 3.72 GHz IBM POWER7+, 1536 GB memory, DB210, AIX7.1, Cert#2012033. Fujitsu PRIMEQUEST 2800E (8 processors, 120 cores, 240 threads) 47,500 SAP SD users, 8 x 2.8 GHz Intel Xeon Processor E7-8890 v2, 1024 GB memory, SQL Server 2012, Windows Server 2012 Standard Edition, Cert# 2014003. IBM Power 760 (8 processors, 48 cores, 192 threads) 25,488 SAP SD users, 8 x 3.41 GHz IBM POWER7+, 1024 GB memory, DB2 10, AIX 7.1, Cert#2013004.

Two-tier SAP Sales and Distribution (SD) standard application benchmarks, SAP Enhancement Package 4 for SAP ERP 6.0 as of 3/26/14:

IBM Power 795 (32 processors, 256 cores, 1024 threads) 126,063 SAP SD users, 32 x 4 GHz IBM POWER7, 4 TB memory, DB2 9.7, AIX7.1, Cert#2010046.

SAP, R/3, reg TM of SAP AG in Germany and other countries. More info www.sap.com/benchmark

Wednesday Mar 05, 2014

SPARC T5-2 Delivers World Record 2-Socket SPECvirt_sc2010 Benchmark

Oracle's SPARC T5-2 server delivered a world record two-chip SPECvirt_sc2010 result of 4270 @ 264 VMs, establishing performance superiority in virtualized environments of the SPARC T5 processors with Oracle Solaris 11, which includes as standard virtualization products Oracle VM for SPARC and Oracle Solaris Zones.

  • The SPARC T5-2 server has 2.3x better performance than an HP BL620c G7 blade server (with two Westmere EX processors) which used VMware ESX 4.1 U1 virtualization software (best SPECvirt_sc2010 result on two-chip servers using VMware software).

  • The SPARC T5-2 server has 1.6x better performance than an IBM Flex System x240 server (with two Sandy Bridge processors) which used Kernel-based Virtual Machines (KVM).

  • This is the first SPECvirt_sc2010 result using Oracle production level software: Oracle Solaris 11.1, Oracle WebLogic Server 10.3.6, Oracle Database 11g Enterprise Edition, Oracle iPlanet Web Server 7 and Oracle Java Development Kit 7 (JDK). The only exception for the Dovecot mail server.

Performance Landscape

Complete benchmark results are at the SPEC website, SPECvirt_sc2010 Results. The following table highlights the leading two-chip results for the benchmark, bigger is better.

SPECvirt_sc2010
Leading Two-Chip Results
System Processor Result @ VMs Virtualization Software
SPARC T5-2 2 x SPARC T5, 3.6 GHz 4270 @ 264 Oracle VM Server for SPARC 3.0
Oracle Solaris Zones
IBM Flex System x240 2 x Intel E5-2690, 2.9 GHz 2741 @ 168 Red Hat Enterprise Linux 6.4 KVM
HP Proliant BL6200c G7 2 x Intel E7-2870, 2.4 GHz 1878 @ 120 VMware ESX 4.1 U1

Configuration Summary

System Under Test Highlights:

1 x SPARC T5-2 server, with
2 x 3.6 GHz SPARC T5 processors
1 TB memory
Oracle Solaris 11.1
Oracle VM Server for SPARC 3.0
Oracle iPlanet Web Server 7.0.15
Oracle PHP 5.3.14
Dovecot 2.1.17
Oracle WebLogic Server 11g (10.3.6)
Oracle Database 11g (11.2.0.3)
Java HotSpot(TM) 64-Bit Server VM on Solaris, version 1.7.0_51

Benchmark Description

The SPECvirt_sc2010 benchmark is SPEC's first benchmark addressing performance of virtualized systems. It measures the end-to-end performance of all system components that make up a virtualized environment.

The benchmark utilizes several previous SPEC benchmarks which represent common tasks which are commonly used in virtualized environments. The workloads included are derived from SPECweb2005, SPECjAppServer2004 and SPECmail2008. Scaling of the benchmark is achieved by running additional sets of virtual machines until overall throughput reaches a peak. The benchmark includes a quality of service criteria that must be met for a successful run.

Key Points and Best Practices

  • The SPARC T5 server running the Oracle Solaris 11.1, utilizes embedded virtualization products as the Oracle VM for SPARC and Oracle Solaris Zones, which provide a low overhead, flexible, scalable and manageable virtualization environment.

  • In order to provide a high level of data integrity and availability, all the benchmark data sets are stored on mirrored (RAID1) storage.

See Also

Disclosure Statement

SPEC and the benchmark name SPECvirt_sc are registered trademarks of the Standard Performance Evaluation Corporation. Results from www.spec.org as of 3/5/2014. SPARC T5-2, SPECvirt_sc2010 4270 @ 264 VMs; IBM Flex System x240, SPECvirt_sc2010 2741 @ 168 VMs; HP Proliant BL620c G7, SPECvirt_sc2010 1878 @ 120 VMs.

Tuesday Feb 18, 2014

SPARC T5-2 Produces SPECjbb2013-MultiJVM World Record for 2-Chip Systems

From www.spec.org

Defects Identified in SPECjbb®2013

December 9, 2014 - SPEC has identified a defect in its SPECjbb®2013 benchmark suite. SPEC has suspended sales of the benchmark software and is no longer accepting new submissions of SPECjbb®2013 results for publication on SPEC's website. Current SPECjbb®2013 licensees will receive a free copy of the new version of the benchmark when it becomes available.

SPEC is advising SPECjbb®2013 licensees and users of the SPECjbb®2013 metrics that the recently discovered defect impacts the comparability of results. This defect can significantly impact the amount of work done during the measurement period, resulting in an inflated SPECjbb®2013 metric. SPEC recommends that users not utilize these results for system comparisons without a full understanding of the impact of these defects on each benchmark result.

Additional information is available here.

The SPECjbb2013 benchmark shows modern Java application performance. Oracle's SPARC T5-2 set a two-chip world record, which is 1.8x faster than the best two-chip x86-based server. Using Oracle Solaris and Oracle Java, Oracle delivered this two-chip world record result on the MultiJVM SPECjbb2013 metric.

  • The SPARC T5-2 server achieved 114,492 SPECjbb2013-MultiJVM max-jOPS and 43,963 SPECjbb2013-MultiJVM critical-jOPS on the SPECjbb2013 benchmark. This result is a two-chip world record.

  • The SPARC T5-2 server running SPECjbb2013 is 1.8x faster than the Cisco UCS C240 M3 server (2.7 GHz Intel Xeon E5-2697 v2) based on both the SPECjbb2013-MultiJVM max-jOPS and SPECjbb2013-MultiJVM critical-jOPS metrics.

  • The SPARC T5-2 server running SPECjbb2013 is 2x faster than the HP ProLiant ML350p Gen8 server (2.7 GHz Intel Xeon E5-2697 v2) based on SPECjbb2013-MultiJVM max-jOPS and 1.3x faster based on SPECjbb2013-MultiJVM critical-jOPS.

  • The new Oracle results were obtained using Oracle Solaris 11 along with Oracle Java SE 8 on the SPARC T5-2 server.

  • The SPARC T5-2 server running SPECjbb2013 on a per chip basis is 1.3x faster than the NEC Express5800/A040b server (2.8 GHz Intel Xeon E7-4890 v2) based on both the SPECjbb2013-MultiJVM max-jOPS and SPECjbb2013-MultiJVM critical-jOPS metrics.

  • There are no IBM POWER7 or POWER7+ based server results on the SPECjbb2013 benchmark. IBM has published IBM POWER7+ based servers on the SPECjbb2005 which was retired by SPEC in 2013.

Performance Landscape

Results of SPECjbb2013 from www.spec.org as of March 6, 2014. These are the leading 2-chip SPECjbb2013 MultiJVM results.

SPECjbb2013 - 2-Chip MultiJVM Results
System Processor SPECjbb2013-MultiJVM JDK
max-jOPS critical-jOPS
SPARC T5-2 2xSPARC T5, 3.6 GHz 114,492 43,963 Oracle Java SE 8
Cisco UCS C240 M3 2xIntel E5-2697 v2, 2.7 GHz 63,079 23,797 Oracle Java SE 7u45
HP ProLiant ML350p Gen8 2xIntel E5-2697 v2, 2.7 GHz 62,393 24,310 Oracle Java SE 7u45
IBM System x3650 M4 BD 2xIntel E5-2695 v2, 2.4 GHz 59,124 22,275 IBM SDK V7 SR6 (*)
HP ProLiant ML350p Gen8 2xIntel E5-2697 v2, 2.7 GHz 57,594 32,103 Oracle Java SE 7u40
HP ProLiant BL460c Gen8 2xIntel E5-2697 v2, 2.7 GHz 56,367 30,078 Oracle Java SE 7u40
Sun Server X4-2, DDR3-1600 2xIntel E5-2697 v2, 2.7 GHz 52,664 20,553 Oracle Java SE 7u40
HP ProLiant DL360e Gen8 2xIntel E5-2470 v2, 2.4 GHz 48,772 17,915 Oracle Java SE 7u40

* IBM SDK V7 SR6 – IBM SDK, Java Technology Edition, Version 7, Service Refresh 6

The following table compares the SPARC T5 processor to the Intel E7 v2 processor.

SPECjbb2013 - Results Using JDK 8
Per Chip Comparison
System SPECjbb2013-MultiJVM SPECjbb2013-MultiJVM/Chip JDK
max-jOPS critical-jOPS max-jOPS critical-jOPS
SPARC T5-2
2xSPARC T5, 3.6 GHz
114,492 43,963 57,246 21,981 Oracle Java SE 8
NEC Express5800/A040b
4xIntel E7-4890 v2, 2.8 GHz
177,753 65,529 44,438 16,382 Oracle Java SE 8

SPARC per Chip Advantage 1.29x 1.34x

Configuration Summary

System Under Test:

SPARC T5-2 server
2 x SPARC T5, 3.60 GHz
512 GB memory (32 x 16 GB dimms)
Oracle Solaris 11.1
Oracle Java SE 8

Benchmark Description

The SPECjbb2013 benchmark has been developed from the ground up to measure performance based on the latest Java application features. It is relevant to all audiences who are interested in Java server performance, including JVM vendors, hardware developers, Java application developers, researchers and members of the academic community.

From SPEC's press release, "SPECjbb2013 replaces SPECjbb2005. The new benchmark has been developed from the ground up to measure performance based on the latest Java application features. It is expected to be used widely by all those interested in Java server performance, including JVM vendors, hardware developers, Java application developers, researchers and members of the academic community."

SPECjbb2013 features include:

  • A usage model based on a world-wide supermarket company with an IT infrastructure that handles a mix of point-of-sale requests, online purchases and data-mining operations.
  • Both a pure throughput metric and a metric that measures critical throughput under service-level agreements (SLAs) specifying response times ranging from 10ms to 500ms.
  • Support for multiple run configurations, enabling users to analyze and overcome bottlenecks at multiple layers of the system stack, including hardware, OS, JVM and application layers.
  • Exercising new Java 7 features and other important performance elements, including the latest data formats (XML), communication using compression, and messaging with security.
  • Support for virtualization and cloud environments.

See Also

Disclosure Statement

SPEC and the benchmark name SPECjbb are registered trademarks of Standard Performance Evaluation Corporation (SPEC). Results as of 3/6/2014, see http://www.spec.org for more information.  SPARC T5-2 114,492 SPECjbb2013-MultiJVM max-jOPS, 43,963 SPECjbb2013-MultiJVM critical-jOPS; NEC Express5800/A040b 177,753 SPECjbb2013-MultiJVM max-jOPS, 65,529 SPECjbb2013-MultiJVM critical-jOPS; Cisco UCS c240 M3 63,079 SPECjbb2013-MultiJVM max-jOPS, 23,797 SPECjbb2013-MultiJVM critical-jOPS; HP ProLiant ML350p Gen8 62,393 SPECjbb2013-MultiJVM max-jOPS, 24,310 SPECjbb2013-MultiJVM critical-jOPS; IBM System X3650 M4 BD 59,124 SPECjbb2013-MultiJVM max-jOPS, 22,275 SPECjbb2013-MultiJVM critical-jOPS; HP ProLiant ML350p Gen8 57,594 SPECjbb2013-MultiJVM max-jOPS, 32,103 SPECjbb2013-MultiJVM critical-jOPS; HP ProLiant BL460c Gen8 56,367 SPECjbb2013-MultiJVM max-jOPS, 30,078 SPECjbb2013-MultiJVM critical-jOPS; Sun Server X4-2 52,664 SPECjbb2013-MultiJVM max-jOPS, 20,553 SPECjbb2013-MultiJVM critical-jOPS; HP ProLiant DL360e Gen8 48,772 SPECjbb2013-MultiJVM max-jOPS, 17,915 SPECjbb2013-MultiJVM critical-jOPS.

Friday Feb 14, 2014

SPARC M6-32 Delivers Oracle E-Business and PeopleSoft World Record Benchmarks, Linear Data Warehouse Scaling in a Virtualized Configuration

This result demonstrates how the combination of Oracle virtualization technologies for SPARC and Oracle's SPARC M6-32 server allow the deployment and concurrent high performance execution of multiple Oracle applications and databases sized for the Enterprise.

  • In an 8-chip Dynamic Domain (also known as PDom), the SPARC M6-32 server set a World Record E-Business 12.1.3 X-Large world record with 14,660 online users running five simultaneous E-Business modules.

  • In a second 8-chip Dynamic Domain, the SPARC M6-32 server set a World Record PeopleSoft HCM 9.1 HR Self-Service online supporting 35,000 users while simultaneously running a batch workload in 29.17 minutes. This was done with a database of 600,480 employees. Two other separate tests were run, one supporting 40,000 online users only and another a batch-only workload that was run in 18.27 min.

  • In a third Dynamic Domain with 16-chips on the SPARC M6-32 server, a data warehouse test was run that showed near-linear scaling.

  • On the SPARC M6-32 server, several critical applications instances were virtualized: an Oracle E-Business application and database, an Oracle's PeopleSoft application and database, and a Decision Support database instance using Oracle Database 12c.

  • In this Enterprise Virtualization benchmark a SPARC M6-32 server utilized all levels of Oracle Virtualization features available for SPARC servers. The 32-chip SPARC M6 based server was divided in three separate Dynamic Domains (also known as PDoms), available only on the SPARC Enterprise M-Series systems, which are completely electrically isolated and independent hardware partitions. Each PDom was subsequently split into multiple hypervisor-based Oracle VM for SPARC partitions (also known as LDoms), each one running its own Oracle Solaris kernel and managing its own CPUs and I/O resources. The hardware resources allocated to each Oracle VM for SPARC partition were then organized in various Oracle Solaris Zones, to further refine application tier isolation and resources management. The three PDoms were dedicated to the enterprise applications as follows:

    • Oracle E-Business PDom: Oracle E-Business 12.1.3 Suite World Record Extra-Large benchmark, exercising five Online Modules: Customer Service, Human Resources Self Service, iProcurement, Order Management and Financial, with 14,660 users and an average user response time under 2 seconds.

    • PeopleSoft PDom: PeopleSoft Human Capital Management (HCM) 9.1 FP2 World Record Benchmark, using PeopleTools 8.52 and an Oracle Database 11g Release 2, with 35,000 users, at an average user Search Time of 1.46 seconds and Save Time of 0.93 seconds. An online run with 40,000 users, had an average user Search Time of 2.17 seconds and Save Time of 1.39 seconds, and a Payroll batch run completed in 29.17 minutes elapsed time for more than 500,000 employees.

    • Decision Support PDom: An Oracle Database 12c instance executing a Decision Support workload on about 30 billion rows of data and achieving linear scalability, i.e. on the 16 chips comprising the PDom, the workload ran 16x faster than on a single chip. Specifically, the 16-chip PDom processed about 320M rows/sec whereas a single chip could process about 20M rows/sec.

  • The SPARC M6-32 server is ideally suited for large-memory utilization. In this virtualized environment, three critical applications made use of 16 TB of physical memory. Each of the Oracle VM Server for SPARC environments utilized from 4 to 8 TB of memory, more than the limits of other virtualization solutions.

  • SPARC M6-32 Server Virtualization Layout Highlights

    • The Oracle E-Business application instances were run in a dedicated Dynamic Domain consisting of 8 SPARC M6 processors and 4 TB of memory. The PDom was split into four symmetric Oracle VM Server for SPARC (LDoms) environments of 2 chips and 1 TB of memory each, two dedicated to the Application Server tier and the other two to the Database Server tier. Each Logical Domain was subsequently divided into two Oracle Solaris Zones, for a total of eight, one for each E-Business Application server and one for each Oracle Database 11g instance.

    • The PeopleSoft application was run in a dedicated Dynamic Domain (PDom) consisting of 8 SPARC M6 processors and 4 TB of memory. The PDom was split into two Oracle VM Server for SPARC (LDoms) environments one of 6 chips and 3 TB of memory, reserved for the Web and Application Server tiers, and a second one of 2 chips and 1 TB of memory, reserved for the Database tier. Two PeopleSoft Application Servers, a Web Server instance, and a single Oracle Database 11g instance were each executed in their respective and exclusive Oracle Solaris Zone.

    • The Oracle Database 12c Decision Support workload was run in a Dynamic Domain consisting of 16 SPARC M6 processors and 8 TB of memory.

  • All the Oracle Applications and Database instances were running at high level of performance and concurrently in a virtualized environment. Running three Enterprise level application environments on a single SPARC M6-32 server offers centralized administration, simplified physical layout, high availability and security features (as each PDom and LDom runs its own Oracle Solaris operating system copy physically and logically isolated from the other environments), enabling the coexistence of multiple versions Oracle Solaris and application software on a single physical server.

  • Dynamic Domains and Oracle VM Server for SPARC guests were configured with independent direct I/O domains, allowing for fast and isolated I/O paths, providing secure and high performance I/O access.

Performance Landscape

Oracle E-Business Test using Oracle Database 11g
SPARC M6-32 PDom, 8 SPARC M6 Processors, 4 TB Memory
Total Online Users Weighted Average
Response Time (sec)
90th Percentile
Response Time (s)
14,660 0.81 0.88
Multiple Online Modules X-Large Configuration (HR Self-Service, Order Management, iProcurement, Customer Service, Financial)

PeopleSoft HR Self-Service Online Plus Payroll Batch using Oracle Database 11g
SPARC M6-32 PDom, 8 SPARC M6 Processors, 4 TB Memory
HR Self-Service Payroll Batch
Elapsed (min)
Online Users Average User
Search / Save
Time (sec)
Transactions
per Second
35,000 1.46 / 0.93 116 29.17

HR Self-Service Only Payroll Batch Only
Elapsed (min)
40,000 2.17 / 1.39 132 18.27

Oracle Database 12c Decision Support Query Test
SPARC M6-32 PDom, 16 SPARC M6 Processors, 8 TB Memory
Parallelism
Chips Used
Rows Processing Rate
(rows/s)
Scaling Normalized to 1 Chip
16 319,981,734 15.9
8 162,545,303 8.1
4 80,943,271 4.0
2 40,458,329 2.0
1 20,086,829 1.0

Configuration Summary

System Under Test:

SPARC M6-32 server with
32 x SPARC M6 processors (3.6 GHz)
16 TB memory

Storage Configuration:

6 x Sun Storage 2540-M2 each with
8 x Expansion Trays (each tray equipped with 12 x 300 GB SAS drives)
7 x Sun Server X3-2L each with
2 x Intel Xeon E5-2609 2.4 GHz Processors
16 GB Memory
4 x Sun Flash Accelerator F40 PCIe 400 GB cards
Oracle Solaris 11.1 (COMSTAR)
1 x Sun Server X3-2L with
2 x Intel Xeon E5-2609 2.4 GHz Processors
16 GB Memory
12 x 3 TB SAS disks
Oracle Solaris 11.1 (COMSTAR)

Software Configuration:

Oracle Solaris 11.1 (11.1.10.5.0), Oracle E-Business
Oracle Solaris 11.1 (11.1.10.5.0), PeopleSoft
Oracle Solaris 11.1 (11.1.9.5.0), Decision Support
Oracle Database 11g Release 2, Oracle E-Business and PeopleSoft
Oracle Database 12c Release 1, Decision Support
Oracle E-Business Suite 12.1.3
PeopleSoft Human Capital Management 9.1 FP2
PeopleSoft PeopleTools 8.52.03
Oracle Java SE 6u32
Oracle Tuxedo, Version 10.3.0.0, 64-bit, Patch Level 043
Oracle WebLogic Server 11g (10.3.4)

Oracle Dynamic Domains (PDoms) resources:


Oracle E-Business PeopleSoft Oracle DSS
Processors 8 8 16
Memory 4 TB 4 TB 8 TB
Oracle Solaris 11.1 (11.1.10.5.0) 11.1 (11.1.10.5.0) 11.1 (11.1.9.5.0)
Oracle Database 11g 11g 12c
Oracle VM for SPARC /
Oracle Solaris Zones
4 LDom / 8 Zones 2 LDom / 4 Zones None
Storage 7 x Sun Server X3-2L 1 x Sun Server X3-2L
(12 x 3 TB SAS )
2 x Sun Storage 2540-M2 / 2501 pairs
4 x Sun Storage 2540-M2/2501 pairs

Benchmark Description

This benchmark consists of three different applications running concurrently. It shows that large, enterprise workloads can be run on a single system and without performance impact between application environments.

The three workloads are:

  • Oracle E-Business Suite Online

    • This test simulates thousands of online users executing transactions typical of an internal Enterprise Resource Processing, including 5 application modules: Customer Service, Human Resources Self Service, Procurement, Order Management and Financial.

    • Each database tier uses a database instance of about 600 GB in size, and supporting thousands of application users, accessing hundreds of objects (tables, indexes, SQL stored procedures, etc.).

    • The application tier includes multiple web and application server instances, specifically Apache Web Server, Oracle Application Server 10g and Oracle Java SE 6u32.

  • PeopleSoft Human Capital Management

    • This test simulates thousands of online employees, managers and Human Resource administrators executing transactions typical of a Human Resources Self Service application for the Enterprise. Typical transactions are: viewing paychecks, promoting and hiring employees, updating employee profiles, etc.

    • The database tier uses a database instance of about 500 GB in size, containing information for 500,480 employees.

    • The application tier for this test includes web and application server instances, specifically Oracle WebLogic Server 11g, PeopleSoft Human Capital Management 9.1 and Oracle Java SE 6u32.

  • Decision Support Workload using the Oracle Database.

    • The query processes 30 billion rows stored in the Oracle Database, making heavy use of Oracle parallel query processing features. It performs multiple aggregations and summaries by reading and processing all the rows of the database.

Key Points and Best Practices

Oracle E-Business Environment

The Oracle E-Business Suite setup consisted 4 Oracle E-Business environments running 5 online Oracle E-Business modules simultaneously.

The Oracle E-Business environments were deployed on 4 Oracle VM for SPARC, respectively 2 for the Application tier and 2 for the Database tier. Each LDom included 2 SPARC M6 processor chips. The Application LDom was further split into 2 Oracle Solaris Zones, each one containing one Oracle E-Business Application instance. Similarly, on the Database tier, each LDom was further divided into 2 Oracle Solaris Zones, each containing an Oracle Database instance. Applications on the same LDom shared a 10 GbE network link to connect to the Database tier LDom. Each Application in a Zone was connected to its own dedicated Database Zone. The communication between the two Zones was implemented via Oracle Solaris 11 virtual network, which provides high performance, low latency transfers at memory speed using large frames (9000 bytes vs typical 1500 bytes frames).

The Oracle E-Business setup made use of the Oracle Database Shared Server feature in order to limit memory utilization, as well as the number of database Server processes. The Oracle Database configuration and optimization was substantially out-of-the-box, except for proper sizing the Oracle Database memory areas (System Global Area and Program Global Area).

In the Oracle E-Business Application LDom handling Customer Service and HR Self Service modules, 28 Forms servers and 8 OC4J application servers were hosted in the two separate Oracle Solaris Zones, for a total of 56 forms servers and 16 applications servers.

All the Oracle Database server processes and the listener processes were executed in the Oracle Solaris FX scheduler class.

PeopleSoft Environment

The PeopleSoft Application Oracle VM for SPARC had one Oracle Solaris Zone of 12 cores containing the web tier and two Oracle Solaris Zones of 57 cores total containing the Application tier. The Database tier was contained in an Oracle VM for SPARC consisting of one Oracle Solaris Zone of 24 cores. One core, in the Application Oracle VM, was dedicated to network and disk interrupt handling.

All database data files, recovery files and Oracle Clusterware files for the PeopleSoft test were created with the Oracle Automatic Storage Management (Oracle ASM) volume manager for the added benefit of the ease of management provided by Oracle ASM integrated storage management solution.

In the application tier, 5 PeopleSoft domains with 350 application servers (70 per each domain) were hosted in the two separate Oracle Solaris Zones for a total of 10 domains with 700 application server processes.

All PeopleSoft Application processes and Web Server JVM instances were executed in the Oracle Solaris FX scheduler class.

Oracle Decision Support Environment

The decision support workload showed how the combination of a large memory (8 TB) and a large number of processors (16 chips comprising 1536 virtual CPUs) together with Oracle parallel query facility can linearly increase the performance of certain decision support queries as the number of CPUs increase.

The large memory was used to cache the entire 30 billion row Oracle table in memory. There are a number of ways to accomplish this. The method deployed in this test was to allocate sufficient memory for Oracle's "keep cache" and direct the table to the "keep cache."

To demonstrate scalability, it was necessary to ensure that the number of Oracle parallel servers was always equal to the number of available virtual CPUs. This was accomplished by the combination of providing a degree of parallelism hint to the query and setting both parallel_max_servers and parallel_min_servers to the number of virtual CPUs.

The number of virtual CPUs for each stage of the scalability test was adjusted using the psradm command available in Oracle Solaris.

See Also

Disclosure Statement

Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. PeopleSoft results as of 02/14/2014. Other results as of 09/22/2013.

Oracle E-Business Suite R12 extra-large multiple-online module benchmark, SPARC M6-32, SPARC M6, 3.6 GHz, 8 chips, 96 cores, 768 threads, 4 TB memory, 14,660 online users, average response time 0.81 sec, 90th percentile response time 0.88 sec, Oracle Solaris 11.1, Oracle Solaris Zones, Oracle VM for SPARC, Oracle E-Business Suite 12.1.3, Oracle Database 11g Release 2, Results as of 9/22/2013.

Thursday Jan 23, 2014

SPARC T5-2 Delivers World Record 2-Socket Application Server for SPECjEnterprise2010 Benchmark

Oracle's SPARC T5-2 servers have set the world record for the SPECjEnterprise2010 benchmark using two-socket application servers with a result of 17,033.54 SPECjEnterprise2010 EjOPS. The result used two SPARC T5-2 servers, one server for the application tier and the other server for the database tier.

  • The SPARC T5-2 server delivered 29% more performance compared to the 2-socket IBM PowerLinux server result of 13,161.07 SPECjEnterprise2010 EjOPS.

  • The two SPARC T5-2 servers have 1.2x better price performance than the two IBM PowerLinux 7R2 POWER7+ processor-based servers (based on hardware plus software configuration costs for both tiers). The price performance of the SPARC T5-2 server is $35.99 compared to the IBM PowerLinux 7R2 at $44.75.

  • The SPARC T5-2 server demonstrated 1.5x more performance compared to Oracle's x86-based 2-socket Sun Server X4-2 system (Ivy Bridge) result of 11,259.88 SPECjEnterprise2010 EjOPS. Oracle holds the top x86 2-socket application server SPECjEnterprise2010 result.

  • This SPARC T5-2 server result represents the best performance per socket for a single system in the application tier of 8,516.77 SPECjEnterprise2010 EjOPS per socket.

  • The application server used Oracle Fusion Middleware components including the Oracle WebLogic 12.1 application server and Java HotSpot(TM) 64-Bit Server VM on Solaris, version 1.7.0_45. The database server was configured with Oracle Database 12c Release 1.

  • This result demonstrated less than 1 second average response times for all SPECjEnterprise2010 transactions and represents Jave EE 5.0 transactions generated by 139,000 users.

Performance Landscape

Select 2-socket single application server results. Complete benchmark results are at the SPEC website, SPECjEnterprise2010 Results.

SPECjEnterprise2010 Performance Chart
1/22/2014
Submitter EjOPS* Java EE Server DB Server
Oracle 17,033.54 1 x SPARC T5-2
2 x 3.6 GHz SPARC T5
Oracle WebLogic 12c (12.1.2)
1 x SPARC T5-2
2 x 3.6 GHz SPARC T5
Oracle Database 12c (12.1.0.1)
IBM 13,161.07 1x IBM PowerLinux 7R2
2 x 4.2 GHz POWER 7+
WebSphere Application Server V8.5
1x IBM PowerLinux 7R2
2 x 4.2 GHz POWER 7+
IBM DB2 10.1 FP2
Oracle 11,259.88 1x Sun Server X4-2
2 x 2.7 GHz Intel Xeon E5-2697 v2
Oracle WebLogic 12c (12.1.2)
1x Sun Server X4-2L
2 x 2.7 GHz Intel Xeon E5-2697 v2
Oracle Database 12c (12.1.0.1)

* SPECjEnterprise2010 EjOPS (bigger is better)

Configuration Summary

Application Server:

1 x SPARC T5-2 server, with
2 x 3.6 GHz SPARC T5 processors
512 GB memory
2 x 10 GbE dual-port NIC
Oracle Solaris 11.1 (11.1.13.6.0)
Oracle WebLogic Server 12c (12.1.2)
Java HotSpot(TM) 64-Bit Server VM on Solaris, version 1.7.0_45

Database Server:

1 x SPARC T5-2 server, with
2 x 3.6 GHz SPARC T5 processors
512 GB memory
1 x 10 GbE dual-port NIC
2 x 8 Gb FC HBA
Oracle Solaris 11.1 (11.1.13.6.0)
Oracle Database 12c (12.1.0.1)

Storage Servers:

2 x Sun Server X4-2L (24-Drive), with
2 x 2.6 GHz Intel Xeon
64 GB memory
1 x 8 Gb FC HBA
4 x Sun Flash Accelerator F80 PCI-E Cards
Oracle Solaris 11.1

Benchmark Description

SPECjEnterprise2010 is the third generation of the SPEC organization's J2EE end-to-end industry standard benchmark application. The new SPECjEnterprise2010 benchmark has been re-designed and developed to cover the Java EE 5 specification's significantly expanded and simplified programming model, highlighting the major features used by developers in the industry today. This provides a real world workload driving the Application Server's implementation of the Java EE specification to its maximum potential and allowing maximum stressing of the underlying hardware and software systems,

  • The web zone, servlets, and web services
  • The EJB zone
  • JPA 1.0 Persistence Model
  • JMS and Message Driven Beans
  • Transaction management
  • Database connectivity
Moreover, SPECjEnterprise2010 also heavily exercises all parts of the underlying infrastructure that make up the application environment, including hardware, JVM software, database software, JDBC drivers, and the system network.

The primary metric of the SPECjEnterprise2010 benchmark is jEnterprise Operations Per Second (SPECjEnterprise2010 EjOPS). The primary metric for the SPECjEnterprise2010 benchmark is calculated by adding the metrics of the Dealership Management Application in the Dealer Domain and the Manufacturing Application in the Manufacturing Domain. There is NO price/performance metric in this benchmark.

Key Points and Best Practices

  • Two Oracle WebLogic server instances on the SPARC T5-2 server were hosted in 2 separate Oracle Solaris Zones.
  • The Oracle WebLogic application servers were executed in the FX scheduling class to improve performance by reducing the frequency of context switches.
  • The Oracle log writer process was run in the RT scheduling class.

See Also

Disclosure Statement

SPEC and the benchmark name SPECjEnterprise are registered trademarks of the Standard Performance Evaluation Corporation. Results from www.spec.org as of 1/22/2014. SPARC T5-2, 17,033.54 SPECjEnterprise2010 EjOPS; IBM PowerLinux 7R2, 13,161.07 SPECjEnterprise2010 EjOPS; Sun Server X4-2, 11,259.88 SPECjEnterprise2010 EjOPS.

The SPARC T5-2 configuration cost is the total application and database server hardware plus software. List price is $613,052 from http://www.oracle.com as of 1/22/2014. The IBM PowerLinux 7R2 configuration total hardware plus software list price is $588,970 based on public pricing from http://www.ibm.com as of 1/22/2014. Pricing does not include database storage hardware for IBM or Oracle.

Monday Nov 25, 2013

World Record Single System TPC-H @10000GB Benchmark on SPARC T5-4

Oracle's SPARC T5-4 server delivered world record single server performance of 377,594 QphH@10000GB with price/performance of $4.65/QphH@10000GB USD on the TPC-H @10000GB benchmark. This result shows that the 4-chip SPARC T5-4 server is significantly faster than the 8-chip server results from HP (Intel x86 based).

  • The SPARC T5-4 server with four SPARC T5 processors is 2.4 times faster than the HP ProLiant DL980 G7 server with eight x86 processors.

  • The SPARC T5-4 server delivered 4.8 times better performance per chip and 3.0 times better performance per core than the HP ProLiant DL980 G7 server.

  • The SPARC T5-4 server has 28% better price/performance than the HP ProLiant DL980 G7 server (for the price/QphH metric).

  • The SPARC T5-4 server with 2 TB memory is 2.4 times faster than the HP ProLiant DL980 G7 server with 4 TB memory (for the composite metric).

  • The SPARC T5-4 server took 9 hours, 37 minutes, 54 seconds for data loading while the HP ProLiant DL980 G7 server took 8.3 times longer.

  • The SPARC T5-4 server accomplished the refresh function in around a minute, the HP ProLiant DL980 G7 server took up to 7.1 times longer to do the same function.

This result demonstrates a complete data warehouse solution that shows the performance both of individual and concurrent query processing streams, faster loading, and refresh of the data during business operations. The SPARC T5-4 server delivers superior performance and cost efficiency when compared to the HP result.

Performance Landscape

The table lists the leading TPC-H @10000GB results for non-clustered systems.

TPC-H @10000GB, Non-Clustered Systems
System
Processor
P/C/T – Memory
Composite
(QphH)
$/perf
($/QphH)
Power
(QppH)
Throughput
(QthH)
Database Available
SPARC T5-4
3.6 GHz SPARC T5
4/64/512 – 2048 GB
377,594.3 $4.65 342,714.1 416,024.4 Oracle 11g R2 11/25/13
HP ProLiant DL980 G7
2.4 GHz Intel Xeon E7-4870
8/80/160 – 4096 GB
158,108.3 $6.49 185,473.6 134,780.5 SQL Server 2012 04/15/13

P/C/T = Processors, Cores, Threads
QphH = the Composite Metric (bigger is better)
$/QphH = the Price/Performance metric in USD (smaller is better)
QppH = the Power Numerical Quantity (bigger is better)
QthH = the Throughput Numerical Quantity (bigger is better)

The following table lists data load times and average refresh function times.

TPC-H @10000GB, Non-Clustered Systems
Database Load & Database Refresh
System
Processor
Data Loading
(h:m:s)
T5
Advan
RF1
(sec)
T5
Advan
RF2
(sec)
T5
Advan
SPARC T5-4
3.6 GHz SPARC T5
09:37:54 8.3x 58.8 7.1x 62.1 6.4x
HP ProLiant DL980 G7
2.4 GHz Intel Xeon E7-4870
79:28:23 1.0x 416.4 1.0x 394.9 1.0x

Data Loading = database load time
RF1 = throughput average first refresh transaction
RF2 = throughput average second refresh transaction
T5 Advan = the ratio of time to the SPARC T5-4 server time

Complete benchmark results found at the TPC benchmark website http://www.tpc.org.

Configuration Summary and Results

Server Under Test:

SPARC T5-4 server
4 x SPARC T5 processors (3.6 GHz total of 64 cores, 512 threads)
2 TB memory
2 x internal SAS (2 x 300 GB) disk drives
12 x 16 Gb FC HBA

External Storage:

24 x Sun Server X4-2L servers configured as COMSTAR nodes, each with
2 x 2.5 GHz Intel Xeon E5-2609 v2 processors
4 x Sun Flash Accelerator F80 PCIe Cards, 800 GB each
6 x 4 TB 7.2K RPM 3.5" SAS disks
1 x 8 Gb dual port HBA

2 x 48 port Brocade 6510 Fibre Channel Switches

Software Configuration:

Oracle Solaris 11.1
Oracle Database 11g Release 2 Enterprise Edition

Audited Results:

Database Size: 10000 GB (Scale Factor 10000)
TPC-H Composite: 377,594.3 QphH@10000GB
Price/performance: $4.65/QphH@10000GB USD
Available: 11/25/2013
Total 3 year Cost: $1,755,709 USD
TPC-H Power: 342,714.1
TPC-H Throughput: 416,024.4
Database Load Time: 9:37:54

Benchmark Description

The TPC-H benchmark is a performance benchmark established by the Transaction Processing Council (TPC) to demonstrate Data Warehousing/Decision Support Systems (DSS). TPC-H measurements are produced for customers to evaluate the performance of various DSS systems. These queries and updates are executed against a standard database under controlled conditions. Performance projections and comparisons between different TPC-H Database sizes (100GB, 300GB, 1000GB, 3000GB, 10000GB, 30000GB and 100000GB) are not allowed by the TPC.

TPC-H is a data warehousing-oriented, non-industry-specific benchmark that consists of a large number of complex queries typical of decision support applications. It also includes some insert and delete activity that is intended to simulate loading and purging data from a warehouse. TPC-H measures the combined performance of a particular database manager on a specific computer system.

The main performance metric reported by TPC-H is called the TPC-H Composite Query-per-Hour Performance Metric (QphH@SF, where SF is the number of GB of raw data, referred to as the scale factor). QphH@SF is intended to summarize the ability of the system to process queries in both single and multiple user modes. The benchmark requires reporting of price/performance, which is the ratio of the total HW/SW cost plus 3 years maintenance to the QphH. A secondary metric is the storage efficiency, which is the ratio of total configured disk space in GB to the scale factor.

Key Points and Best Practices

  • COMSTAR (Common Multiprotocol SCSI Target) is the software framework that enables an Oracle Solaris host to serve as a SCSI Target platform. COMSTAR uses a modular approach to break the huge task of handling all the different pieces in a SCSI target subsystem into independent functional modules which are glued together by the SCSI Target Mode Framework (STMF). The modules implementing functionality at SCSI level (disk, tape, medium changer etc.) are not required to know about the underlying transport. And the modules implementing the transport protocol (FC, iSCSI, etc.) are not aware of the SCSI-level functionality of the packets they are transporting. The framework hides the details of allocation providing execution context and cleanup of SCSI commands and associated resources and simplifies the task of writing the SCSI or transport modules.

  • The SPARC T5-4 server achieved a peak IO rate of 37 GB/sec from the Oracle database configured with this storage.

  • Twelve COMSTAR nodes were mirrored to another twelve COMSTAR nodes on which all of the Oracle database files were placed. IO performance was high and balanced across all the nodes.

  • Oracle Solaris 11.1 required very little system tuning.

  • Some vendors try to make the point that storage ratios are of customer concern. However, storage ratio size has more to do with disk layout and the increasing capacities of disks – so this is not an important metric when comparing systems.

  • The SPARC T5-4 server and Oracle Solaris efficiently managed the system load of nearly two thousand Oracle Database parallel processes.

See Also

Disclosure Statement

TPC Benchmark, TPC-H, QphH, QthH, QppH are trademarks of the Transaction Processing Performance Council (TPC). Results as of 11/25/13, prices are in USD. SPARC T5-4 www.tpc.org/3293; HP ProLiant DL980 G7 www.tpc.org/3285.

Thursday Sep 26, 2013

SPARC M6-32 Delivers Oracle E-Business and PeopleSoft World Record Benchmarks, Linear Data Warehouse Scaling in a Virtualized Configuration

This result has been superceded.  Please see the latest result.

 This result demonstrates how the combination of Oracle virtualization technologies for SPARC and Oracle's SPARC M6-32 server allow the deployment and concurrent high performance execution of multiple Oracle applications and databases sized for the Enterprise.

  • In an 8-chip Dynamic Domain (also known as PDom), the SPARC M6-32 server set a World Record E-Business 12.1.3 X-Large world record with 14,660 online users running five simultaneous E-Business modules.

  • In a second 8-chip Dynamic Domain, the SPARC M6-32 server set a World Record PeopleSoft HCM 9.1 HR Self-Service online supporting 34,000 users while simultaneously running a batch workload in 29.7 minutes. This was done with a database of 600,480 employees. In a separate test running a batch-only workload was run in 21.2 min.

  • In a third Dynamic Domain with 16-chips on the SPARC M6-32 server, a data warehouse test was run that showed near-linear scaling.

  • On the SPARC M6-32 server, several critical applications instances were virtualized: an Oracle E-Business application and database, an Oracle's PeopleSoft application and database, and a Decision Support database instance using Oracle Database 12c.

  • In this Enterprise Virtualization benchmark a SPARC M6-32 server utilized all levels of Oracle Virtualization features available for SPARC servers. The 32-chip SPARC M6 based server was divided in three separate Dynamic Domains (also known as PDoms), available only on the SPARC Enterprise M-Series systems, which are completely electrically isolated and independent hardware partitions. Each PDom was subsequently split into multiple hypervisor-based Oracle VM for SPARC partitions (also known as LDoms), each one running its own Oracle Solaris kernel and managing its own CPUs and I/O resources. The hardware resources allocated to each Oracle VM for SPARC partition were then organized in various Oracle Solaris Zones, to further refine application tier isolation and resources management. The three PDoms were dedicated to the enterprise applications as follows:

    • Oracle E-Business PDom: Oracle E-Business 12.1.3 Suite World Record Extra-Large benchmark, exercising five Online Modules: Customer Service, Human Resources Self Service, iProcurement, Order Management and Financial, with 14,660 users and an average user response time under 2 seconds.

    • PeopleSoft PDom: PeopleSoft Human Capital Management (HCM) 9.1 FP2 World Record Benchmark, using PeopleTools 8.52 and an Oracle Database 11g Release 2, with 34,000 users, at an average user Search Time of 1.11 seconds and Save Time of 0.77 seconds, and a Payroll batch run completed in 29.7 minutes elapsed time for more than 500,000 employees.

    • Decision Support PDom: An Oracle Database 12c instance executing a Decision Support workload on about 30 billion rows of data and achieving linear scalability, i.e. on the 16 chips comprising the PDom, the workload ran 16x faster than on a single chip. Specifically, the 16-chip PDom processed about 320M rows/sec whereas a single chip could process about 20M rows/sec.

  • The SPARC M6-32 server is ideally suited for large-memory utilization. In this virtualized environment, three critical applications made use of 16 TB of physical memory. Each of the Oracle VM Server for SPARC environments utilized from 4 to 8 TB of memory, more than the limits of other virtualization solutions.

  • SPARC M6-32 Server Virtualization Layout Highlights

    • The Oracle E-Business application instances were run in a dedicated Dynamic Domain consisting of 8 SPARC M6 processors and 4 TB of memory. The PDom was split into four symmetric Oracle VM Server for SPARC (LDoms) environments of 2 chips and 1 TB of memory each, two dedicated to the Application Server tier and the other two to the Database Server tier. Each Logical Domain was subsequently divided into two Oracle Solaris Zones, for a total of eight, one for each E-Business Application server and one for each Oracle Database 11g instance.

    • The PeopleSoft application was run in a dedicated Dynamic Domain (PDom) consisting of 8 SPARC M6 processors and 4 TB of memory. The PDom was split into two Oracle VM Server for SPARC (LDoms) environments one of 6 chips and 3 TB of memory, reserved for the Web and Application Server tiers, and a second one of 2 chips and 1 TB of memory, reserved for the Database tier. Two PeopleSoft Application Servers, a Web Server instance, and a single Oracle Database 11g instance were each executed in their respective and exclusive Oracle Solaris Zone.

    • The Oracle Database 12c Decision Support workload was run in a Dynamic Domain consisting of 16 SPARC M6 processors and 8 TB of memory.

  • All the Oracle Applications and Database instances were running at high level of performance and concurrently in a virtualized environment. Running three Enterprise level application environments on a single SPARC M6-32 server offers centralized administration, simplified physical layout, high availability and security features (as each PDom and LDom runs its own Oracle Solaris operating system copy physically and logically isolated from the other environments), enabling the coexistence of multiple versions Oracle Solaris and application software on a single physical server.

  • Dynamic Domains and Oracle VM Server for SPARC guests were configured with independent direct I/O domains, allowing for fast and isolated I/O paths, providing secure and high performance I/O access.

Performance Landscape

Oracle E-Business Test using Oracle Database 11g
SPARC M6-32 PDom, 8 SPARC M6 Processors, 4 TB Memory
Total Online Users Weighted Average
Response Time (sec)
90th Percentile
Response Time (s)
14,660 0.81 0.88
Multiple Online Modules X-Large Configuration (HR Self-Service, Order Management, iProcurement, Customer Service, Financial)

PeopleSoft HR Self-Service Online Plus Payroll Batch using Oracle Database 11g
SPARC M6-32 PDom, 8 SPARC M6 Processors, 4 TB Memory
HR Self-Service Payroll Batch
Elapsed (min)
Online Users Average User
Search / Save
Time (sec)
Transactions
per Second
34,000 1.11 / 0.77 113 29.7

Payroll Batch Only
Elapsed (min)
21.17

Oracle Database 12c Decision Support Query Test
SPARC M6-32 PDom, 16 SPARC M6 Processors, 8 TB Memory
Parallelism
Chips Used
Rows Processing Rate
(rows/s)
Scaling Normalized to 1 Chip
16 319,981,734 15.9
8 162,545,303 8.1
4 80,943,271 4.0
2 40,458,329 2.0
1 20,086,829 1.0

Configuration Summary

System Under Test:

SPARC M6-32 server with
32 x SPARC M6 processors (3.6 GHz)
16 TB memory

Storage Configuration:

6 x Sun Storage 2540-M2 each with
8 x Expansion Trays (each tray equipped with 12 x 300 GB SAS drives)
7 x Sun Server X3-2L each with
2 x Intel Xeon E5-2609 2.4 GHz Processors
16 GB Memory
4 x Sun Flash Accelerator F40 PCIe 400 GB cards
Oracle Solaris 11.1 (COMSTAR)
1 x Sun Server X3-2L with
2 x Intel Xeon E5-2609 2.4 GHz Processors
16 GB Memory
12 x 3 TB SAS disks
Oracle Solaris 11.1 (COMSTAR)

Software Configuration:

Oracle Solaris 11.1 (11.1.10.5.0), Oracle E-Business
Oracle Solaris 11.1 (11.1.10.5.0), PeopleSoft
Oracle Solaris 11.1 (11.1.9.5.0), Decision Support
Oracle Database 11g Release 2, Oracle E-Business and PeopleSoft
Oracle Database 12c Release 1, Decision Support
Oracle E-Business Suite 12.1.3
PeopleSoft Human Capital Management 9.1 FP2
PeopleSoft PeopleTools 8.52.03
Oracle Java SE 6u32
Oracle Tuxedo, Version 10.3.0.0, 64-bit, Patch Level 043
Oracle WebLogic Server 11g (10.3.4)

Oracle Dynamic Domains (PDoms) resources:


Oracle E-Business PeopleSoft Oracle DSS
Processors 8 8 16
Memory 4 TB 4 TB 8 TB
Oracle Solaris 11.1 (11.1.10.5.0) 11.1 (11.1.10.5.0) 11.1 (11.1.9.5.0)
Oracle Database 11g 11g 12c
Oracle VM for SPARC /
Oracle Solaris Zones
4 LDom / 8 Zones 2 LDom / 4 Zones None
Storage 7 x Sun Server X3-2L 1 x Sun Server X3-2L
(12 x 3 TB SAS )
2 x Sun Storage 2540-M2 / 2501 pairs
4 x Sun Storage 2540-M2/2501 pairs

Benchmark Description

This benchmark consists of three different applications running concurrently. It shows that large, enterprise workloads can be run on a single system and without performance impact between application environments.

The three workloads are:

  • Oracle E-Business Suite Online

    • This test simulates thousands of online users executing transactions typical of an internal Enterprise Resource Processing, including 5 application modules: Customer Service, Human Resources Self Service, Procurement, Order Management and Financial.

    • Each database tier uses a database instance of about 600 GB in size, and supporting thousands of application users, accessing hundreds of objects (tables, indexes, SQL stored procedures, etc.).

    • The application tier includes multiple web and application server instances, specifically Apache Web Server, Oracle Application Server 10g and Oracle Java SE 6u32.

  • PeopleSoft Human Capital Management

    • This test simulates thousands of online employees, managers and Human Resource administrators executing transactions typical of a Human Resources Self Service application for the Enterprise. Typical transactions are: viewing paychecks, promoting and hiring employees, updating employee profiles, etc.

    • The database tier uses a database instance of about 500 GB in size, containing information for 500,480 employees.

    • The application tier for this test includes web and application server instances, specifically Oracle WebLogic Server 11g, PeopleSoft Human Capital Management 9.1 and Oracle Java SE 6u32.

  • Decision Support Workload using the Oracle Database.

    • The query processes 30 billion rows stored in the Oracle Database, making heavy use of Oracle parallel query processing features. It performs multiple aggregations and summaries by reading and processing all the rows of the database.

Key Points and Best Practices

Oracle E-Business Environment

The Oracle E-Business Suite setup consisted 4 Oracle E-Business environments running 5 online Oracle E-Business modules simultaneously. The Oracle E-Business environments were deployed on 4 Oracle VM for SPARC, respectively 2 for the Application tier and 2 for the Database tier. Each LDom included 2 SPARC M6 processor chips. The Application LDom was further split into 2 Oracle Solaris Zones, each one containing one Oracle E-Business Application instance. Similarly, on the Database tier, each LDom was further divided into 2 Oracle Solaris Zones, each containing an Oracle Database instance. Applications on the same LDom shared a 10 GbE network link to connect to the Database tier LDom. Each Application in a Zone was connected to its own dedicated Database Zone. The communication between the two Zones was implemented via Oracle Solaris 11 virtual network, which provides high performance, low latency transfers at memory speed using large frames (9000 bytes vs typical 1500 bytes frames).

The Oracle E-Business setup made use of the Oracle Database Shared Server feature in order to limit memory utilization, as well as the number of database Server processes. The Oracle Database configuration and optimization was substantially out-of-the-box, except for proper sizing the Oracle Database memory areas (System Global Area and Program Global Area).

In the Oracle E-Business Application LDom handling Customer Service and HR Self Service modules, 28 Forms servers and 8 OC4J application servers were hosted in the two separate Oracle Solaris Zones, for a total of 56 forms servers and 16 applications servers.

All the Oracle Database server processes and the listener processes were executed in the Oracle Solaris FX scheduler class.

PeopleSoft Environment

The PeopleSoft Application Oracle VM for SPARC had one Oracle Solaris Zone of 12 cores containing the web tier and two Oracle Solaris Zones of 28 cores each containing the Application tier. The Database tier was contained in an Oracle VM for SPARC consisting of one Oracle Solaris Zone of 24 cores. One and a half cores, in the Application Oracle VM, were dedicated to network and disk interrupt handling.

All database data files, recovery files and Oracle Clusterware files for the PeopleSoft test were created with the Oracle Automatic Storage Management (Oracle ASM) volume manager for the added benefit of the ease of management provided by Oracle ASM integrated storage management solution.

In the application tier, 5 PeopleSoft domains with 350 application servers (70 per each domain) were hosted in the two separate Oracle Solaris Zones for a total of 10 domains with 700 application server processes.

All PeopleSoft Application processes and Web Server JVM instances were executed in the Oracle Solaris FX scheduler class.

Oracle Decision Support Environment

The decision support workload showed how the combination of a large memory (8 TB) and a large number of processors (16 chips comprising 1536 virtual CPUs) together with Oracle parallel query facility can linearly increase the performance of certain decision support queries as the number of CPUs increase.

The large memory was used to cache the entire 30 billion row Oracle table in memory. There are a number of ways to accomplish this. The method deployed in this test was to allocate sufficient memory for Oracle's "keep cache" and direct the table to the "keep cache."

To demonstrate scalability, it was necessary to ensure that the number of Oracle parallel servers was always equal to the number of available virtual CPUs. This was accomplished by the combination of providing a degree of parallelism hint to the query and setting both parallel_max_servers and parallel_min_servers to the number of virtual CPUs.

The number of virtual CPUs for each stage of the scalability test was adjusted using the psradm command available in Oracle Solaris.

See Also

Disclosure Statement

Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 09/22/2013.

Oracle E-Business Suite R12 extra-large multiple-online module benchmark, SPARC M6-32, SPARC M6, 3.6 GHz, 8 chips, 96 cores, 768 threads, 4 TB memory, 14,660 online users, average response time 0.81 sec, 90th percentile response time 0.88 sec, Oracle Solaris 11.1, Oracle Solaris Zones, Oracle VM for SPARC, Oracle E-Business Suite 12.1.3, Oracle Database 11g Release 2, Results as of 9/20/2013.

SPARC T5-8 Delivers World Record Single Server SPECjEnterprise2010 Benchmark, Utilizes Virtualized Environment

Oracle produced a world record single-server SPECjEnterprise2010 benchmark result of 36,571.36 SPECjEnterprise2010 EjOPS using one of Oracle's SPARC T5-8 servers for both the application and the database tier. Oracle VM Server for SPARC was used to virtualize the system to achieve this result.

  • The 8-chip SPARC T5 processor based server is 3.3x faster than the 8-chip IBM Power 780 server (POWER7+ processor based).

  • The SPARC T5-8 has 4.4x better price performance than the IBM Power 780, a POWER7+ processor based server (based on hardware plus software configuration costs). The price performance of the SPARC T5-8 server is $40.68 compared to the IBM Power 780 at $177.41. The IBM Power 780, POWER7+ based system has 1.2x better performance per core, but this did not reduce the total software and hardware cost to the customer. As shown by this comparison, performance-per-core is a poor predictor of characteristics relevant to customers. The SPARC T5-8 virtualized price performance was also less than the low-end IBM PowerLinux 7R2 at $62.26.

  • The SPARC T5-8 server ran the Oracle Solaris 11.1 operating system and used Oracle VM Server for SPARC to consolidate ten Oracle WebLogic application server instances and one database server instance to achieve this result.

  • This result demonstrated sub-second average response times for all SPECjEnterprise2010 transactions and represents JEE 5.0 transactions generated by 299,000 users.

  • The SPARC T5-8 server requires only 8 rack units, the same as the space of the IBM Power 780. In this configuration IBM has a hardware core density of 4 cores per rack unit which contrasts with the 16 cores per rack unit for the SPARC T5-8 server. This again demonstrates why performance-per-core is a poor predictor of characteristics relevant to customers.

  • The application server used Oracle Fusion Middleware components including the Oracle WebLogic 12.1 application server and Java HotSpot(TM) 64-Bit Server VM on Solaris, version 1.7.0_25. The database server was configured with Oracle Database 12c Release 1.

  • The SPARC T5-8 server is 2.8x faster than a non-virtualized IBM POWER7+ based server result (one server for application and one server for database), the IBM PowerLinux 7R2 achieved 13,161.07 SPECjEnterprise2010 EjOPS.

Performance Landscape

SPECjEnterprise2010 Performance Chart
Only Three Virtualized Results (App+DB on 1 Server) as of 9/23/2013
Submitter EjOPS* Chips per Server Java EE Server & DB Server
App DB
Oracle 36,571.36 5 3 1 x SPARC T5-8
8 chips, 128 cores, 3.6 GHz SPARC T5
Oracle WebLogic 12c (12.1.2)
Oracle Database 12c (12.1.0.1)
Oracle 27,843.57 4 4 1 x SPARC T5-8
8 chips, 128 cores, 3.6 GHz SPARC T5
Oracle WebLogic 12c (12.1.1)
Oracle Database 11g (11.2.0.3)
IBM 10,902.30 4 4 1 x IBM Power 780
8 chips, 32 cores, 4.42 GHz POWER7+
WebSphere Application Server V8.5
IBM DB2 Universal Database 10.1

* SPECjEnterprise2010 EjOPS (bigger is better)

Complete benchmark results are at the SPEC website, SPECjEnterprise2010 Results.

Configuration Summary

Oracle Summary

Application and Database Server:

1 x SPARC T5-8 server, with
8 x 3.6 GHz SPARC T5 processors
2 TB memory
9 x 10 GbE dual-port NIC
6 x 8 Gb dual-port HBA
Oracle Solaris 11.1 SRU 10.5
Oracle VM Server for SPARC
Oracle WebLogic Server 12c (12.1.2)
Java HotSpot(TM) 64-Bit Server VM on Solaris, version 1.7.0_25
Oracle Database 12c (12.1.0.1)

Storage Servers:

6 x Sun Server X3-2L (12-Drive), with
2 x 2.4 GHz Intel Xeon
16 GB memory
1 x 8 Gb FC HBA
4 x Sun Flash Accelerator F40 PCI-E Card
Oracle Solaris 11.1

2 x Sun Storage 2540-M2 Array
12 x 600 GB 15K RPM SAS HDD

Switch Hardware:

1 x Sun Network 10 GbE 72-port Top of Rack (ToR) Switch

IBM Summary

Application and Database Server:

1 x IBM Power 780 server, with
8 x 4.42 GHz POWER7+ processors
786 GB memory
6 x 10 GbE dual-port NIC
3 x 8 Gb four-port HBA
IBM AIX V7.1 TL2
IBM WebSphere Application Server V8.5
IBM J9 VM (build 2.6, JRE 1.7.0 IBM J9 AIX ppc-32)
IBM DB2 10.1
IBM InfoSphere Optim pureQuery Runtime v3.1.1

Storage:

2 x DS5324 Disk System with
48 x 146 GB 15K E-DDM Disks

1 x v7000 Disk Controller with
16 x 400 GB SSD Disks

Benchmark Description

SPECjEnterprise2010 is the third generation of the SPEC organization's J2EE end-to-end industry standard benchmark application. The new SPECjEnterprise2010 benchmark has been re-designed and developed to cover the Java EE 5 specification's significantly expanded and simplified programming model, highlighting the major features used by developers in the industry today. This provides a real world workload driving the Application Server's implementation of the Java EE specification to its maximum potential and allowing maximum stressing of the underlying hardware and software systems,
  • The web zone, servlets, and web services
  • The EJB zone
  • JPA 1.0 Persistence Model
  • JMS and Message Driven Beans
  • Transaction management
  • Database connectivity
Moreover, SPECjEnterprise2010 also heavily exercises all parts of the underlying infrastructure that make up the application environment, including hardware, JVM software, database software, JDBC drivers, and the system network.

The primary metric of the SPECjEnterprise2010 benchmark is jEnterprise Operations Per Second (SPECjEnterprise2010 EjOPS). The primary metric for the SPECjEnterprise2010 benchmark is calculated by adding the metrics of the Dealership Management Application in the Dealer Domain and the Manufacturing Application in the Manufacturing Domain. There is NO price/performance metric in this benchmark.

Key Points and Best Practices

  • Ten Oracle WebLogic server instances on the SPARC T5-8 server were hosted in 10 separate Oracle Solaris Zones within a separate guest domain on 80 cores (5 cpu chips).
  • The database ran in a separate guest domain consisting of 47 cores (3 cpu chips). One core was reserved for the primary domain.
  • The Oracle WebLogic application servers were executed in the FX scheduling class to improve performance by reducing the frequency of context switches.
  • The Oracle log writer process was run in the FX scheduling class at processor priority 60 to use the Critical Thread feature.

See Also

Disclosure Statement

SPEC and the benchmark name SPECjEnterprise are registered trademarks of the Standard Performance Evaluation Corporation. Results from www.spec.org as of 9/23/2013. SPARC T5-8, 36,571.36 SPECjEnterprise2010 EjOPS (using Oracle VM for SPARC and 5+3 split); SPARC T5-8, 27,843.57 SPECjEnterprise2010 EjOPS (using Oracle Zones and 4+4 split); IBM Power 780, 10,902.30 SPECjEnterprise2010 EjOPS; IBM PowerLinux 7R2, 13,161.07 SPECjEnterprise2010 EjOPS. SPARC T5-8 server total hardware plus software list price is $1,487,792 from http://www.oracle.com as of 9/20/2013. IBM Power 780 server total hardware plus software cost of $1,934,162 based on public pricing from http://www.ibm.com as of 5/22/2013. IBM PowerLinux 7R2 server total hardware plus software cost of $819,451 based on whywebsphere.com/2013/04/29/weblogic-12c-on-oracle-sparc-t5-8-delivers-half-the-transactions-per-core-at-double-the-cost-of-the-websphere-on-ibm-power7/ retrieved 9/20/2013.

Wednesday Sep 25, 2013

SPARC T5-8 Delivers World Record Oracle OLAP Perf Version 3 Benchmark Result on Oracle Database 12c

Oracle's SPARC T5-8 server delivered world record query performance for systems running Oracle Database 12c for the Oracle OLAP Perf Version 3 benchmark.

  • The query throughput on the SPARC T5-8 server is 1.7x higher than that of an 8-chip Intel Xeon E7-8870 server. Both systems had sub-second average response times.

  • The SPARC T5-8 server with the Oracle Database demonstrated the ability to support at least 700 concurrent users querying OLAP cubes (with no think time), processing 2.33 million analytic queries per hour with an average response time of less than 1 second per query. This performance was enabled by keeping the entire cube in-memory utilizing the 4 TB of memory on the SPARC T5-8 server.

  • Assuming a 60 second think time between query requests, the SPARC T5-8 server can support approximately 39,450 concurrent users with the same sub-second response time.

  • The workload uses a set of realistic Business Intelligence (BI) queries that run against an OLAP cube based on a 4 billion row fact table of sales data. The 4 billion rows are partitioned by month spanning 10 years.

  • The combination of the Oracle Database 12cwith the Oracle OLAP option running on a SPARC T5-8 server supports live data updates occurring concurrently with minimally impacted user query executions.

Performance Landscape

Oracle OLAP Perf Version 3 Benchmark
Oracle cube base on 4 billion fact table rows
10 years of data partitioned by month
System Queries/
hour
Users Average Response
Time (sec)
0 sec think time 60 sec think time
SPARC T5-8 2,329,000 700 39,450 <1 sec
8-chip Intel Xeon E7-8870 1,354,000 120 22,675 <1 sec

Configuration Summary

SPARC T5-8:

1 x SPARC T5-8 server with
8 x SPARC T5 processors, 3.6 GHz
4 TB memory
Data Storage and Redo Storage
Flash Storage
Oracle Solaris 11.1 (11.1.8.2.0)
Oracle Database 12c Release 1 (12.1.0.1) with Oracle OLAP option

Sun Server X2-8:

1 x Sun Server X2-8 with
8 x Intel Xeon E7-8870 processors, 2.4 GHz
1 TB memory
Data Storage and Redo Storage
Flash Storage
Oracle Solaris 10 10/12
Oracle Database 12c Release 1 (12.1.0.1) with Oracle OLAP option

Benchmark Description

The Oracle OLAP Perf Version 3 benchmark is a workload designed to demonstrate and stress the ability of the OLAP Option to deliver fast query, near real-time updates and rich calculations using a multi-dimensional model in the context of the Oracle data warehousing.

The bulk of the benchmark entails running a number of concurrent users, each issuing typical multidimensional queries against an Oracle cube. The cube has four dimensions: time, product, customer, and channel. Each query user issues approximately 150 different queries. One query chain may ask for total sales in a particular region (e.g South America) for a particular time period (e.g. Q4 of 2010) followed by additional queries which drill down into sales for individual countries (e.g. Chile, Peru, etc.) with further queries drilling down into individual stores, etc. Another query chain may ask for yearly comparisons of total sales for some product category (e.g. major household appliances) and then issue further queries drilling down into particular products (e.g. refrigerators, stoves. etc.), particular regions, particular customers, etc.

While the core of every OLAP Perf benchmark is real world query performance, the benchmark itself offers numerous execution options such as varying data set sizes, number of users, numbers of queries for any given user and cube update frequency. Version 3 of the benchmark is executed with a much larger number of query streams than previous versions and used a cube designed for near real-time updates. The results produced by version 3 of the benchmark are not directly comparable to results produced by previous versions of the benchmark.

The near real-time update capability is implemented along the following lines. A large Oracle cube, H, is built from a 4 billion row star schema, containing data up until the end of last business day. A second small cube, D, is then created which will contain all of today's new data coming in from outside the world. It will be updated every L minutes with the data coming in within the last L minutes. A third cube, R, joins cubes H and D for reporting purposes much like a view might join data from two tables. Calculations are installed into cube R. The use of a reporting cube which draws data from different storage cubes is a common practice.

Query users are never locked out of query operations while new data is added to the update cube. The point of the demonstration is to show that an Oracle OLAP system can be designed which results in data being no more than L minutes out of date, where L may be as low as just a few minutes. This is what is meant by near real-time analytics.

Key Points and Best Practices

  • Building and querying cubes with the Oracle OLAP option requires a large temporary tablespace. Normally temporary tablespaces would reside on disk storage. However, because the SPARC T5-8 server used in this benchmark had 4 TB of main memory, it was possible to use main memory for the OLAP temporary tablespace. This was accomplished by using a temporary, memory-based file system (TMPFS) for the temporary tablespace datafiles.

  • Since typical business intelligence users are often likely to issue similar queries, either with the same or different constants in the where clauses, setting the init.ora parameter "cursor_sharing" to "force" provides for additional query throughput and a larger number of potential users.

  • Assuming the normal Oracle Database initialization parameters (e.g. SGA, PGA, processes etc.) are appropriately set, out of the box performance for the Oracle OLAP workload should be close to what is reported here. Additional performance resulted from using memory for the OLAP temporary tablespace setting "cursor_sharing" to force.

  • Oracle OLAP Cube update performance was optimized by running update processes in the FX class with a priority greater than 0.

  • The maximum lag time between updates to the source fact table and data availability to query users (what was referred to as L in the benchmark description) was less than 3 minutes for the benchmark environment on the SPARC T5-8 server.

See Also

Disclosure Statement

Copyright 2013, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 09/22/2013.

SPARC T5 Encryption Performance Tops Intel E5-2600 v2 Processor

The cryptography benchmark suite was developed by Oracle to measure security performance on important AES security modes. Oracle's SPARC T5 processor with it security software in silicon is faster than x86 servers that have the AES-NI instructions. In this test, the performance of on-processor encryption operations is measured (32 KB encryptions). Multiple threads are used to measure each processors maximum throughput. The SPARC T5-8 shows dramatically faster encryption.

  • A SPARC T5 processor running Oracle Solaris 11.1 is 2.7 times faster executing AES-CFB 256-bit key encryption (in cache) than the Intel E5-2697 v2 processor (with AES-NI) running Oracle Linux 6.3. AES-CFB encryption is used by Oracle Database for Transparent Data Encryption (TDE) which provides security for database storage.

  • On the AES-CFB 128-bit key encryption, the SPARC T5 processor is 2.5 times faster than the Intel E5-2697 v2 processor (with AES-NI) running Oracle Linux 6.3 for in-cache encryption. AES-CFB mode is used by Oracle Database for Transparent Data Encryption (TDE) which provides security for database storage.

  • The IBM POWER7+ has three hardware security units for 8-core processors, but IBM has not publicly shown any measured performance results on AES-CFB or other encryption modes.

Performance Landscape

Presented below are results for running encryption using the AES cipher with the CFB, CBC, CCM and GCM modes for key sizes of 128, 192 and 256. Decryption performance was similar and is not presented. Results are presented as MB/sec (10**6).

Encryption Performance – AES-CFB

Performance is presented for in-cache AES-CFB128 mode encryption. Multiple key sizes of 256-bit, 192-bit and 128-bit are presented. The encryption was performance on 32 KB of pseudo-random data (same data for each run).

AES-CFB
Microbenchmark Performance (MB/sec)
Processor GHz Chips Performance Software Environment
AES-256-CFB
SPARC T5 3.60 2 54,396 Oracle Solaris 11.1, libsoftcrypto + libumem
Intel E5-2697 v2 2.70 2 19,960 Oracle Linux 6.3, IPP/AES-NI
Intel E5-2690 2.90 2 12,823 Oracle Linux 6.3, IPP/AES-NI
AES-192-CFB
SPARC T5 3.60 2 61,000 Oracle Solaris 11.1, libsoftcrypto + libumem
Intel E5-2697 v2 2.70 2 23,217 Oracle Linux 6.3, IPP/AES-NI
Intel E5-2690 2.90 2 14,928 Oracle Linux 6.3, IPP/AES-NI
AES-128-CFB
SPARC T5 3.60 2 68,695 Oracle Solaris 11.1, libsoftcrypto + libumem
Intel E5-2697 v2 2.70 2 27,740 Oracle Linux 6.3, IPP/AES-NI
Intel E5-2690 2.90 2 17,824 Oracle Linux 6.3, IPP/AES-NI

Encryption Performance – AES-GCM

Performance is presented for in-cache AES-GCM mode encryption with authentication. Multiple key sizes of 256-bit, 192-bit and 128-bit are presented. The encryption/authentication was performance on 32 KB of pseudo-random data (same data for each run).

AES-GCM
Microbenchmark Performance (MB/sec)
Processor GHz Chips Performance Software Environment
AES-256-GCM
SPARC T5 3.60 2 34,101 Oracle Solaris 11.1, libsoftcrypto + libumem
Intel E5-2697 v2 2.70 2 15,338 Oracle Solaris 11.1, libsoftcrypto + libumem
Intel E5-2690 2.90 2 13,520 Oracle Linux 6.3, IPP/AES-NI
AES-192-GCM
SPARC T5 3.60 2 36,852 Oracle Solaris 11.1, libsoftcrypto + libumem
Intel E5-2697 v2 2.70 2 15,768 Oracle Solaris 11.1, libsoftcrypto + libumem
Intel E5-2690 2.90 2 14,159 Oracle Linux 6.3, IPP/AES-NI
AES-128-GCM
SPARC T5 3.60 2 39,003 Oracle Solaris 11.1, libsoftcrypto + libumem
Intel E5-2697 v2 2.70 2 16,405 Oracle Solaris 11.1, libsoftcrypto + libumem
Intel E5-2690 2.90 2 14,877 Oracle Linux 6.3, IPP/AES-NI

Encryption Performance – AES-CCM

Performance is presented for in-cache AES-CCM mode encryption with authentication. Multiple key sizes of 256-bit, 192-bit and 128-bit are presented. The encryption/authentication was performance on 32 KB of pseudo-random data (same data for each run).

AES-CCM
Microbenchmark Performance (MB/sec)
Processor GHz Chips Performance Software Environment
AES-256-CCM
SPARC T5 3.60 2 29,431 Oracle Solaris 11.1, libsoftcrypto + libumem
Intel E5-2697 v2 2.70 2 19,447 Oracle Linux 6.3, IPP/AES-NI
Intel E5-2690 2.90 2 12,493 Oracle Linux 6.3, IPP/AES-NI
AES-192-CCM
SPARC T5 3.60 2 33,715 Oracle Solaris 11.1, libsoftcrypto + libumem
Intel E5-2697 v2 2.70 2 22,634 Oracle Linux 6.3, IPP/AES-NI
Intel E5-2690 2.90 2 14,507 Oracle Linux 6.3, IPP/AES-NI
AES-128-CCM
SPARC T5 3.60 2 39,188 Oracle Solaris 11.1, libsoftcrypto + libumem
Intel E5-2697 v2 2.70 2 26,951 Oracle Linux 6.3, IPP/AES-NI
Intel E5-2690 2.90 2 17,256 Oracle Linux 6.3, IPP/AES-NI

Encryption Performance – AES-CBC

Performance is presented for in-cache AES-CBC mode encryption. Multiple key sizes of 256-bit, 192-bit and 128-bit are presented. The encryption was performance on 32 KB of pseudo-random data (same data for each run).

AES-CBC
Microbenchmark Performance (MB/sec)
Processor GHz Chips Performance Software Environment
AES-256-CBC
SPARC T5 3.60 2 56,933 Oracle Solaris 11.1, libsoftcrypto + libumem
Intel E5-2697 v2 2.70 2 19,962 Oracle Linux 6.3, IPP/AES-NI
Intel E5-2690 2.90 2 12,822 Oracle Linux 6.3, IPP/AES-NI
AES-192-CBC
SPARC T5 3.60 2 63,767 Oracle Solaris 11.1, libsoftcrypto + libumem
Intel E5-2697 v2 2.70 2 23,224 Oracle Linux 6.3, IPP/AES-NI
Intel E5-2690 2.90 2 14,915 Oracle Linux 6.3, IPP/AES-NI
AES-128-CBC
SPARC T5 3.60 2 72,508 Oracle Solaris 11.1, libsoftcrypto + libumem
Intel E5-2697 v2 2.70 2 27,733 Oracle Linux 6.3, IPP/AES-NI
Intel E5-2690 2.90 2 17,823 Oracle Linux 6.3, IPP/AES-NI

Configuration Summary

SPARC T5-2 server
2 x SPARC T5 processor, 3.6 GHz
512 GB memory
Oracle Solaris 11.1 SRU 4.2

Sun Server X4-2L server
2 x E5-2697 v2 processors, 2.70 GHz
256 GB memory
Oracle Linux 6.3

Sun Server X3-2 server
2 x E5-2690 processors, 2.90 GHz
128 GB memory
Oracle Linux 6.3

Benchmark Description

The benchmark measures cryptographic capabilities in terms of general low-level encryption, in-cache (32 KB encryptions) and on-chip using various ciphers, including AES-128-CFB, AES-192-CFB, AES-256-CFB, AES-128-CBC, AES-192-CBC, AES-256-CBC, AES-128-CCM, AES-192-CCM, AES-256-CCM, AES-128-GCM, AES-192-GCM and AES-256-GCM.

The benchmark results were obtained using tests created by Oracle which use various application interfaces to perform the various ciphers. They were run using optimized libraries for each platform to obtain the best possible performance.

See Also

Disclosure Statement

Copyright 2013, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 9/23/2013.

Monday Sep 23, 2013

SPARC T5-2 Delivers Best 2-Chip MultiJVM SPECjbb2013 Result

From www.spec.org

Defects Identified in SPECjbb®2013

December 9, 2014 - SPEC has identified a defect in its SPECjbb®2013 benchmark suite. SPEC has suspended sales of the benchmark software and is no longer accepting new submissions of SPECjbb®2013 results for publication on SPEC's website. Current SPECjbb®2013 licensees will receive a free copy of the new version of the benchmark when it becomes available.

SPEC is advising SPECjbb®2013 licensees and users of the SPECjbb®2013 metrics that the recently discovered defect impacts the comparability of results. This defect can significantly impact the amount of work done during the measurement period, resulting in an inflated SPECjbb®2013 metric. SPEC recommends that users not utilize these results for system comparisons without a full understanding of the impact of these defects on each benchmark result.

Additional information is available here.

SPECjbb2013 is a new benchmark designed to show modern Java server performance. Oracle's SPARC T5-2 set a world record as the fastest two-chip system beating just introduced two-chip x86-based servers. Oracle, using Oracle Solaris and Oracle JDK, delivered this two-chip world record result on the MultiJVM SPECjbb2013 metric. SPECjbb2013 is the replacement for SPECjbb2005 (SPECjbb2005 will soon be retired by SPEC).

  • Oracle's SPARC T5-2 server achieved 81,084 SPECjbb2013-MultiJVM max-jOPS and 39,129 SPECjbb2013-MultiJVM critical-jOPS on the SPECjbb2013 benchmark. This result is a two chip world record.

  • There are no IBM POWER7 or POWER7+ based server results on the SPECjbb2013 benchmark. IBM has published IBM POWER7+ based servers on the SPECjbb2005 which will soon be retired by SPEC.

  • The 2-chip SPARC T5-2 server running SPECjbb2013 is 30% faster than the 2-chip Cisco UCS B200 M3 server (2.7 GHz E5-2697 v2 Ivy Bridge-based) based on SPECjbb2013-MultiJVM max-jOPS.

  • The 2-chip SPARC T5-2 server running SPECjbb2013 is 66% faster than the 2-chip Cisco UCS B200 M3 server (2.7 GHz E5-2697 v2 Ivy Bridge-based) based on SPECjbb2013-MultiJVM critical-jOPS.

  • These results were obtained using Oracle Solaris 11 along with Java Platform, Standard Edition, JDK 7 Update 40 on the SPARC T5-2 server.

From SPEC's press release, "SPECjbb2013 replaces SPECjbb2005. The new benchmark has been developed from the ground up to measure performance based on the latest Java application features. It is expected to be used widely by all those interested in Java server performance, including JVM vendors, hardware developers, Java application developers, researchers and members of the academic community."

Performance Landscape

Results of SPECjbb2013 from www.spec.org as of September 22, 2013 and this report.

SPECjbb2013
System Processor SPECjbb2013-MultiJVM JDK
type # max-jOPS critical-jOPS
SPARC T5-2 SPARC T5, 3.6 GHz 2 81,084 39,129 Oracle JDK 7u40
Cisco UCS B200 M3, DDR3-1866 Intel E5-2697 v2, 2.7 GHz 2 62,393 23,505 Oracle JDK 7u40
Sun Server X4-2, DDR3-1600 Intel E5-2697 v2, 2.7 GHz 2 52,664 20,553 Oracle JDK 7u40
Cisco UCS C220 M3 Intel E5-2690, 2.9 GHz 2 41,954 16,545 Oracle JDK 7u11

The above table represents all of the published results on www.spec.org. SPEC allows for self publication of SPECjbb2013 results. See below for locations where full reports were made available.

Configuration Summary

System Under Test:

SPARC T5-2 server
2 x SPARC T5, 3.60 GHz
512 GB memory (32 x 16 GB dimms)
Oracle Solaris 11.1
Oracle JDK 7 Update 40

Benchmark Description

The SPECjbb2013 benchmark has been developed from the ground up to measure performance based on the latest Java application features. It is relevant to all audiences who are interested in Java server performance, including JVM vendors, hardware developers, Java application developers, researchers and members of the academic community.

SPECjbb2013 replaces SPECjbb2005. New features include:

  • A usage model based on a world-wide supermarket company with an IT infrastructure that handles a mix of point-of-sale requests, online purchases and data-mining operations.
  • Both a pure throughput metric and a metric that measures critical throughput under service-level agreements (SLAs) specifying response times ranging from 10ms to 500ms.
  • Support for multiple run configurations, enabling users to analyze and overcome bottlenecks at multiple layers of the system stack, including hardware, OS, JVM and application layers.
  • Exercising new Java 7 features and other important performance elements, including the latest data formats (XML), communication using compression, and messaging with security.
  • Support for virtualization and cloud environments.

See Also

Disclosure Statement

SPEC and the benchmark name SPECjbb are registered trademarks of Standard Performance Evaluation Corporation (SPEC). Results as of 9/23/2013, see http://www.spec.org for more information. SPARC T5-2 81,084 SPECjbb2013-MultiJVM max-jOPS, 39,129 SPECjbb2013-MultiJVM critical-jOPS, result from https://blogs.oracle.com/BestPerf/resource/jbb2013/sparct5-922.pdf Cisco UCS B200 M3 62,393 SPECjbb2013-MultiJVM max-jOPS, 23,505 SPECjbb2013-MultiJVM critical-jOPS, result from http://www.cisco.com/en/US/prod/collateral/ps10265/le_41704_pb_specjbb2013b200.pdf; Sun Server X4-2 52,664 SPECjbb2013-MultiJVM max-jOPS, 20,553 SPECjbb2013-MultiJVM critical-jOPS, result from https://blogs.oracle.com/BestPerf/entry/20130918_x4_2_specjbb2013; Cisco UCS C220 M3 41,954 SPECjbb2013-MultiJVM max-jOPS, 16,545 SPECjbb2013-MultiJVM critical-jOPS result from www.spec.org.

Monday Jul 01, 2013

Quick Note about Blog Posting from John

Please have a look at John's Blog if you are interested in SPEC performance and how people use it in different ways to come to different conclusions.

About

BestPerf is the source of Oracle performance expertise. In this blog, Oracle's Strategic Applications Engineering group explores Oracle's performance results and shares best practices learned from working on Enterprise-wide Applications.

Index Pages
Search

Archives
« July 2016
SunMonTueWedThuFriSat
     
1
2
3
4
5
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
      
Today