Tuesday Sep 10, 2013

Oracle ZFS Storage ZS3-4 Produces Best 2-Node Performance on SPECsfs2008 NFSv3

The Oracle ZFS Storage ZS3-4 storage system delivered world record two-node performance on the SPECsfs2008 NFSv3 benchmark, beating results published on NetApp's dual-controller and four-node high-end FAS6240 storage systems.

  • The Oracle ZFS Storage ZS3-4 storage system delivered a world record two-node result of 450,702 SPECsfs2008_nfs.v3 Ops/sec with an Overall Response Time (ORT) of 0.70 msec on the SPECsfs2008 NFSv3 benchmark.

  • The Oracle ZFS Storage ZS3-4 storage system delivered 2.4x higher throughput than the dual-controller NetApp FAS6240 and 4.5x higher throughput than the dual-controller NetApp FAS3270 on the SPECsfs2008_nfs.v3 benchmark at less than half the list price of either result.

  • The Oracle ZFS Storage ZS3-4 storage system had 42 percent higher throughput than the four-node NetApp FAS6240 on the SPECsfs2008 NFSv3 benchmark.

  • The Oracle ZFS Storage ZS3-4 storage aystem has 54 percent better Overall Response Time than the 4-node NetApp FAS6240 on the SPECsfs2008 NFSv3 benchmark.

Performance Landscape

Two node results for SPECsfs2008_nfs.v3 presented (in decreasing SPECsfs2008_nfs.v3 Ops/sec order) along with other select results.

Sponsor System Nodes Disks Throughput
(Ops/sec)
Overall Response
Time (msec)
Oracle ZS3-4 2 464 450,702 0.70
IBM SONAS 1.2 2 1975 403,326 3.23
NetApp FAS6240 4 288 260,388 1.53
NetApp FAS6240 2 288 190,675 1.17
EMC VG8 312 135,521 1.92
Oracle 7320 2 136 134,140 1.51
EMC NS-G8 100 110,621 2.32
NetApp FAS3270 2 360 101,183 1.66

Throughput SPECsfs2008_nfs.v3 Ops/sec — the Performance Metric
Overall Response Time — the corresponding Response Time Metric
Nodes — Nodes and Controllers are being used interchangeably

Complete SPECsfs2008 benchmark results may be found at http://www.spec.org/sfs2008/results/sfs2008.html.

Configuration Summary

Storage Configuration:

Oracle ZFS Storage ZS3-4 storage system in clustered configuration
2 x Oracle ZFS Storage ZS3-4 controllers, each with
8 x 2.4 GHz Intel Xeon E7-4870 processors
2 TB memory
2 x 10GbE NICs
20 x Sun Disk shelves
18 x shelves with 24 x 300 GB 15K RPM SAS-2 drives
2 x shelves with 20 x 300 GB 15K RPM SAS-2 drives and 8 x 73 GB SAS-2 flash-enabled write-cache

Benchmark Description

SPECsfs2008 is the latest version of the Standard Performance Evaluation Corporation (SPEC) benchmark suite measuring file server throughput and response time, providing a standardized method for comparing performance across different vendor platforms. SPECsfs2008 results summarize the server's capabilities with respect to the number of operations that can be handled per second, as well as the overall latency of the operations. The suite is a follow-on to the SFS97_R1 benchmark, adding a CIFS workload, an updated NFSv3 workload, support for additional client platforms, and a new test harness and reporting/submission framework.

See Also

Disclosure Statement

SPEC and SPECsfs are registered trademarks of Standard Performance Evaluation Corporation (SPEC). Results as of September 10, 2013, for more information see www.spec.org. Oracle ZFS Storage ZS3-4 Appliance 450,702 SPECsfs2008_nfs.v3 Ops/sec, 0.70 msec ORT, NetApp Data ONTAP 8.1 Cluster-Mode (4-node FAS6240) 260,388 SPECsfs2008_nfs.v3 Ops/Sec, 1.53 msec ORT, NetApp FAS6240 190,675 SPECsfs2008_nfs.v3 Ops/Sec, 1.17 msec ORT. NetApp FAS3270 101,183 SPECsfs2008_nfs.v3 Ops/Sec, 1.66 msec ORT.

Nodes refer to the item in the SPECsfs2008 disclosed Configuration Bill of Materials that have the Processing Elements that perform the NFS Processing Function. These are the first item listed in each of disclosed Configuration Bill of Materials except for EMC where it is both the first and third items listed, and HP, where it is the second item listed as Blade Servers. The number of nodes is from the QTY disclosed in the Configuration Bill of Materials as described above. Configuration Bill of Materials list price for Oracle result of US$ 423,644. Configuration Bill of Materials list price for NetApp FAS3270 result of US$ 1,215,290. Configuration Bill of Materials list price for NetApp FAS6240 result of US$ 1,028,118. Oracle pricing from https://shop.oracle.com/pls/ostore/f?p=dstore:home:0, traverse to "Storage and Tape" and then to "NAS Storage". NetApp's pricing from http://www.netapp.com/us/media/na-list-usd-netapp-custom-state-new-discounts.html.

Oracle ZFS Storage ZS3-2 Beats Comparable NetApp on SPECsfs2008 NFSv3

Oracle ZFS Storage ZS3-2 storage system delivered outstanding performance on the SPECsfs2008 NFSv3 benchmark, beating results published on NetApp's fastest midrange platform, the NetApp FAS3270, the NetApp FAS6240 and the EMC Gateway NS-G8 Server Failover Cluster.

  • The Oracle ZFS Storage ZS3-2 storage system delivered 210,535 SPECsfs2008_nfs.v3 Ops/sec with an Overall Response Time (ORT) of 1.12 msec on the SPECsfs2008 NFSv3 benchmark.

  • The Oracle ZFS Storage ZS3-2 storage system delivered 10% higher throughput than the NetApp FAS6240 on the SPECsfs2008 NFSv3 benchmark.

  • The Oracle ZFS Storage ZS3-2 storage system has 52% higher throughput than the NetApp FAS3270 on the SPECsfs2008 NFSv3 benchmark.

  • The Oracle ZFS Storage ZS3-2 storage system has 5% better Overall Response Time than the NetApp FAS6240 on the SPECsfs2008 NFSv3 benchmark.

  • The Oracle ZFS Storage ZS3-2 storage system has 33% better Overall Response Time than the NetApp FAS3270 on the SPECsfs2008 NFSv3 benchmark.

Performance Landscape

Results for SPECsfs2008 NFSv3 (in decreasing SPECsfs2008_nfs.v3 Ops/sec order) for competitive systems.

Sponsor System Throughput
(Ops/sec)
Overall Response
Time (msec)
Oracle ZS3-2 210,535 1.12
NetApp FAS6240 190,675 1.17
EMC VG8 135,521 1.92
EMC NS-G8 110,621 2.32
NetApp FAS3270 101,183 1.66
NetApp FAS3250 100,922 1.76

Throughput SPECsfs2008_nfs.v3 Ops/sec = the Performance Metric
Overall Response Time = the corresponding Response Time Metric

Complete SPECsfs2008 benchmark results may be found at http://www.spec.org/sfs2008/results/sfs2008.html.

Configuration Summary

Storage Configuration:

Oracle ZFS Storage ZS3-2 storage system in clustered configuration
2 x Oracle ZFS Storage ZS3-2 controllers, each with
4 x 2.1 GHz Intel Xeon E5-2658 processors
512 GB memory
8 x Sun Disk shelves
3 x shelves with 24 x 900 GB 10K RPM SAS-2 drives
3 x shelves with 20 x 900 GB 10K RPM SAS-2 drives
2 x shelves with 20 x 900 GB 10K RPM SAS-2 drives and 4 x 73 GB SAS-2 flash-enabled write-cache

Benchmark Description

SPECsfs2008 is the latest version of the Standard Performance Evaluation Corporation (SPEC) benchmark suite measuring file server throughput and response time, providing a standardized method for comparing performance across different vendor platforms. SPECsfs2008 results summarize the server's capabilities with respect to the number of operations that can be handled per second, as well as the overall latency of the operations. The suite is a follow-on to the SFS97_R1 benchmark, adding a CIFS workload, an updated NFSv3 workload, support for additional client platforms, and a new test harness and reporting/submission framework.

 

See Also

Disclosure Statement

SPEC and SPECsfs are registered trademarks of Standard Performance Evaluation Corporation (SPEC). Results as of September 10, 2013, for more information see www.spec.org. Oracle ZFS Storage ZS3-2 Appliance 210,535 SPECsfs2008_nfs.v3 Ops/sec, 1.12 msec ORT, NetApp FAS6240 190,675 SPECsfs2008_nfs.v3 Ops/Sec, 1.17 msec ORT, EMC Celerra VG8 Server Failover Cluster, 2 Data Movers (1 stdby) / Symmetrix VMAX 135,521 SPECsfs2008_nfs.v3 Ops/Sec, 1.92 msec ORT, EMC Celerra Gateway NS-G8 Server Failover Cluster, 3 Datamovers (1 stdby) / Symmetrix V-Max 110,621 SPECsfs2008_nfs.v3 Ops/Sec, 2.32 msec ORT. NetApp FAS3270 101,183 SPECsfs2008_nfs.v3 Ops/Sec, 1.66 msec ORT. NetApp FAS3250 100,922 SPECsfs2008_nfs.v3 Ops/Sec, 1.76 msec ORT.

Wednesday Jun 12, 2013

SPARC T5-4 Produces World Record Single Server TPC-H @3000GB Benchmark Result

Oracle's SPARC T5-4 server delivered world record single server performance of 409,721 QphH@3000GB with price/performance of $3.94/QphH@3000GB on the TPC-H @3000GB benchmark. This result shows that the 4-chip SPARC T5-4 server is significantly faster than the 8-chip server results from IBM (POWER7 based) and HP (Intel x86 based).

This result demonstrates a complete data warehouse solution that shows the performance both of individual and concurrent query processing streams, faster loading, and refresh of the data during business operations. The SPARC T5-4 server delivers superior performance and cost efficiency when compared to the IBM POWER7 result.

  • The SPARC T5-4 server with four SPARC T5 processors is 2.1 times faster than the IBM Power 780 server with eight POWER7 processors and 2.5 times faster than the HP ProLiant DL980 G7 server with eight x86 processors on the TPC-H @3000GB benchmark. The SPARC T5-4 server also delivered better performance per core than these eight processor systems from IBM and HP.

  • The SPARC T5-4 server with four SPARC T5 processors is 2.1 times faster than the IBM Power 780 server with eight POWER7 processors on the TPC-H @3000GB benchmark.

  • The SPARC T5-4 server costs 38% less per $/QphH@3000GB compared to the IBM Power 780 server with the TPC-H @3000GB benchmark.

  • The SPARC T5-4 server took 2 hours, 6 minutes, 4 seconds for data loading while the IBM Power 780 server took 2.8 times longer.

  • The SPARC T5-4 server executed the first refresh function (RF1) in 19.4 seconds, the IBM Power 780 server took 7.6 times longer.

  • The SPARC T5-4 server with four SPARC T5 processors is 2.5 times faster than the HP ProLiant DL980 G7 server with the same number of cores on the TPC-H @3000GB benchmark.

  • The SPARC T5-4 server took 2 hours, 6 minutes, 4 seconds for data loading while the HP ProLiant DL980 G7 server took 4.1 times longer.

  • The SPARC T5-4 server executed the first refresh function (RF1) in 19.4 seconds, the HP ProLiant DL980 G7 server took 8.9 times longer.

  • The SPARC T5-4 server delivered 6% better performance than the SPARC Enterprise M9000-64 server and 2.1 times better than the SPARC Enterprise M9000-32 server on the TPC-H @3000GB benchmark.

Performance Landscape

The table lists the leading TPC-H @3000GB results for non-clustered systems.

TPC-H @3000GB, Non-Clustered Systems
System
Processor
P/C/T – Memory
Composite
(QphH)
$/perf
($/QphH)
Power
(QppH)
Throughput
(QthH)
Database Available
SPARC T5-4
3.6 GHz SPARC T5
4/64/512 – 2048 GB
409,721.8 $3.94 345,762.7 485,512.1 Oracle 11g R2 09/24/13
SPARC Enterprise M9000
3.0 GHz SPARC64 VII+
64/256/256 – 1024 GB
386,478.3 $18.19 316,835.8 471,428.6 Oracle 11g R2 09/22/11
SPARC T4-4
3.0 GHz SPARC T4
4/32/256 – 1024 GB
205,792.0 $4.10 190,325.1 222,515.9 Oracle 11g R2 05/31/12
SPARC Enterprise M9000
2.88 GHz SPARC64 VII
32/128/256 – 512 GB
198,907.5 $15.27 182,350.7 216,967.7 Oracle 11g R2 12/09/10
IBM Power 780
4.1 GHz POWER7
8/32/128 – 1024 GB
192,001.1 $6.37 210,368.4 175,237.4 Sybase 15.4 11/30/11
HP ProLiant DL980 G7
2.27 GHz Intel Xeon X7560
8/64/128 – 512 GB
162,601.7 $2.68 185,297.7 142,685.6 SQL Server 2008 10/13/10

P/C/T = Processors, Cores, Threads
QphH = the Composite Metric (bigger is better)
$/QphH = the Price/Performance metric in USD (smaller is better)
QppH = the Power Numerical Quantity
QthH = the Throughput Numerical Quantity

The following table lists data load times and refresh function times during the power run.

TPC-H @3000GB, Non-Clustered Systems
Database Load & Database Refresh
System
Processor
Data Loading
(h:m:s)
T5
Advan
RF1
(sec)
T5
Advan
RF2
(sec)
T5
Advan
SPARC T5-4
3.6 GHz SPARC T5
02:06:04 1.0x 19.4 1.0x 22.4 1.0x
IBM Power 780
4.1 GHz POWER7
05:51:50 2.8x 147.3 7.6x 133.2 5.9x
HP ProLiant DL980 G7
2.27 GHz Intel Xeon X7560
08:35:17 4.1x 173.0 8.9x 126.3 5.6x

Data Loading = database load time
RF1 = power test first refresh transaction
RF2 = power test second refresh transaction
T5 Advan = the ratio of time to T5 time

Complete benchmark results found at the TPC benchmark website http://www.tpc.org.

Configuration Summary and Results

Hardware Configuration:

SPARC T5-4 server
4 x SPARC T5 processors (3.6 GHz total of 64 cores, 512 threads)
2 TB memory
2 x internal SAS (2 x 300 GB) disk drives

External Storage:

12 x Sun Storage 2540-M2 array with Sun Storage 2501-M2 expansion trays, each with
24 x 15K RPM 300 GB drives, 2 controllers, 2 GB cache
2 x Brocade 6510 Fibre Channel Switches (48 x 16 Gbs port each)

Software Configuration:

Oracle Solaris 11.1
Oracle Database 11g Release 2 Enterprise Edition

Audited Results:

Database Size: 3000 GB (Scale Factor 3000)
TPC-H Composite: 409,721.8 QphH@3000GB
Price/performance: $3.94/QphH@3000GB
Available: 09/24/2013
Total 3 year Cost: $1,610,564
TPC-H Power: 345,762.7
TPC-H Throughput: 485,512.1
Database Load Time: 2:06:04

Benchmark Description

The TPC-H benchmark is a performance benchmark established by the Transaction Processing Council (TPC) to demonstrate Data Warehousing/Decision Support Systems (DSS). TPC-H measurements are produced for customers to evaluate the performance of various DSS systems. These queries and updates are executed against a standard database under controlled conditions. Performance projections and comparisons between different TPC-H Database sizes (100GB, 300GB, 1000GB, 3000GB, 10000GB, 30000GB and 100000GB) are not allowed by the TPC.

TPC-H is a data warehousing-oriented, non-industry-specific benchmark that consists of a large number of complex queries typical of decision support applications. It also includes some insert and delete activity that is intended to simulate loading and purging data from a warehouse. TPC-H measures the combined performance of a particular database manager on a specific computer system.

The main performance metric reported by TPC-H is called the TPC-H Composite Query-per-Hour Performance Metric (QphH@SF, where SF is the number of GB of raw data, referred to as the scale factor). QphH@SF is intended to summarize the ability of the system to process queries in both single and multiple user modes. The benchmark requires reporting of price/performance, which is the ratio of the total HW/SW cost plus 3 years maintenance to the QphH. A secondary metric is the storage efficiency, which is the ratio of total configured disk space in GB to the scale factor.

Key Points and Best Practices

  • Twelve of Oracle's Sun Storage 2540-M2 arrays with Sun Storage 2501-M2 expansion trays were used for the benchmark. Each contains 24 15K RPM drives and is connected to a single dual port 16Gb FC HBA using 2 ports through a Brocade 6510 Fibre Channel switch.

  • The SPARC T5-4 server achieved a peak IO rate of 33 GB/sec from the Oracle database configured with this storage.

  • Oracle Solaris 11.1 required very little system tuning.

  • Some vendors try to make the point that storage ratios are of customer concern. However, storage ratio size has more to do with disk layout and the increasing capacities of disks – so this is not an important metric when comparing systems.

  • The SPARC T5-4 server and Oracle Solaris efficiently managed the system load of two thousand Oracle Database parallel processes.

  • Six Sun Storage 2540-M2/2501-M2 arrays were mirrored to another six Sun Storage 2540-M2/25001-M2 arrays on which all of the Oracle database files were placed. IO performance was high and balanced across all the arrays.

  • The TPC-H Refresh Function (RF) simulates periodical refresh portion of Data Warehouse by adding new sales and deleting old sales data. Parallel DML (parallel insert and delete in this case) and database log performance are a key for this function and the SPARC T5-4 server outperformed both the IBM POWER7 server and HP ProLiant DL980 G7 server. (See the RF columns above.)

See Also

Disclosure Statement

TPC-H, QphH, $/QphH are trademarks of Transaction Processing Performance Council (TPC). For more information, see www.tpc.org, results as of 6/7/13. Prices are in USD. SPARC T5-4 www.tpc.org/3288; SPARC T4-4 www.tpc.org/3278; SPARC Enterprise M9000 www.tpc.org/3262; SPARC Enterprise M9000 www.tpc.org/3258; IBM Power 780 www.tpc.org/3277; HP ProLiant DL980 www.tpc.org/3285. 

Friday Mar 29, 2013

SPARC T5 System Performance for Encryption Microbenchmark

The cryptography benchmark suite was internally developed by Oracle to measure the maximum throughput of in-memory, on-chip encryption operations that a system can perform. Multiple threads are used to achieve the maximum throughput. Systems powered by Oracle's SPARC T5 processor show outstanding performance on the tested encryption operations, beating Intel processor based systems.

  • A SPARC T5 processor running Oracle Solaris 11.1 runs from 2.4x to 4.4x faster on AES 256-bit key encryption than the Intel E5-2690 processor running in-memory encryption of 32 KB blocks using CFB128, CBC, CCM and GCM modes fully hardware subscribed.

  • AES CFB mode is used by the Oracle Database 11g for Transparent Data Encryption (TDE) which provides security to database storage.

Performance Landscape

Presented below are results for running encryption using the AES cipher with the CFB, CBC, CCM and GCM modes for key sizes of 128, 192 and 256. Decryption performance was similar and is not presented. Results are presented as MB/sec (10**6).

Encryption Performance – AES-CFB

Performance is presented for in-memory AES-CFB128 mode encryption. Multiple key sizes of 256-bit, 192-bit and 128-bit are presented. The encryption was performance on 32 KB of pseudo-random data (same data for each run).

AES-CFB
Microbenchmark Performance (MB/sec)
Processor GHz Chips Performance Software Environment
AES-256-CFB
SPARC T5 3.60 2 54,396 Oracle Solaris 11.1, libsoftcrypto + libumem
Intel E5-2690 2.90 2 12,823 IPP/AES-NI
AES-192-CFB
SPARC T5 3.60 2 61,000 Oracle Solaris 11.1, libsoftcrypto + libumem
Intel E5-2690 2.90 2 14,928 IPP/AES-NI
AES-128-CFB
SPARC T5 3.60 2 68,695 Oracle Solaris 11.1, libsoftcrypto + libumem
Intel E5-2690 2.90 2 17,824 IPP/AES-NI

Encryption Performance – AES-CBC

Performance is presented for in-memory AES-CBC mode encryption. Multiple key sizes of 256-bit, 192-bit and 128-bit are presented. The encryption was performance on 32 KB of pseudo-random data (same data for each run).

AES-CBC
Microbenchmark Performance (MB/sec)
Processor GHz Chips Performance Software Environment
AES-256-CBC
SPARC T5 3.60 2 56,933 Oracle Solaris 11.1, libsoftcrypto + libumem
Intel E5-2690 2.90 2 12,822 IPP/AES-NI
AES-192-CBC
SPARC T5 3.60 2 63,767 Oracle Solaris 11.1, libsoftcrypto + libumem
Intel E5-2690 2.90 2 14,915 IPP/AES-NI
AES-128-CBC
SPARC T5 3.60 2 72,508 Oracle Solaris 11.1, libsoftcrypto + libumem
SPARC T4 2.85 2 31,085 Oracle Solaris 11.1, libsoftcrypto + libumem
Intel X5690 3.47 2 20,721 IPP/AES-NI
Intel E5-2690 2.90 2 17,823 IPP/AES-NI

Encryption Performance – AES-CCM

Performance is presented for in-memory AES-CCM mode encryption with authentication. Multiple key sizes of 256-bit, 192-bit and 128-bit are presented. The encryption/authentication was performance on 32 KB of pseudo-random data (same data for each run).

AES-CCM
Microbenchmark Performance (MB/sec)
Processor GHz Chips Performance Software Environment
AES-256-CCM
SPARC T5 3.60 2 29,431 Oracle Solaris 11.1, libsoftcrypto + libumem
Intel E5-2690 2.90 2 12,493 IPP/AES-NI
AES-192-CCM
SPARC T5 3.60 2 33,715 Oracle Solaris 11.1, libsoftcrypto + libumem
Intel E5-2690 2.90 2 14,507 IPP/AES-NI
AES-128-CCM
SPARC T5 3.60 2 39,188 Oracle Solaris 11.1, libsoftcrypto + libumem
Intel E5-2690 2.90 2 17,256 IPP/AES-NI

Encryption Performance – AES-GCM

Performance is presented for in-memory AES-GCM mode encryption with authentication. Multiple key sizes of 256-bit, 192-bit and 128-bit are presented. The encryption/authentication was performance on 32 KB of pseudo-random data (same data for each run).

AES-GCM
Microbenchmark Performance (MB/sec)
Processor GHz Chips Performance Software Environment
AES-256-GCM
SPARC T5 3.60 2 34,101 Oracle Solaris 11.1, libsoftcrypto + libumem
Intel E5-2690 2.90 2 13,520 IPP/AES-NI
AES-192-GCM
SPARC T5 3.60 2 36,852 Oracle Solaris 11.1, libsoftcrypto + libumem
Intel E5-2690 2.90 2 14,159 IPP/AES-NI
AES-128-GCM
SPARC T5 3.60 2 39,003 Oracle Solaris 11.1, libsoftcrypto + libumem
Intel E5-2690 2.90 2 14,877 IPP/AES-NI

Configuration Summary

SPARC T5-2 server
2 x SPARC T5 processor, 3.6 GHz
512 GB memory
Oracle Solaris 11.1 SRU 4.2

Sun Server X3-2 server
2 x E5-2690 processors, 2.90 GHz
128 GB memory

Benchmark Description

The benchmark measures cryptographic capabilities in terms of general low-level encryption, in-memory and on-chip using various ciphers, including AES-128-CFB, AES-192-CFB, AES-256-CFB, AES-128-CBC, AES-192-CBC, AES-256-CBC, AES-128-CCM, AES-192-CCM, AES-256-CCM, AES-128-GCM, AES-192-GCM and AES-256-GCM.

The benchmark results were obtained using tests created by Oracle which use various application interfaces to perform the various ciphers. They were run using optimized libraries for each platform to obtain the best possible performance.

See Also

Disclosure Statement

Copyright 2013, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 3/26/2013.

Tuesday Mar 26, 2013

SPARC T5-8 Produces TPC-C Benchmark Single-System World Record Performance

Oracle's SPARC T5-8 server equipped with eight 3.6 GHz SPARC T5 processors obtained a result of 8,552,523 tpmC on the TPC-C benchmark. This result is a world record for single servers. Oracle demonstrated this world record database performance running Oracle Database 11g Release 2 Enterprise Edition with Partitioning.

  • The SPARC T5-8 server delivered a single system TPC-C world record of 8,552,523 tpmC with a price performance of $0.55/tpmC using Oracle Database 11g Release 2. This configuration is available 09/25/13.

  • The SPARC T5-8 server has 2.8x times better performance than the 4-processor IBM x3850 X5 system equipped with Intel Xeon processors.

  • The SPARC T5-8 server delivers 1.7x the performance compared to the next best eight processor result.

  • The SPARC T5-8 server delivers 2.4x the performance per chip compared to the IBM Power 780 3-node cluster result.

  • The SPARC T5-8 server delivers 1.8x the performance per chip compared to the IBM Power 780 non-clustered result.

  • The SPARC T5-8 server delivers 1.4x the performance per chip compared to the IBM Flex x240 Xeon result.

  • The SPARC T5-8 server delivers 1.7x the performance per chip compared to the Sun Server X2-8 system equipped with Intel Xeon processors.

  • The SPARC T5-8 server demonstrated over 3.1 Million 4KB IOP/sec with 76% idle, in a separate IO intensive workload, demonstrating its ability process a large IO workload with lots of processing headroom.

  • This result showed Oracle's integrated hardware and software stacks provide industry leading performance.

  • The Oracle solution utilized Oracle Solaris 11.1 with Oracle Database 11g Enterprise Edition with Partitioning and demonstrates stability and performance with this highly secure operating environment to produce the world record TPC-C benchmark performance.

Performance Landscape

Select TPC-C results (sorted by tpmC, bigger is better)

System p/c/t tpmC Price
/tpmC
Avail Database Memory
Size
IBM Power 780 Cluster 24/192/768 10,366,254 1.38 USD 10/13/2010 IBM DB2 9.7 6 TB
SPARC T5-8 8/128/1024 8,552,523 0.55 USD 9/25/2013 Oracle 11g R2 4 TB
IBM Power 595 32/64/128 6,085,166 2.81 USD 12/10/2008 IBM DB2 9.5 4 TB
Sun Server X2-8 8/80/160 5,055,888 0.89 USD 7/10/2012 Oracle 11g R2 4 TB
IBM x3850 X5 4/40/80 3,014,684 0.59 USD 7/11/2011 IBM DB2 9.7 3 TB
IBM Flex x240 2/16/32 1,503,544 0.53 USD 8/16/2012 IBM DB2 9.7 768 GB
IBM Power 780 2/8/32 1,200,011 0.69 USD 10/13/2010 IBM DB2 9.5 512 GB

p/c/t - processors, cores, threads
Avail - availability date

Oracle and IBM TPC-C Response times

System tpmC Response Time (sec)
New Order 90th%
Response Time (sec)
New Order Average
IBM Power 780 Cluster 10,366,254 2.100 1.137
SPARC T5-8 8,552,523 0.410 0.234
IBM Power 595 6,085,166 1.690 1.220
IBM Power 780 1,200,011 0.694 0.403

Oracle uses Response Time New Order Average and Response Time New Order 90th% for comparison between Oracle and IBM.

Graphs of Oracle's and IBM's Response Time New Order Average and Response Time New Order 90th% can be found in the full disclosure reports on TPC's website TPC-C Official Result Page.

Configuration Summary and Results

Hardware Configuration:

Server
SPARC T5-8
8 x 3.6 GHz SPARC T5
4 TB memory
2 x 600 GB 10K RPM SAS2 internal disks
12 x 8 Gbs FC HBA

Data Storage
54 x Sun Server X3-2L systems configured as COMSTAR heads, each with
2 x 2.4 GHz Intel Xeon E5-2609 processors
16 GB memory
4 x Sun Flash Accelerator F40 PCIe Cards (400 GB each)
12 x 3 TB 7.2K RPM 3.5" SAS disks
2 x 600 GB 10K RPM SAS2 disks
2 x Brocade 6510 switches

Redo Storage
2 x Sun Server X3-2L systems configured as COMSTAR heads, each with
2 x 2.4 GHz Intel Xeon E5-2609 processors
16 GB memory
12 x 3 TB 7.2K RPM 3.5" SAS disks
2 x 600 GB 10K RPM SAS2 disks

Clients
16 x Sun Server X3-2 servers, each with
2 x 2.9 GHz Intel Xeon E5-2690 processors
64 GB memory
2 x 600 GB 10K RPM SAS2 disks

Software Configuration:

Oracle Solaris 11.1 SRU 4.5 (for SPARC T5-8)
Oracle Solaris 11.1 (for COMSTAR systems)
Oracle Database 11g Release 2 Enterprise Edition with Partitioning
Oracle iPlanet Web Server 7.0 U5
Oracle Tuxedo CFS-R

Results:

System: SPARC T5-8
tpmC: 8,552,523
Price/tpmC: 0.55 USD
Available: 9/25/2013
Database: Oracle Database 11g
Cluster: no
Response Time New Order Average: 0.234 seconds

Benchmark Description

TPC-C is an OLTP system benchmark. It simulates a complete environment where a population of terminal operators executes transactions against a database. The benchmark is centered around the principal activities (transactions) of an order-entry environment. These transactions include entering and delivering orders, recording payments, checking the status of orders, and monitoring the level of stock at the warehouses.

Key Points and Best Practices

  • Oracle Database 11g Release 2 Enterprise Edition with Partitioning scales easily to this high level of performance.

  • COMSTAR (Common Multiprotocol SCSI Target) is the software framework that enables an Oracle Solaris host to serve as a SCSI Target platform. COMSTAR uses a modular approach to break the huge task of handling all the different pieces in a SCSI target subsystem into independent functional modules which are glued together by the SCSI Target Mode Framework (STMF). The modules implementing functionality at SCSI level (disk, tape, medium changer etc.) are not required to know about the underlying transport. And the modules implementing the transport protocol (FC, iSCSI, etc.) are not aware of the SCSI-level functionality of the packets they are transporting. The framework hides the details of allocation providing execution context and cleanup of SCSI commands and associated resources and simplifies the task of writing the SCSI or transport modules.

  • Oracle iPlanet Web Server middleware is used for the client tier of the benchmark. Each web server instance supports more than a quarter-million users while satisfying the response time requirement from the TPC-C benchmark.

See Also

Disclosure Statement

TPC Benchmark C, tpmC, and TPC-C are trademarks of the Transaction Processing Performance Council (TPC). SPARC T5-8 (8/128/1024) with Oracle Database 11g Release 2 Enterprise Edition with Partitioning, 8,552,523 tpmC, $0.55 USD/tpmC, available 9/25/2013. IBM Power 780 Cluster (24/192/768) with DB2 ESE 9.7, 10,366,254 tpmC, $1.38 USD/tpmC, available 10/13/2010. IBM x3850 X5 (4/40/80) with DB2 ESE 9.7, 3,014,684 tpmC, $0.59 USD/tpmC, available 7/11/2011. IBM x3850 X5 (4/32/64) with DB2 ESE 9.7, 2,308,099 tpmC, $0.60 USD/tpmC, available 5/20/2011. IBM Flex x240 (2/16/32) with DB2 ESE 9.7, 1,503,544 tpmC, $0.53 USD/tpmC, available 8/16/2012. IBM Power 780 (2/8/32) with IBM DB2 9.5, 1,200,011 tpmC, $0.69 USD/tpmC, available 10/13/2010. Source: http://www.tpc.org/tpcc, results as of 3/26/2013.

SPARC T5-8 Realizes SAP SD Two-Tier Benchmark World Record for 8 Chip Systems

Oracle's SPARC T5-8 server produced a world record result for systems with 8 processors on the two-tier SAP Sales and Distribution (SD) Standard Application Benchmark.

  • The SPARC T5-8 server achieved 40,000 users with running the two-tier SAP Sales and Distribution (SD) Standard Application Benchmark using SAP Enhancement package 5 for SAP ERP 6.0.

  • The SPARC T5-8 server is 57% faster than the IBM Power 760 8-chip running SAP Enhancement Package 5 for SAP ERP 6.0.

  • The SPARC T5-8 server delivers 5% more SAP users per chip than the IBM Power 780 12-chip running SAP Enhancement Package 5 for SAP ERP 6.0.

  • The SPARC T5-8 server solution was run with Oracle Solaris 11 and used Oracle Database 11g.

Performance Landscape

SAP-SD 2-Tier Performance Table (in decreasing performance order). SAP ERP 6.0 Enhancement Pack 5 for SAP ERP 6.0 results (New version of the benchmark as of May 2012).

System OS
Database
Users SAPS SAP
ERP/ECC
Release
Date
SPARC T5-8 Server
8x SPARC T5 @3.6 GHz, 2 TB
Solaris 11
Oracle 11g
40,000 220,950 EHP5 for SAP
ERP 6.0
25-Mar-13
IBM Power 760
8xPOWER7+ @3.41 GHz, 1024 GB
AIX 7.1
DB2 10
25,488 139,220 EHP5 for SAP
ERP 6.0
5-Feb-13

SAP ERP 6.0 Enhancement Pack 4 for SAP ERP 6.0 Results
(Old version of the benchmark, obsolete at the end of April, 2012)

System OS
Database
Users SAPS SAP
ERP/ECC
Release
Date
IBM Power 795
32xPOWER7 @4 GHz, 4 TB
AIX 7.1
DB2 9.7
126,063 688,630 EHP4 for SAP
ERP 6.0
15-Nov-10
SPARC Enterprise Server M9000
64xSPARC64 VII @2.88 GHz, 1152 GB
Solaris 10
Oracle 10g
32,000 175,600 EHP4 for SAP
ERP 6.0
18-Nov-09

Complete benchmark results may be found at the SAP benchmark website http://www.sap.com/benchmark.

Configuration Summary and Results

Hardware Configuration:

1 x SPARC T5-8 server with
8 x 3.6 GHz SPARC T5 processors (total of 8 processors / 128 cores / 1024 threads)
2 TB memory
1 x Sun ZFS Storage 7420 appliance with
72 x 600 GB 15K RPM 3.5" SAS-2 disk
32 x 32 GB memory
1 x Sun Fire X4270 M2 server configured as a COMSTAR device with
10 x 2 TB 7.2K 3.5" SAS disk
18 x 8 GB memory

Software Configuration:

Oracle Solaris 11
SAP enhancement package 5 for SAP ERP 6.0
Oracle Database 11g Release 2

Certified Results (published by SAP)

Performance:
40,000 benchmark users
SAP Certification:
2013008

Benchmark Description

The SAP Standard Application SD (Sales and Distribution) Benchmark is a two-tier ERP business test that is indicative of full business workloads of complete order processing and invoice processing, and demonstrates the ability to run both the application and database software on a single system. The SAP Standard Application SD Benchmark represents the critical tasks performed in real-world ERP business environments.

SAP is one of the premier world-wide ERP application providers, and maintains a suite of benchmark tests to demonstrate the performance of competitive systems on the various SAP products.

See Also

Disclosure Statement

Two-tier SAP Sales and Distribution (SD) Standard Application benchmarks SAP Enhancement package 5 for SAP ERP 6.0 as of 3/26/13:

SPARC T5-8 (8 processors, 128 cores, 1024 threads) 40,000 SAP SD users, 8 x 3.6 GHz SPARC T5, 2 TB memory, Oracle Database 11g, Oracle Solaris 11, Cert# 2013008. IBM Power 760 (8 processors, 48 cores, 192 threads) 25,488 SAP SD users, 8 x 3.41 GHz IBM POWER7+, 1024 GB memory, DB2 10, AIX 7.1, Cert#2013004.

Two-tier SAP Sales and Distribution (SD) Standard Application benchmarks SAP Enhancement package 4 for SAP ERP 6.0 as of 4/30/12:

IBM Power 795 (32 processors, 256 cores, 1024 threads) 126,063 SAP SD users, 32 x 4 GHz IBM POWER7, 4 TB memory, DB2 9.7, AIX7.1, Cert#2010046. SPARC Enterprise Server M9000 (64 processors, 256 cores, 512 threads) 32,000 SAP SD users, 64 x 2.88 GHz SPARC64 VII, 1152 GB memory, Oracle Database 10g, Oracle Solaris 10, Cert# 2009046.

SAP, R/3, reg TM of SAP AG in Germany and other countries. More info www.sap.com/benchmark

SPARC M5-32 Produces SAP SD Two-Tier Benchmark World Record for SAP Enhancement Package 5 for SAP ERP 6.0

Oracle's SPARC M5-32 server produced a world record result on the two-tier SAP Sales and Distribution (SD) Standard Application Benchmark using SAP Enhancement package 5 for SAP ERP 6.0.

  • The SPARC M5-32 server achieved 85,050 users running the two-tier SAP Sales and Distribution (SD) Standard Application Benchmark using SAP Enhancement package 5 for SAP ERP 6.0.

  • The SPARC M5-32 solution was run with Oracle Solaris 11 and used the Oracle Database 11g.

Performance Landscape

SAP-SD 2-Tier Performance Table (in decreasing performance order). SAP ERP 6.0 Enhancement Pack 5 for SAP ERP 6.0 results (new version of the benchmark as of May, 2012).

System OS
Database
Users SAPS SAP
ERP/ECC
Release
Date
SPARC M5-32 Server
32x SPARC M5 @3.6 GHz, 4 TB
Solaris 11
Oracle 11g
85,050 472,600 EHP5 for SAP
ERP 6.0
25-Mar-13
IBM Power 780
12xPOWER7+ @3.72 GHz, 1536 GB
AIX 7.1
DB2 10
57,024 311,720 EHP5 for SAP
ERP 6.0
3-Oct-12
IBM Power 760
8xPOWER7+ @3.41 GHz, 1024 GB
AIX 7.1
DB2 10
25,488 139,220 EHP5 for SAP
ERP 6.0
5-Feb-13

SAP ERP 6.0 Enhancement Pack 4 for SAP ERP 6.0 Results
(Old version of the benchmark, obsolete at the end of April, 2012)

System OS
Database
Users SAPS SAP
ERP/ECC
Release
Date
IBM Power 795
32xPOWER7 @4 GHz, 4 TB
AIX 7.1
DB2 9.7
126,063 688,630 EHP4 for SAP
ERP 6.0
15-Nov-10
SPARC Enterprise Server M9000
64xSPARC64 VII @2.88 GHz, 1152 GB
Solaris 10
Oracle 10g
32,000 175,600 EHP4 for SAP
ERP 6.0
18-Nov-09

Complete benchmark results may be found at the SAP benchmark website http://www.sap.com/benchmark.

Configuration Summary and Results

Hardware Configuration:

1 x SPARC M5-32 server with
32 x 3.6 GHz SPARC M5 processors (total of 32 processors / 192 cores / 1536 threads)
4 TB memory
1 x Sun Storage 2540-M2 (12 x 300 GB 5K RPM 3.5" SAS-2 disk & 2 GB cache)
Flash Storage

Software Configuration:

Oracle Solaris 11
SAP enhancement package 5 for SAP ERP 6.0
Oracle Database 11g Release 2

Certified Results (published by SAP)

Performance: 85,050 benchmark users
SAP Certification: 2013009

Benchmark Description

The SAP Standard Application SD (Sales and Distribution) Benchmark is a two-tier ERP business test that is indicative of full business workloads of complete order processing and invoice processing, and demonstrates the ability to run both the application and database software on a single system. The SAP Standard Application SD Benchmark represents the critical tasks performed in real-world ERP business environments.

SAP is one of the premier world-wide ERP application providers, and maintains a suite of benchmark tests to demonstrate the performance of competitive systems on the various SAP products.

See Also

Disclosure Statement

Two-tier SAP Sales and Distribution (SD) standard application benchmarks, SAP Enhancement package 5 for SAP ERP 6.0 as of 3/26/13:

SPARC M5-32 (32 processors, 192 cores, 1536 threads) 85,050 SAP SD users, 32 x 3.6 GHz SPARC M5, 4 TB memory, Oracle Database 11g, Oracle Solaris 11, Cert# 2013009. IBM Power 780 (12 processors, 96 cores, 384 threads) 57,024 SAP SD users, 12 x 3.72 GHz IBM POWER7+, 1536 GB memory, DB210, AIX7.1, Cert#2012033. IBM Power 760 (8 processors, 48 cores, 192 threads) 25,488 SAP SD users, 8 x 3.41 GHz IBM POWER7+, 1024 GB memory, DB2 10, AIX 7.1, Cert#2013004.

Two-tier SAP Sales and Distribution (SD) standard application benchmarks, SAP Enhancement package 4 for SAP ERP 6.0 as of 3/26/13:

IBM Power 795 (32 processors, 256 cores, 1024 threads) 126,063 SAP SD users, 32 x 4 GHz IBM POWER7, 4 TB memory, DB2 9.7, AIX7.1, Cert#2010046. SPARC Enterprise Server M9000 (64 processors, 256 cores, 512 threads) 32,000 SAP SD users, 64 x 2.88 GHz SPARC64 VII, 1152 GB memory, Oracle Database 10g, Oracle Solaris 10, Cert# 2009046.

SAP, R/3, reg TM of SAP AG in Germany and other countries. More info www.sap.com/benchmark

SPARC T5 Systems Deliver SPEC CPU2006 Rate Benchmark Multiple World Records

Oracle's SPARC T5 processor based systems delivered world record performance on the SPEC CPU2006 rate benchmarks. This was accomplished with Oracle Solaris 11.1 and Oracle Solaris Studio 12.3 software.

SPARC T5-8

  • The SPARC T5-8 server delivered world record SPEC CPU2006 rate benchmark results for systems with eight processors.

  • The SPARC T5-8 server achieved scores of 3750 SPECint_rate2006, 3490 SPECint_rate_base2006, 3020 SPECfp_rate2006, and 2770 SPECfp_rate_base2006.

  • The SPARC T5-8 server beat the 8 processor IBM Power 760 with POWER7+ processors by 1.7x on the SPECint_rate2006 benchmark and 2.2x on the SPECfp_rate2006 benchmark.

  • The SPARC T5-8 server beat the 8 processor IBM Power 780 with POWER7 processors by 35% on the SPECint_rate2006 benchmark and 14% on the SPECfp_rate2006 benchmark.

  • The SPARC T5-8 server beat the 8 processor HP DL980 G7 with Intel Xeon E7-4870 processors by 1.7x on the SPECint_rate2006 benchmark and 2.1x on the SPECfp_rate2006 benchmark.

SPARC T5-1B

  • The SPARC T5-1B server module delivered world record SPEC CPU2006 rate benchmark results for systems with one processor.

  • The SPARC T5-1B server module achieved scores of 467 SPECint_rate2006, 436 SPECint_rate_base2006, 369 SPECfp_rate2006, and 350 SPECfp_rate_base2006.

  • The SPARC T5-1B server module beat the 1 processor IBM Power 710 Express with a POWER7 processor by 62% on the SPECint_rate2006 benchmark and 49% on the SPECfp_rate2006 benchmark.

  • The SPARC T5-1B server module beat the 1 processor NEC Express5800/R120d-1M with an Intel Xeon E5-2690 processor by 31% on the SPECint_rate2006 benchmark. The SPARC T5-1B server module beat the 1 processor Huawei RH2288 V2 with an Intel Xeon E5-2690 processor by 44% on the SPECfp_rate2006 benchmark.

  • The SPARC T5-1B server module beat the 1 processor Supermicro A+ 1012G-MTF with an AMD Operton 6386 SE processor by 51% on the SPECint_rate2006 benchmark and 65% on the SPECfp_rate2006 benchmark.

Performance Landscape

Complete benchmark results are at the SPEC website, SPEC CPU2006 Results. The tables below provide the new Oracle results, as well as, select results from other vendors.

SPEC CPU2006 Rate Results – Eight Processors
System Processor ch/co/th * Peak Base
SPECint_rate2006
SPARC T5-8 SPARC T5, 3.6 GHz 8/128/1024 3750 3490
IBM Power 780 POWER7, 3.92 GHz 8/64/256 2770 2420
HP DL980 G7 Xeon E7-4870, 2.4 GHz 8/80/160 2180 2070
IBM Power 760 POWER7+, 3.42 GHz 8/48/192 2170 1480
Dell PowerEdge C6145 Opteron 6180 SE, 2.5 GHz 8/96/96 1670 1440
SPECfp_rate2006
SPARC T5-8 SPARC T5, 3.6 GHz 8/128/1024 3020 2770
IBM Power 780 POWER7, 3.92 GHz 8/64/256 2640 2410
HP DL980 G7 Xeon E7-4870, 2.4 GHz 8/80/160 1430 1380
IBM Power 760 POWER7+, 3.42 GHz 8/48/192 1400 1130
Dell PowerEdge C6145 Opteron 6180 SE, 2.5 GHz 8/96/96 1310 1200

* ch/co/th — chips / cores / threads enabled

SPEC CPU2006 Rate Results – One Processor
System Processor ch/co/th * Peak Base
SPECint_rate2006
SPARC T5-1B SPARC T5, 3.6 GHz 1/16/128 467 436
NEC Express5800/R120d-1M Xeon E5-2690, 2.9 GHz 1/8/16 357 343
Supermicro A+ 1012G-MTF Opteron 6386 SE, 2.8 GHz 1/16/16 309 269
IBM Power 710 Express POWER7, 3.556 GHz 1/8/32 289 255
SPECfp_rate2006
SPARC T5-1B SPARC T5, 3.6 GHz 1/16/128 369 350
Huawei RH2288 V2 Xeon E5-2690, 2.9 GHz 1/8/16 257 250
IBM Power 710 Express POWER7, 3.556 GHz 1/8/32 248 229
Supermicro A+ 1012G-MTF Opteron 6386 SE, 2.8 GHz 1/16/16 223 199

* ch/co/th — chips / cores / threads enabled

Configuration Summary

Systems Under Test:

SPARC T5-8
8 x 3.6 GHz SPARC T5 processors
4 TB memory (128 x 32 GB dimms)
2 TB on 8 x 600 GB 10K RPM SAS disks, arranged as 4 x 2-way mirrors
Oracle Solaris 11.1 (SRU 4.6)
Oracle Solaris Studio 12.3 1/13 PSE

SPARC T5-1B
1 x 3.6 GHz SPARC T5 processor
256 GB memory (16 x 16 GB dimms)
157 GB on 2 x 300 GB 10K RPM SAS disks (mirrored)
Oracle Solaris 11.1 (SRU 3.4)
Oracle Solaris Studio 12.3 1/13 PSE

Benchmark Description

SPEC CPU2006 is SPEC's most popular benchmark. It measures:

  • Speed — single copy performance of chip, memory, compiler
  • Rate — multiple copy (throughput)

The benchmark is also divided into integer intensive applications and floating point intensive applications:

  • integer: 12 benchmarks derived from real applications such as perl, gcc, XML processing, and pathfinding
  • floating point: 17 benchmarks derived from real applications, including chemistry, physics, genetics, and weather.

It is also divided depending upon the amount of optimization allowed:

  • base: optimization is consistent per compiled language, all benchmarks must be compiled with the same flags per language.
  • peak: specific compiler optimization is allowed per application.

The overall metrics for the benchmark which are commonly used are:

  • SPECint_rate2006, SPECint_rate_base2006: integer, rate
  • SPECfp_rate2006, SPECfp_rate_base2006: floating point, rate
  • SPECint2006, SPECint_base2006: integer, speed
  • SPECfp2006, SPECfp_base2006: floating point, speed

See Also

Disclosure Statement

SPEC and the benchmark names SPECfp and SPECint are registered trademarks of the Standard Performance Evaluation Corporation. Results as of March 26, 2013 from www.spec.org and this report. SPARC T5-8: 3750 SPECint_rate2006, 3490 SPECint_rate_base2006, 3020 SPECfp_rate2006, 2770 SPECfp_rate_base2006; SPARC T5-1B: 467 SPECint_rate2006, 436 SPECint_rate_base2006, 369 SPECfp_rate2006, 350 SPECfp_rate_base2006.

SPARC T5-2 Achieves JD Edwards EnterpriseOne Benchmark World Records

Oracle produced World Record batch throughput for single system results on Oracle's JD Edwards EnterpriseOne Day-in-the-Life benchmark using Oracle's SPARC T5-2 server running Oracle Solaris Containers and consolidating JD Edwards EnterpriseOne, Oracle WebLogic servers and the Oracle Database 11g Release 2. There are two workloads tested: online plus batch workload and batch-only workload.

Online plus batch workload:

  • The SPARC T5-2 server delivered a result of 12,000 online users at 180 msec average response time while concurrently executing a mix of JD Edwards EnterpriseOne long and short batch processes at 198.5 UBEs/min (Universal Batch Engines per minute).

  • The SPARC T5-2 server online plus batch throughput is 2.7x higher than the IBM Power 770 server, both running 12,000 online users.

  • The SPARC T5-2 server online plus batch throughput is 6x higher per chip than the IBM Power 770 server. The SPARC T5-2 server has 2 chips and the IBM Power 770 has 4 chips, both ran 12,000 online users.

  • The SPARC T5-2 server online plus batch throughput is 3x higher per core than the IBM Power 770 server. Both servers have 32 cores and ran 12,000 online users.

Batch-only workload:

  • The SPARC T5-2 server delivered throughput of 880 UBEs/min while executing the batch-only workload (Long and Short batch processes).

  • The SPARC T5-2 server batch-only throughput is 2.7x faster per chip than the IBM Power 770 server. The SPARC T5-2 server has 2 chips and the IBM Power 770 has 4 chips.

  • The SPARC T5-2 server batch-only throughput is 1.4x higher per core than the IBM Power 770 server. Both servers have 32 cores.

  • The SPARC T5-2 server batch-only throughput is 61% faster than the Cisco multiple system solution.

  • The SPARC T5-2 server batch-only throughput is 5x faster per chip than the Cisco UCS B200/B250 M2 servers. The SPARC T5-2 server has 2 chips and the Cisco 3 server solution has 6 chips.

  • The SPARC T5-2 server batch-only throughput is 18x higher per core than the Cisco UCS B200/B250 M2 servers. The SPARC T5-2 server has 32 cores while the Cisco solution utilized 36 cores.

Both workloads:

  • The SPARC T5-2 server offers a 5.4x cost savings for the application server when compared to the IBM Power 770 application server.

  • The SPARC T5-2 server running Oracle Solaris Containers and consolidating JD Edwards EnterpriseOne, Oracle WebLogic servers and the Oracle Database 11g Release 2 utilized a maximum 65% of the available CPU power, leaving headroom for additional processing.

  • The database server in a shared-server configuration allows for optimized CPU resource utilization and significant memory savings on the SPARC T5-2 server without sacrificing performance.

Performance Landscape

JD Edwards EnterpriseOne Day in the Life (DIL) Benchmark
Consolidated Online with Batch Workload
System Rack
Units (U)
Batch
Rate
(UBEs/min)
Online
Users
Users/
U
UBEs/
Core
UBEs/
Chip
Version
SPARC T5-2 (2 x SPARC T5, 3.6 GHz) 3 198.5 12000 4000 6.2 99 9.0.2
IBM Power 770 (4 x POWER7, 3.3 GHz) 8 65 12000 1500 2.0 16 9.0.2

Batch Rate (UBEs/min) — Batch transaction rate in UBEs per minute.

JD Edwards EnterpriseOne Batch Only Benchmark
System Rack
Units (U)
Batch
Rate
(UBEs/min)
UBEs/
U
UBEs/
Core
UBEs/
Chip
Version
SPARC T5-2 (2 x SPARC T5, 3.6 GHz) 3 880 267 25 440 9.0.2
IBM Power 770 (4 x POWER7, 3.3 GHz) 8 643 81 20 161 9.0.2
2 x Cisco B200 M2 (2 x X5690, 3.46 GHz)
1 x Cisco B250 M2 (2 x X5680, 3.33 GHz)
3 546 182 15 91 9.0.2

Configuration Summary

Hardware Configuration:

1 x SPARC T5-2 server with
2 x SPARC T5 processors, 3.6 GHz
512 GB memory
4 x 300 GB 10K RPM SAS internal disk
2 x 300 GB internal SSD
4 x Sun Flash Accelerator F40 PCIe Card (4 x 93 GB)

Software Configuration:

Oracle Solaris 10 1/13
Oracle Solaris Containers
JD Edwards EnterpriseOne 9.0.2
JD Edwards EnterpriseOne Tools (8.98.4.2)
Oracle WebLogic Server 11g (10.3.4)
Oracle HTTP Server 11g
Oracle Database 11g Release 2 (11.2.0.3)

Benchmark Description

JD Edwards EnterpriseOne is an integrated applications suite of Enterprise Resource Planning (ERP) software. Oracle offers 70 JD Edwards EnterpriseOne application modules to support a diverse set of business operations.

Oracle's Day in the Life (DIL) kit is a suite of scripts that exercises most common transactions of JD Edwards EnterpriseOne applications, including business processes such as payroll, sales order, purchase order, work order, and manufacturing processes, such as ship confirmation. These are labeled by industry acronyms such as SCM, CRM, HCM, SRM and FMS. The kit's scripts execute transactions typical of a mid-sized manufacturing company.

  • The workload consists of online transactions and the UBE – Universal Business Engine workload of 61 short and 4 long UBEs.

  • LoadRunner runs the DIL workload, collects the user’s transactions response times and reports the key metric of Combined Weighted Average Transaction Response time.

  • The UBE processes workload runs from the JD Enterprise Application server.

    • Oracle's UBE processes come as three flavors:
      • Short UBEs < 1 minute engage in Business Report and Summary Analysis,
      • Mid UBEs > 1 minute create a large report of Account, Balance, and Full Address,
      • Long UBEs > 2 minutes simulate Payroll, Sales Order, night only jobs.
    • The UBE workload generates large numbers of PDF files reports and log files.
    • The UBE Queues are categorized as the QBATCHD, a single threaded queue for large and medium UBEs, and the QPROCESS queue for short UBEs run concurrently.

Oracle's UBE process performance metric is Number of Maximum Concurrent UBE processes at transaction rate, UBEs/minute.

Key Points and Best Practices

Four Oracle Solaris processors sets were used with Oracle Solaris Containers assigned to the processor sets as follows:

  • one JD Edwards EnterpriseOne Application server, two Oracle WebLogic Servers 11g Release 1 each coupled with an Oracle Web Tier HTTP server instances (online workload), each in an Oracle Solaris Container (three total),

  • one JD Edwards EnterpriseOne Application server (for batch only workload) in an Oracle Solaris Container,

  • Oracle Database 11g Release 2.0.3 database in an Oracle Solaris Container,

  • the Oracle database log writer.

Other items of note:

  • Each Oracle WebLogic vertical cluster, with twelve managed instances, was configured in a dedicated webserver container in order to load balance users' requests and to provide the infrastructure to support high number of users with ease of deployment and high availability.

  • The database redo logs were configured on the raw disk partitions.

  • The mixed batch workload of 44 short UBEs and 8 long UBEs was executed concurrently with the 12,000 online application users, producing a sustained rate of 198.5 UBE/min.

See Also

Disclosure Statement

Copyright 2013, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 03/26/2013

SPARC T5-2 (SPARC T5-2 Server base package, 2xSPARC T5 16-core processors, 32x16GB-1066 DIMMS, 4x600GB 10K RPM 2.5. SAS-2 HDD,2x300GB SSDs, 4x Sun Flash Accelerator F40 PCIe Cards, 2x Power Cables) List Price $98,190. IBM Power 770 (IBM Power 770:9917 Model MMC, 2x3.3GHz 16-core, 32x one processor activation, 2xCEC Enclosure with IBM Bezel, I/O Backplane and System Midplane,2x Service Processor, 16x 0/64GB DDR3 Memory (4x16GB) DIMMS-1066MHz Power7 CoD Memory, 24x Activation of 1 GB DDR3 Power7 Memory, 10x Activation of 100GB DDR3 Power7 Memory, 2x Disk/Media Backplane. 2x 300GB SAS 15K RPM 2.5. HDD (AIX/Linux only), 1x SATA slimline DVD-RAM drive, 4x AC Power Supply 1925W) List Price $532,143. Source: ibm.com, collected 03/18/2013.

SPARC T5-2 Scores Siebel CRM Benchmark World Record

Oracle set a new world record for the Siebel Platform Sizing and Performance Program (PSPP) benchmark using Oracle's SPARC T5-2 servers for the application server with Oracle's Siebel CRM 8.1.1.4 Industry Applications and Oracle Database 11g Release 2 running on Oracle Solaris.

  • The SPARC T5-2 servers running the application tier achieved 40,000 users with sub-second response time and with throughput of 333,339 business transactions per hour on the Siebel PSPP benchmark.

  • The SPARC T5-2 servers in the application tier delivered 2 times better performance on a per chip basis compared to earlier published SPARC T4 numbers.

  • The Siebel 8.1.1.4 PSPP workload includes Siebel Call Center and Order Management System.

  • The SPARC T5-2 server used Oracle Solaris Zones which provide flexible, scalable and manageable virtualization to scale the application within and across multiple nodes.

Performance Landscape

Application Server Transactions/
hour
Users Users/
Core
Call
Center
Order
Mgmt
Response Times (sec)
2 x SPARC T5-2 (2 x SPARC T5 3.6 GHz) 333,339 40,000 625 0.110 0.608
3 x SPARC T4-2 (2 x SPARC T4 2.85 GHz) 239,748 29,000 604 0.165 0.925
2 x IBM Power 750 (POWER7 3.55 GHz, 16 active cores) 176,185 21,000 656 0.052 0.250

Oracle:
Call Center + Order Management
Transactions: 273,786 + 59,553
Users: 28,000 + 12,000

IBM:
Call Center + Order Management
Transactions: 144,457 + 31,728
Users: 14,700 + 6,300

Configuration Summary

Application Server Configuration:

2 x SPARC T5-2 servers, each with
2 x SPARC T5 processors, 3.6 GHz
512 GB memory
6 x 300 GB SAS internal disks
Oracle Solaris 10 8/11
Siebel CRM 8.1.1.4 SIA

Web Server Configuration:

1 x SPARC T4-1 server
1 x SPARC T4 processor, 2.85 GHz
128 GB memory
Oracle Solaris 10 8/11
iPlanet Web Server 7

Database Server Configuration:

1 x SPARC T4-2 server
2 x SPARC T4 processors, 2.85 GHz
256 GB memory
Flash Storage
Oracle Solaris 10 8/11
Oracle Database 11g Release 2 (11.2.0.2)

Benchmark Description

Siebel PSPP benchmark includes Call Center and Order Management:

  • Siebel Financial Services Call Center – Provides the most complete solution for sales and service, allowing customer service and telesales representatives to provide superior customer support, improve customer loyalty, and increase revenues through cross-selling and up-selling.

    High-level description of the use cases tested: Incoming Call Creates Opportunity, Quote and Order and Incoming Call Creates Service Request. Three complex business transactions are executed simultaneously for specific number of concurrent users. The ratios of these 3 scenarios were 30%, 40%, 30% respectively, which together were totaling 70% of all transactions simulated in this benchmark. Between each user operation and the next one, the think time averaged approximately 10, 13, and 35 seconds respectively.

  • Siebel Order Management – Oracle's Siebel Order Management allows employees such as salespeople and call center agents to create and manage quotes and orders through their entire life cycle. Siebel Order Management can be tightly integrated with back-office applications allowing users to perform tasks such as checking credit, confirming availability, and monitoring the fulfillment process.

    High-level description of the use cases tested: Order & Order Items Creation and Order Updates. Two complex Order Management transactions were executed simultaneously for specific number of concurrent users concurrently with aforementioned three Call Center scenarios above. The ratio of these 2 scenarios was 50% each, which together were totaling 30% of all transactions simulated in this benchmark. Between each user operation and the next one, the think time averaged approximately 20 and 67 seconds respectively.

Key Points and Best Practices

  • No processor cores or cache were activated or deactivated on the SPARC T-Series systems to achieve special benchmark effects.

See Also

Disclosure Statement

Copyright 2013, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 26 March 2013.

SPARC T5 Systems Produce Oracle TimesTen Benchmark World Record

The Oracle TimesTen In-Memory Database is optimized to run on Oracle's SPARC T5 processor platforms running Oracle Solaris 11. In this series of tests, systems with the new SPARC T5 processor were significantly faster than systems based on other processors. Two tests were run to explore TimesTen performance: a Mobile Call Processing test (based on customer workload) and Oracle's TimesTen Performance Throughput Benchmark (TPTBM). TimesTen version 11.2.2.4 was used for all tests.

  • On the TimesTen Performance Throughput Benchmark (TPTBM), SPARC T5-8 server produced a world record 59.9 million read transactions per second.

  • On the Mobile Call Processing test, the SPARC T5 processor achieves 2.4 times more throughput than the Intel Xeon E7-4870 processor. The two-chip SPARC T5-2 server is 22% faster than an x86 server with four Intel E7-4870 2.4 GHz processors.

  • On the TimesTen Performance Throughput Benchmark (TPTBM) read-only workload, the SPARC T5 processor achieves 2.2 times higher throughput than the Intel Xeon E7-4870 processor. On the same workload, the two-chip SPARC T5-2 server produces 10% more throughput than an x86 server with four Intel E7-4870 processors and has almost twice the performance of a 2-chip Intel E5-2680 system.

  • With the TPTBM read-only workload, the SPARC T5-8 server delivers 3.8x more throughput than a SPARC T5-2 Server, showing excellent scalability.

  • The SPARC T5 processor delivers over twice the performace of the previous generation SPARC T4 processor and over 4x the performace of the SPARC T3 processor, all in the same amount of space.

  • The SPARC T5-2 server delivers 2.4x the performace of the SPARC T4-2 server in the same 3U space. This is better performance than that of the SPARC T4-4 server which occupies 5U.

Performance Landscape

Mobile Call Processing Test Performance

Processor Tps
SPARC T5, 3.6 GHz 367,600
Intel Xeon E7-4870, 2.4 GHz 302,000
SPARC T4, 2.85 GHz 230,500

All systems measured using Oracle Solaris 11 and Oracle TimesTen In-Memory Database 11.2.2.4.1

TimesTen Performance Throughput Benchmark (TPTBM) Read-Only

System Processor Chips Tps Tps/
Chip
SPARC T5-8 SPARC T5, 3.6 GHz 8 59.9M 7.5M
SPARC T5-2 SPARC T5, 3.6 GHz 2 15.9M 7.9M
x86 Intel Xeon E7-4870, 2.4 GHz 4 14.5M 3.6M
SPARC T4-4 SPARC T4, 3.0 GHz 4 14.2M 3.6M
x86* Intel Xeon E5-2680, 2.7 GHz 2 8.5M 4.3
SPARC T4-2 SPARC T4, 2.85 GHz 2 6.5M 3.3M
SPARC T3-4 SPARC T3, 1.65 GHz 4 7.9M 1.9M
T5440 SPARC T2+, 1.4 GHz 4 3.1M 0.8M

All systems measured using Oracle Solaris 11 and Oracle TimesTen In-Memory Database 11.2.2.4.1

*Intel E5-2680 using Oracle Linux and Oracle TimesTen In-Memory Database 11.2.2.4.1

TimesTen Performance Throughput Benchmark (TPTBM) Update-Only

Processor Tps
SPARC T5, 3.6 GHz 1,031.7K
Intel Xeon E7-4870, 2.4 GHz 988.1K
Intel Xeon E5-2680, 2.7 GHz * 944.3K
SPARC T4, 3.0 GHz 678.0K

All systems measured using Oracle Solaris 11 and Oracle TimesTen In-Memory Database 11.2.2.4.1

*Intel E5-2680 using Oracle Linux and Oracle TimesTen In-Memory Database 11.2.2.4.1

Configuration Summary

Hardware Configurations:

SPARC T5-8 server
8 x SPARC T5 processors, 3.6 GHz
2 TB memory
1 x 8 Gbs FC Qlogic HBA
1 x 6 Gbs SAS HBA
2 x 300 GB internal disks
Oracle Solaris 11
TimesTen 11.2.2.4.1
1 x Sun Fire X4275 server configured as COMSTAR redo head (log)

SPARC T5-2 server
2 x SPARC T5 processors, 3.6 GHz
512 GB memory
1 x 8 Gbs FC Qlogic HBA
1 x 6 Gbs SAS HBA
2 x 300 GB internal disks
Oracle Solaris 11
TimesTen 11.2.2.4.1
1 x Sun Fire X4275 server configured as COMSTAR redo head (log)

SPARC T4-4 server
4 x SPARC T4 processors, 3.0 GHz
1 TB memory
1 x 8 Gbs FC Qlogic HBA
1 x 6 Gbs SAS HBA
6 x 300 GB internal disks
Oracle Solaris 11
TimesTen 11.2.2.4.1
Sun Storage F5100 Flash Array (80 x 24 GB flash modules)
1 x Sun Fire X4275 server configured as COMSTAR redo head (log)

SPARC T4-2 server
2 x SPARC T4 processors, 2.85 GHz
256 GB memory
1 x 8 Gbs FC Qlogic HBA
1 x 6 Gbs SAS HBA
4 x 300 GB internal disks
Oracle Solaris 11
TimesTen 11.2.2.4.1
Sun Storage F5100 Flash Array (40 x 24 GB flash modules)
1 x Sun Fire X4275 server configured as COMSTAR head

SPARC T3-4 server
4 x SPARC T3 processors, 1.6 GHz
512 GB memory
1 x 8 Gbs FC Qlogic HBA
8 x 146 GB internal disks
Oracle Solaris 11
TimesTen 11.2.2.4.1
1 x Sun Fire X4275 server configured as COMSTAR head

Intel Server x86_64
2 x Intel Xeon E5-2680 processors, 2.7 GHz
256 GB memory
4 x SSD SAS disks (log)
1 x 600 GB internal disks
Oracle Linux
TimesTen 11.2.2.4.1

Sun Server X2-4
4 x Intel Xeon E7-4870 processors, 2.4 GHz
512 GB memory
1 x 8 Gbs FC Qlogic HBA
6 x 146 GB internal disks
Oracle Solaris 11
TimesTen 11.2.2.4.1
1 x Sun Fire X4275 server configured as COMSTAR redo head (log)

Benchmark Descriptions

TimesTen Performance Throughput BenchMark (TPTBM) is shipped with TimesTen and measures the total throughput of the system. The benchmark workloads can be reads, inserts, updates, and delete operations, or a mix of them as required.

Mobile Call Processing is a customer-based workload for processing calls made by mobile phone subscribers. The workload has a mixture of read-only, update, and insert-only transactions. The peak throughput performance is measured from multiple concurrent processes executing the transactions until a peak performance is reached via saturation of the available resources.

Key Points and Best Practices

The Mobile Call Processing test utilized Oracle Solaris processor sets in all environments for optimum performance. This features isolates running processes from other processes in the system. Combined with parameters to limit memory pages to the lgroup within the processor set and isolating the processor set to a single processor within the system.

See Also

Disclosure Statement

Copyright 2013, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 26 March 2013.

SPARC T5-8 Delivers Oracle OLAP World Record Performance

Oracle's SPARC T5-8 server delivered world record query performance with near real-time analytic capability using the Oracle OLAP Perf Version 3 workload running Oracle Database 11g Release 2 on Oracle Solaris 11.

  • The maximum query throughput on the SPARC T5-8 server is 1.6x higher than that of the 8-chip Intel Xeon E7-8870 server. Both systems had sub-second response time.

  • The SPARC T5-8 server with the Oracle Database demonstrated the ability to support at least 600 concurrent users querying OLAP cubes (with no think time), processing 2.93 million analytic queries per hour with an average response time of 0.66 seconds per query. This performance was enabled by keeping the entire cube in-memory utilizing the 4 TB of memory on the SPARC T5-8 server.

  • Assuming a 60 second think time between query requests, the SPARC T5-8 server can support approximately 49,450 concurrent users with the same 0.66 sec response time.

  • The SPARC T5-8 server delivered 4.3x times the maximum query throughput of a SPARC T4-4 server.

  • The workload uses a set of realistic BI queries that run against an OLAP cube based on a 4 billion row fact table of sales data. The 4 billion rows are partitioned by month spanning 10 years.

  • The combination of the Oracle Database with the Oracle OLAP option running on a SPARC T5-8 server supports live data updates occurring concurrently with minimally impacted user query executions.

Performance Landscape

Oracle OLAP Perf Version 3 Benchmark
Oracle cube base on 4 billion fact table rows
10 years of data partitioned by month
System Queries/
hour
Users* Average Response
Time (sec)
0 sec think time 60 sec think time
SPARC T5-8 2,934,000 600 49,450 0.66
8-chip Intel Xeon E7-8870 1,823,000 120 30,500 0.19
SPARC T4-4 686,500 150 11,580 0.71

Configuration Summary and Results

SPARC T5-8 Hardware Configuration:

1 x SPARC T5-8 server with
8 x SPARC T5 processors, 3.6 GHz
4 TB memory
Data Storage and Redo Storage
1 x Sun Storage F5100 Flash Array (with 80 FMODs)
Oracle Solaris 11.1
Oracle Database 11g Release 2 (11.2.0.3) with Oracle OLAP option

Sun Server X2-8 Hardware Configuration:

1 x Sun Server X2-8 with
8 x Intel Xeon E7-8870 processors, 2.4 GHz
512 GB memory
Data Storage and Redo Storage
3 x StorageTek 2540/2501 array pairs
Oracle Solaris 10 10/12
Oracle Database 11g Release 2 (11.2.0.2) with Oracle OLAP option

SPARC T4-4 Hardware Configuration:

1 x SPARC T4-4 server with
4 x SPARC T4 processors, 3.0 GHz
1 TB memory
Data Storage
1 x Sun Fire X4275 (using COMSTAR)
2 x Sun Storage F5100 Flash Array (each with 80 FMODs)
Redo Storage
1 x Sun Fire X4275 (using COMSTAR with 8 HDD)
Oracle Solaris 11 11/11
Oracle Database 11g Release 2 (11.2.0.3) with Oracle OLAP option

Benchmark Description

The Oracle OLAP Perf Version 3 benchmark is a workload designed to demonstrate and stress the ability of the OLAP Option to deliver fast query, near real-time updates and rich calculations using a multi-dimensional model in the context of the Oracle data warehousing.

The bulk of the benchmark entails running a number of concurrent users, each issuing typical multidimensional queries against an Oracle cube. The cube has four dimensions: time, product, customer, and channel. Each query user issues approximately 150 different queries. One query chain may ask for total sales in a particular region (e.g South America) for a particular time period (e.g. Q4 of 2010) followed by additional queries which drill down into sales for individual countries (e.g. Chile, Peru, etc.) with further queries drilling down into individual stores, etc. Another query chain may ask for yearly comparisons of total sales for some product category (e.g. major household appliances) and then issue further queries drilling down into particular products (e.g. refrigerators, stoves. etc.), particular regions, particular customers, etc.

While the core of every OLAP Perf benchmark is real world query performance, the benchmark itself offers numerous execution options such as varying data set sizes, number of users, numbers of queries for any given user and cube update frequency. Version 3 of the benchmark is executed with a much larger number of query streams than previous versions and used a cube designed for near real-time updates. The results produced by version 3 of the benchmark are not directly comparable to results produced by previous versions of the benchmark.

The near real-time update capability is implemented along the following lines. A large Oracle cube, H, is built from a 4 billion row star schema, containing data up until the end of last business day. A second small cube, D, is then created which will contain all of today's new data coming in from outside the world. It will be updated every L minutes with the data coming in within the last L minutes. A third cube, R, joins cubes H and D for reporting purposes much like a view might join data from two tables. Calculations are installed into cube R. The use of a reporting cube which draws data from different storage cubes is a common practice.

Query users are never locked out of query operations while new data is added to the update cube. The point of the demonstration is to show that an Oracle OLAP system can be designed which results in data being no more than L minutes out of date, where L may be as low as just a few minutes. This is what is meant by near real-time analytics.

Key Points and Best Practices

  • Update performance of the D cube was optimized by running update processes in the FX class with a priority greater than 0. The maximum lag time between updates to the source fact table and data availability to query users (what was referred to as L in the benchmark description) was less than 3 minutes for the benchmark environment on the SPARC T5-8 server.

  • Building and querying cubes with the Oracle OLAP option requires a large temporary tablespace. Normally temporary tablespaces would reside on disk storage. However, because the SPARC T5-8 server used in this benchmark had 4 TB of main memory, it was possible to use main memory for the OLAP temporary tablespace. This was done by using files in /tmp for the temporary tablespace datafiles.

  • Since typical BI users are often likely to issue similar queries, either with the same, or different, constants in the where clauses, setting the init.ora parameter "cursor_sharing" to "force" provides for additional query throughput and a larger number of potential users.

  • Assuming the normal Oracle initialization parameters (e.g. SGA, PGA, processes etc.) are appropriately set, out of the box performance for the OLAP Perf workload should be close to what is reported here. Additional performance resulted from (a)using memory for the OLAP temporary tablespace (b)setting "cursor_sharing" to force.

  • For a given number of query users with zero think time, the main measured metrics are the average query response time and the query throughput. A derived metric is the maximum number of users the system can support, with the same response time, assuming some non-zero think time. The calculation of this maximum is from the well-known "response-time law"

      N = (rt + tt) * tp

    where rt is the average response time, tt is the think time and tp is the measured throughput.

    Setting tt to 60 seconds, rt to 0.66 seconds and tp to 815 queries/sec (2,934,000 queries/hour), the above formula shows that the SPARC T5-8 server will support 49,450 concurrent users with a think time of 60 seconds and an average response time of 0.66 seconds.

    For more information about the "response-time law" see chapter 3 from the book "Quantitative System Performance" cited below.

See Also

Disclosure Statement

Copyright 2013, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 03/26/2013.

SPARC T5-2 Achieves ZFS File System Encryption Benchmark World Record

Oracle continues to lead in enterprise security. Oracle's SPARC T5 processors combined with the Oracle Solaris ZFS file system demonstrate faster file system encryption than equivalent x86 systems using the Intel Xeon Processor E5-2600 Sequence chips which have AES-NI security instructions.

Encryption is the process where data is encoded for privacy and a key is needed by the data owner to access the encoded data.

  • The SPARC T5-2 server is 3.4x faster than a 2 processor Intel Xeon E5-2690 server running Oracle Solaris 11.1 that uses the AES-NI GCM security instructions for creating encrypted files.

  • The SPARC T5-2 server is 2.2x faster than a 2 processor Intel Xeon E5-2690 server running Oracle Solaris 11.1 that uses the AES-NI CCM security instructions for creating encrypted files.

  • The SPARC T5-2 server consumes a significantly less percentage of system resources as compared to a 2 processor Intel Xeon E5-2690 server.

Performance Landscape

Below are results running two different ciphers for ZFS encryption. Results are presented for runs without any cipher, labeled clear, and a variety of different key lengths. The results represent the maximum delivered values measured for 3 concurrent sequential write operations using 1M blocks. Performance is measured in MB/sec (bigger is better). System utilization is reported as %CPU as measured by iostat (smaller is better).

The results for the x86 server were obtained using Oracle Solaris 11.1 with performance bug fixes.

Encryption Using AES-GCM Ciphers

System GCM Encryption: 3 Concurrent Sequential Writes
Clear AES-256-GCM AES-192-GCM AES-128-GCM
MB/sec %CPU MB/sec %CPU MB/sec %CPU MB/sec %CPU
SPARC T5-2 server 3,918 7 3,653 14 3,676 15 3,628 14
SPARC T4-2 server 2,912 11 2,662 31 2,663 30 2,779 31
2-Socket Intel Xeon E5-2690 3,969 42 1,062 58 1,067 58 1,076 57
SPARC T5-2 vs x86 server 1.0x 3.4x 3.4x 3.4x

Encryption Using AES-CCM Ciphers

System CCM Encryption: 3 Concurrent Sequential Writes
Clear AES-256-CCM AES-192-CCM AES-128-CCM
MB/sec %CPU MB/sec %CPU MB/sec %CPU MB/sec %CPU
SPARC T5-2 server 3,862 7 3,665 15 3,622 14 3,707 12
SPARC T4-2 server 2,945 11 2,471 26 2,801 26 2,442 25
2-Socket Intel Xeon E5-2690 3,868 42 1,566 64 1,632 63 1,689 66
SPARC T5-2 vs x86 server 1.0x 2.3x 2.2x 2.2x

Configuration Summary

Storage Configuration:

Sun Storage 6780 array
4 CSM2 trays, each with 16 83GB 15K RPM drives
8x 8 GB/sec Fiber Channel ports per host
R0 Write cache enabled, controller mirroring off for peak write bandwidth
8 Drive R0 512K stripe pools mirrored via ZFS to storage

Sun Storage 6580 array
9 CSM2 trays, each with 16 136GB 15K RPM drives
8x 4 GB/sec Fiber Channel ports per host
R0 Write cache enabled, controller mirroring off for peak write bandwidth
4 Drive R0 512K stripe pools mirrored via ZFS to storage

Server Configuration:

SPARC T5-2 server
2 x SPARC T5 3.6 GHz processors
512 GB memory
Oracle Solaris 11.1

SPARC T4-2 server
2 x SPARC T4 2.85 GHz processors
256 GB memory
Oracle Solaris 11.1

Sun Server X3-2L server
2 x Intel Xeon E5-2690, 2.90 GHz processors
128 GB memory
Oracle Solaris 11.1

Switch Configuration:

Brocade 5300 FC switch

Benchmark Description

This benchmark evaluates secure file system performance by measuring the rate at which encrypted data can be written. The Vdbench tool was used to generate the IO load. The test performed 3 concurrent sequential write operations using 1M blocks to 3 separate files.

Key Points and Best Practices

  • ZFS encryption is integrated with the ZFS command set. Like other ZFS operations, encryption operations such as key changes and re-key are performed online.

  • Data is encrypted using AES (Advanced Encryption Standard) with key lengths of 256, 192, and 128 in the CCM and GCM operation modes.

  • The flexibility of encrypting specific file systems is a key feature.

  • ZFS encryption is inheritable to descendent file systems. Key management can be delegated through ZFS delegated administration.

  • ZFS encryption uses the Oracle Solaris Cryptographic Framework which gives it access to SPARC T5 and Intel Xeon E5-2690 processor hardware acceleration or to optimized software implementations of the encryption algorithms automatically.

  • On modern computers with multiple threads per core, simple statistics like %utilization measured in tools like iostat and vmstat are not "hard" indications of the resources that might be available for other processing. For example, 90% idle may not mean that 10 times the work can be done. So drawing numerical conclusions must be done carefully.

See Also

Disclosure Statement

Copyright 2013, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of March 26, 2013.

SPARC T5-2 Obtains Oracle Internet Directory Benchmark World Record Performance

Oracle's SPARC T5-2 server running Oracle Internet Directory (OID, Oracle's LDAP Directory Server) on Oracle Solaris 11 achieved a record result for LDAP searches/second with 1000 clients.

  • The SPARC T5-2 server running Oracle Internet Directory on Oracle Solaris 11 achieved a result of 944,624 LDAP searches/sec with an average latency of 1.05 ms with 1000 clients.

  • The SPARC T5-2 server running Oracle Internet Directory demonstrated 2.7x better throughput and 39% better latency improvement over similarly configured OID and SPARC T4 benchmark environment.

  • The SPARC T5-2 server running Oracle Internet Directory demonstrates 39% better throughput and latency for LDAP searches on core-to-core comparison over an x86 system configured with two Intel Xeon X5675 processors.

  • Oracle Internet Directory achieved near linear scaling on the SPARC T5-2 server with 68,399 LDAP searches/sec with 2 cores to 944,624 LDAP searches/sec with 32 cores.

  • Oracle Internet Directory and the SPARC T5-2 server achieved up to 12,453 LDAP modifys/sec with an average latency of 3.9 msec for 50 clients.

Performance Landscape

Oracle Internet Directory Tests
System c/c/th Search Modify Add
ops/sec lat (msec) ops/sec lat (msec) ops/sec lat (msec)
SPARC T5-2 2/32/256 944,624 1.05 12,453 3.9 888 17.9
SPARC T4-4 4/32/256 682,000 1.46 12,000 4.0 835 19.0

In order to compare the SPARC T5-2 to a 12-core x86 system, only 1 processor and 12 cores was used in the SPARC T5-2.

Oracle Internet Directory Tests – Comparing Against x86
System c/c/th Search Compare Authentication
ops/sec lat (msec) ops/sec lat (msec) ops/sec lat (msec)
SPARC T5-2 1/12/96 417,000 1.19 274,185 1.82 149,623 3.30
x86 2 x Intel X5675 2/12/24 299,000 1.66 202,433 2.46 119,198 4.19

Scaling runs were also made on the SPARC T5-2 server.

Scaling of Search Tests – SPARC T5-2
Cores Clients ops/sec Latency (msec)
32 1000 944,624 1.05
24 1000 823,741 1.21
16 500 560,709 0.88
8 500 270,601 1.84
4 100 145,879 0.68
2 100 68,399 1.46

Configuration Summary

System Under Test:

SPARC T5-2
2 x SPARC T5 processors, 3.6 GHz
512 GB memory
4 x 300 GB internal disks
Flash Storage (used for database and log files)
1 x Sun Storage 2540-M2 (used for redo logs)
Oracle Solaris 11.1
Oracle Internet Directory 11g Release 1 PS6 (11.1.1.7.0)
Oracle Database 11g Enterprise Edition 11.2.0.3 (64-bit)

Benchmark Description

Oracle Internet Directory (OID) is Oracle's LDAPv3 Directory Server. The throughput for five key operations are measured — Search, Compare, Modify, Mix and Add.

LDAP Search Operations Test

This test scenario involved concurrent clients binding once to OID and then performing repeated LDAP Search operations. The salient characteristics of this test scenario is as follows:

  • SLAMD SearchRate job was used.
  • BaseDN of the search is root of the DIT, the scope is SUBTREE, the search filter is of the form UID=, DN and UID are the required attribute.
  • Each LDAP search operation matches a single entry.
  • The total number concurrent clients was 1000 and were distributed amongst two client nodes.
  • Each client binds to OID once and performs repeated LDAP Search operations, each search operation resulting in the lookup of a unique entry in such a way that no client looks up the same entry twice and no two clients lookup the same entry and all entries are searched randomly.
  • In one run of the test, random entries from the 50 Million entries are looked up in as many LDAP Search operations.
  • Test job was run for 60 minutes.

LDAP Compare Operations Test

This test scenario involved concurrent clients binding once to OID and then performing repeated LDAP Compare operations on userpassword attribute. The salient characteristics of this test scenario is as follows:

  • SLAMD CompareRate job was used.
  • Each LDAP compare operation matches user password of user.
  • The total number concurrent clients was 1000 and were distributed amongst two client nodes.
  • Each client binds to OID once and performs repeated LDAP compare operations.
  • In one run of the test, random entries from the 50 Million entries are compared in as many LDAP compare operations.
  • Test job was run for 60 minutes.

LDAP Modify Operations Test

This test scenario consisted of concurrent clients binding once to OID and then performing repeated LDAP Modify operations. The salient characteristics of this test scenario is as follows:

  • SLAMD LDAP modrate job was used.
  • A total of 50 concurrent LDAP clients were used.
  • Each client updates a unique entry each time and a total of 50 Million entries are updated.
  • Test job was run for 60 minutes.
  • Value length was set to 11.
  • Attribute that is being modified is not indexed.

LDAP Mixed Load Test

The test scenario involved both the LDAP search and LDAP modify clients enumerated above.

  • The ratio involved 60% LDAP search clients, 30% LDAP bind and 10% LDAP modify clients.
  • A total of 1000 concurrent LDAP clients were used and were distributed on 2 client nodes.
  • Test job was run for 60 minutes.

LDAP Add Load Test

The test scenario involved concurrent clients adding new entries as follows.

  • Slamd standard add rate job is used.
  • A total of 500,000 entries were added.
  • A total of 16 concurrent LDAP clients were used.
  • Slamd add's inetorgperson objectclass entry with 21 attributes (includes operational attributes).

See Also

Disclosure Statement

Copyright 2013, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 26 March 2013.

SPARC T5-2 Scores Oracle FLEXCUBE Universal Banking Benchmark World Record Performance

Oracle's SPARC T5-2 server running Oracle FLEXCUBE Universal Banking Release 12 along with Oracle Database 11g Release 2 on Oracle Solaris 11 produced record results.

  • A SPARC T5-2 server running Oracle FLEXCUBE Universal Banking Release 12 and Oracle Real Application Clusters (RAC) Database 11g Release 2 processed 25 million accounts in 150 minutes for the End of Month workloads with an average utilization of 55% and 196 minutes utilizing 20 cores with an average cpu utilization of 85%.

  • A SPARC T5-2 server running Oracle FLEXCUBE Universal Banking Release 12 and Oracle Real Application Clusters (RAC) Database 11g Release 2 processed 25 million accounts in 56 minutes for the End of Day workload utilizing just 20 cores.

  • A SPARC T5-2 server running Oracle FLEXCUBE Universal Banking Release 12 achieved twice the throughput compared to a SPARC T4-4 server (which has twice the number of processors) for End of Month batch processing.

  • A SPARC T5-2 server running Oracle FLEXCUBE Universal Banking Release 12 achieved a record result processing 10.14 million accounts in 28 minutes for the End of Day workload with an average cpu utilization of 72% on a single server.

  • These results demonstrate how SPARC T5 processor systems along with Oracle Solaris 11 can benefit global, private and corporate financial institutions who are running Oracle FLEXCUBE Universal Banking. The uniquely co-engineered Oracle software and SPARC T5 processor based system unlock unique agile capabilities demanded by modern business environments.

  • The SPARC T5-2 system along with Oracle Solaris is able to provide a combination of uniquely essential characteristics that resonate with core values for a modern financial services institution.

  • The SPARC T5 processor based systems are capable of delivering higher performance and lower total cost of ownership (TCO) than older SPARC infrastructure, without introducing the unseen tax and risk of migrating applications away from older SPARC systems.

Performance Landscape

Oracle FLEXCUBE Universal Banking Release 12
End of Month Batch Processing
System Customer
Accounts
Time in Minutes Notes
SPARC T5-2 25M 150.66 RAC (two systems)
SPARC T5-2 10.14M 101.92 single instance
SPARC T4-4 10.14M 108.77 single instance
SPARC T4-4 5M 106.18 single instance, two chips

Oracle FLEXCUBE Universal Banking Release 12
End of Day Batch Processing
System Customer
Accounts
Time in Minutes Notes
SPARC T5-2 25M 56.05 RAC (two systems)
SPARC T5-2 10.14M 27.87 single instance

Configuration Summary

SPARC T5 Configuration:

1 x SPARC T5-2 with
2 x SPARC T5 processors, 3.6 GHz
512 GB memory
1 x SPARC T5-2 with
2 x SPARC T5 processors, 3.6 GHz
256 GB memory
Oracle Solaris 11 11/11
Oracle Database 11g Release 2 (RAC/ASM 11.2.0.3.0)
Oracle FLEXCUBE Universal Banking Release 12.0.1

SPARC T4 Configuration:

2 x SPARC T4-4, each with
4 x SPARC T4 processors, 3.0 GHz
512 GB memory
Oracle Solaris 11 11/11
Oracle Database 11g Release 2 (RAC/ASM 11.2.0.3.0)
Oracle FLEXCUBE Universal Banking Release 12.0.1

Storage Configuration:

3 x Sun Storage 6180 Array with
16 x 300 GB disks, 15K RPM (total of 48)
4 x Sun Storage CSM200 Expansion Trays, each with
16 x 73 GB disks, 15K RPM (total of 64)
Configured as RAID0, ASM external redundancy
Tests run with single instance DB (single node) and with ASM two nodes
ASM configuration identical on both 2 machines
Oracle Database 11g Release 2 ASM 11.2.0.3.0 64bit (19 TB)

Benchmark Description

The Oracle FLEXCUBE Universal Banking Release 12 benchmark models an actual customer bank with End of Cycle transaction batch jobs which typically execute during non-banking hours. This benchmark includes end of day accrual for savings and term deposit accounts, interest capitalization for saving accounts, and interest pay out for term deposit accounts. The results of the benchmark are certified by Oracle and a white paper is published.

End of cycle batch tests are conducted to measure the throughput capabilities of the system. It helps banks to decide the end of cycle processing window required to do the back office processing. The End of Day (EOD) batch test includes the following:

  • Mark End of Transaction Input
  • Value Dated Balance update
  • Interest and Charges (IC) Batch
  • Mark End of Financial Input
  • Mark End of Day
  • Date Change
  • Mark Transaction Input
The End of Month (EOM) batch test includes additional tests. These batches typically execute during non-banking hours. The goal is to ensure that the system is able to complete the batch operations for the planned volumes End of Day (EOD) within 60 minutes and End of Month (EOM) including interest and charges liquidation within 180 minutes.

 

See Also

Disclosure Statement

Copyright 2013, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 26 March 2013.

Thursday Nov 08, 2012

SPARC T4-4 Delivers World Record Performance on Oracle OLAP Perf Version 2 Benchmark

Oracle's SPARC T4-4 server delivered world record performance with subsecond response time on the Oracle OLAP Perf Version 2 benchmark using Oracle Database 11g Release 2 running on Oracle Solaris 11.

  • The SPARC T4-4 server achieved throughput of 430,000 cube-queries/hour with an average response time of 0.85 seconds and the median response time of 0.43 seconds. This was achieved by using only 60% of the available CPU resources leaving plenty of headroom for future growth.

Performance Landscape

Oracle OLAP Perf Version 2 Benchmark
4 Billion Fact Table Rows
System Queries/
hour
Users* Response Time (sec)
Average Median
SPARC T4-4 430,000 7,300 0.85 0.43

* Users - the supported number of users with a given think time of 60 seconds

Configuration Summary and Results

Hardware Configuration:

SPARC T4-4 server with
4 x SPARC T4 processors, 3.0 GHz
1 TB memory
Data Storage
1 x Sun Fire X4275 (using COMSTAR)
2 x Sun Storage F5100 Flash Array (each with 80 FMODs)
Redo Storage
1 x Sun Fire X4275 (using COMSTAR with 8 HDD)

Software Configuration:

Oracle Solaris 11 11/11
Oracle Database 11g Release 2 (11.2.0.3) with Oracle OLAP option

Benchmark Description

The Oracle OLAP Perf Version 2 benchmark is a workload designed to demonstrate and stress the Oracle OLAP product's core features of fast query, fast update, and rich calculations on a multi-dimensional model to support enhanced Data Warehousing.

The bulk of the benchmark entails running a number of concurrent users, each issuing typical multidimensional queries against an Oracle OLAP cube. The cube has four dimensions: time, product, customer, and channel. Each query user issues approximately 150 different queries. One query chain may ask for total sales in a particular region (e.g South America) for a particular time period (e.g. Q4 of 2010) followed by additional queries which drill down into sales for individual countries (e.g. Chile, Peru, etc.) with further queries drilling down into individual stores, etc. Another query chain may ask for yearly comparisons of total sales for some product category (e.g. major household appliances) and then issue further queries drilling down into particular products (e.g. refrigerators, stoves. etc.), particular regions, particular customers, etc.

Results from version 2 of the benchmark are not comparable with version 1. The primary difference is the type of queries along with the query mix.

Key Points and Best Practices

  • Since typical BI users are often likely to issue similar queries, with different constants in the where clauses, setting the init.ora prameter "cursor_sharing" to "force" will provide for additional query throughput and a larger number of potential users. Except for this setting, together with making full use of available memory, out of the box performance for the OLAP Perf workload should provide results similar to what is reported here.

  • For a given number of query users with zero think time, the main measured metrics are the average query response time, the median query response time, and the query throughput. A derived metric is the maximum number of users the system can support achieving the measured response time assuming some non-zero think time. The calculation of the maximum number of users follows from the well-known response-time law

      N = (rt + tt) * tp

    where rt is the average response time, tt is the think time and tp is the measured throughput.

    Setting tt to 60 seconds, rt to 0.85 seconds and tp to 119.44 queries/sec (430,000 queries/hour), the above formula shows that the T4-4 server will support 7,300 concurrent users with a think time of 60 seconds and an average response time of 0.85 seconds.

    For more information see chapter 3 from the book "Quantitative System Performance" cited below.

See Also

Disclosure Statement

Copyright 2012, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 11/2/2012.

Improved Performance on PeopleSoft Combined Benchmark using SPARC T4-4

Oracle's SPARC T4-4 server running Oracle's PeopleSoft HCM 9.1 combined online and batch benchmark achieved a world record 18,000 concurrent users experiencing subsecond response time while executing a PeopleSoft Payroll batch job of 500,000 employees in 32.4 minutes.

  • This result was obtained with a SPARC T4-4 server running Oracle Database 11g Release 2, a SPARC T4-4 server running PeopleSoft HCM 9.1 application server and a SPARC T4-2 server running Oracle WebLogic Server in the web tier.

  • The SPARC T4-4 server running the application tier used Oracle Solaris Zones which provide a flexible, scalable and manageable virtualization environment.

  • The average CPU utilization on the SPARC T4-2 server in the web tier was 17%, on the SPARC T4-4 server in the application tier it was 59%, and on the SPARC T4-4 server in the database tier was 47% (online and batch) leaving significant headroom for additional processing across the three tiers.

  • The SPARC T4-4 server used for the database tier hosted Oracle Database 11g Release 2 using Oracle Automatic Storage Management (ASM) for database files management with I/O performance equivalent to raw devices.

Performance Landscape

Results are presented for the PeopleSoft HRMS Self-Service and Payroll combined benchmark. The new result with 128 streams shows significant improvement in the payroll batch processing time with little impact on the self-service component response time.

PeopleSoft HRMS Self-Service and Payroll Benchmark
Systems Users Ave Response
Search (sec)
Ave Response
Save (sec)
Batch
Time (min)
Streams
SPARC T4-2 (web)
SPARC T4-4 (app)
SPARC T4-4 (db)
18,000 0.988 0.539 32.4 128
SPARC T4-2 (web)
SPARC T4-4 (app)
SPARC T4-4 (db)
18,000 0.944 0.503 43.3 64

The following results are for the PeopleSoft HRMS Self-Service benchmark that was previous run. The results are not directly comparable with the combined results because they do not include the payroll component.

PeopleSoft HRMS Self-Service 9.1 Benchmark
Systems Users Ave Response
Search (sec)
Ave Response
Save (sec)
Batch
Time (min)
Streams
SPARC T4-2 (web)
SPARC T4-4 (app)
2x SPARC T4-2 (db)
18,000 1.048 0.742 N/A N/A

The following results are for the PeopleSoft Payroll benchmark that was previous run. The results are not directly comparable with the combined results because they do not include the self-service component.

PeopleSoft Payroll (N.A.) 9.1 - 500K Employees (7 Million SQL PayCalc, Unicode)
Systems Users Ave Response
Search (sec)
Ave Response
Save (sec)
Batch
Time (min)
Streams
SPARC T4-4 (db)
N/A N/A N/A 30.84 96

Configuration Summary

Application Configuration:

1 x SPARC T4-4 server with
4 x SPARC T4 processors, 3.0 GHz
512 GB memory
Oracle Solaris 11 11/11
PeopleTools 8.52
PeopleSoft HCM 9.1
Oracle Tuxedo, Version 10.3.0.0, 64-bit, Patch Level 031
Java Platform, Standard Edition Development Kit 6 Update 32

Database Configuration:

1 x SPARC T4-4 server with
4 x SPARC T4 processors, 3.0 GHz
256 GB memory
Oracle Solaris 11 11/11
Oracle Database 11g Release 2
PeopleTools 8.52
Oracle Tuxedo, Version 10.3.0.0, 64-bit, Patch Level 031
Micro Focus Server Express (COBOL v 5.1.00)

Web Tier Configuration:

1 x SPARC T4-2 server with
2 x SPARC T4 processors, 2.85 GHz
256 GB memory
Oracle Solaris 11 11/11
PeopleTools 8.52
Oracle WebLogic Server 10.3.4
Java Platform, Standard Edition Development Kit 6 Update 32

Storage Configuration:

1 x Sun Server X2-4 as a COMSTAR head for data
4 x Intel Xeon X7550, 2.0 GHz
128 GB memory
1 x Sun Storage F5100 Flash Array (80 flash modules)
1 x Sun Storage F5100 Flash Array (40 flash modules)

1 x Sun Fire X4275 as a COMSTAR head for redo logs
12 x 2 TB SAS disks with Niwot Raid controller

Benchmark Description

This benchmark combines PeopleSoft HCM 9.1 HR Self Service online and PeopleSoft Payroll batch workloads to run on a unified database deployed on Oracle Database 11g Release 2.

The PeopleSoft HRSS benchmark kit is a Oracle standard benchmark kit run by all platform vendors to measure the performance. It's an OLTP benchmark where DB SQLs are moderately complex. The results are certified by Oracle and a white paper is published.

PeopleSoft HR SS defines a business transaction as a series of HTML pages that guide a user through a particular scenario. Users are defined as corporate Employees, Managers and HR administrators. The benchmark consist of 14 scenarios which emulate users performing typical HCM transactions such as viewing paycheck, promoting and hiring employees, updating employee profile and other typical HCM application transactions.

All these transactions are well-defined in the PeopleSoft HR Self-Service 9.1 benchmark kit. This benchmark metric is the weighted average response search/save time for all the transactions.

The PeopleSoft 9.1 Payroll (North America) benchmark demonstrates system performance for a range of processing volumes in a specific configuration. This workload represents large batch runs typical of a ERP environment during a mass update. The benchmark measures five application business process run times for a database representing large organization. They are Paysheet Creation, Payroll Calculation, Payroll Confirmation, Print Advice forms, and Create Direct Deposit File. The benchmark metric is the cumulative elapsed time taken to complete the Paysheet Creation, Payroll Calculation and Payroll Confirmation business application processes.

The benchmark metrics are taken for each respective benchmark while running simultaneously on the same database back-end. Specifically, the payroll batch processes are started when the online workload reaches steady state (the maximum number of online users) and overlap with online transactions for the duration of the steady state.

Key Points and Best Practices

  • Two PeopleSoft Domain sets with 200 application servers each on a SPARC T4-4 server were hosted in 2 separate Oracle Solaris Zones to demonstrate consolidation of multiple application servers, ease of administration and performance tuning.

  • Each Oracle Solaris Zone was bound to a separate processor set, each containing 15 cores (total 120 threads). The default set (1 core from first and third processor socket, total 16 threads) was used for network and disk interrupt handling. This was done to improve performance by reducing memory access latency by using the physical memory closest to the processors and offload I/O interrupt handling to default set threads, freeing up cpu resources for Application Servers threads and balancing application workload across 240 threads.

  • A total of 128 PeopleSoft streams server processes where used on the database node to complete payroll batch job of 500,000 employees in 32.4 minutes.

See Also

Disclosure Statement

Copyright 2012, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 8 November 2012.

Tuesday Oct 02, 2012

World Record Oracle E-Business Consolidated Workload on SPARC T4-2

Oracle set a World Record for the Oracle E-Business Suite Standard Medium multiple-online module benchmark using Oracle's SPARC T4-2 and SPARC T4-4 servers which ran the application and database.

  • Oracle's SPARC T4 servers demonstrate performance leadership and world-record results on Oracle E-Business Suite Applications R12 OLTP benchmark by publishing the first result using multiple concurrent online application modules with Oracle Database 11g Release 2 running Solaris.

  •  

  • This results shows that a multi-tier configuration of SPARC T4 servers running the Oracle E-Business Suite R12.1.2 application and Oracle Database 11g Release 2 is capable of supporting 4,100 online users with outstanding response-times, executing a mix of complex transactions consolidating 4 Oracle E-Business modules (iProcurement, Order Management, Customer Service and HR Self-Service).

  •  

  • The SPARC T4-2 server in the application tier utilized about 65% and the SPARC T4-4 server in the database tier utilized about 30%, providing significant headroom for additional Oracle E-Business Suite R12.1.2 processing modules, more online users, and future growth.

  •  

  • Oracle E-Business Suite Applications were run in Oracle Solaris Containers on SPARC T4 servers and provides a consolidation platform for multiple E-Business instances.

  •  

Performance Landscape

Multiple Online Modules (Self-Service, Order-Management, iProcurement, Customer-Service)
Medium Configuration
System Users Average
Response Time
90th Percentile
Response Time
SPARC T4-2 4,100 2.08 sec 2.52 sec

Configuration Summary

Application Tier Configuration:

1 x SPARC T4-2 server
2 x SPARC T4 processors, 2.85 GHz
256 GB memory
3 x 300 GB internal disks
Oracle Solaris 10
Oracle E-Business Suite 12.1.2

Database Tier Configuration:

1 x SPARC T4-4 server
4 x SPARC T4 processors, 3.0 GHz
256 GB memory
2 x 300 GB internal disks
Oracle Solaris 10
Oracle Solaris Containers
Oracle Database 11g Release 2

Storage Configuration:

1 x Sun Storage F5100 Flash Array (80 x 24 GB flash modules)

Benchmark Description

The Oracle R12 E-Business Suite Standard Benchmark combines online transaction execution by simulated users with multiple online concurrent modules to model a typical scenario for a global enterprise. The online component exercises the common UI flows which are most frequently used by a majority of our customers. This benchmark utilized four concurrent flows of OLTP transactions, for Order to Cash, iProcurement, Customer Service and HR Self-Service and measured the response times. The selected flows model simultaneous business activities inclusive of managing customers, services, products and employees.

See Also

Disclosure Statement

Oracle E-Business Suite R12 medium multiple-online module benchmark, SPARC T4-2, SPARC T4, 2.85 GHz, 2 chips, 16 cores, 128 threads, 256 GB memory, SPARC T4-4, SPARC T4, 3.0 GHz, 4 chips, 32 cores, 256 threads, 256 GB memory, average response time 2.08 sec, 90th percentile response time 2.52 sec, Oracle Solaris 10, Oracle Solaris Containers, Oracle E-Business Suite 12.1.2, Oracle Database 11g Release 2, Results as of 9/30/2012.

World Record Siebel PSPP Benchmark on SPARC T4 Servers

Oracle's SPARC T4 servers set a new World Record for Oracle's Siebel Platform Sizing and Performance Program (PSPP) benchmark suite. The result used Oracle's Siebel Customer Relationship Management (CRM) Industry Applications Release 8.1.1.4 and Oracle Database 11g Release 2 running Oracle Solaris on three SPARC T4-2 and two SPARC T4-1 servers.

  • The SPARC T4 servers running the Siebel PSPP 8.1.1.4 workload which includes Siebel Call Center and Order Management System demonstrates impressive throughput performance of the SPARC T4 processor by achieving 29,000 users.

  • This is the first Siebel PSPP 8.1.1.4 benchmark supporting 29,000 concurrent users with a rate of 239,748 Business Transactions/hour.

  • The benchmark demonstrates vertical and horizontal scalability of Siebel CRM Release 8.1.1.4 on SPARC T4 servers.

Performance Landscape

Systems Txn/hr Users Call Center Order
Management
Response Times (sec)
1 x SPARC T4-1 (1 x SPARC T4 2.85 GHz) – Web
3 x SPARC T4-2 (2 x SPARC T4 2.85 GHz) – App/Gateway
1 x SPARC T4-1 (1 x SPARC T4 2.85 GHz) – DB
239,748 29,000 0.165 0.925

Oracle:
Call Center + Order Management
Transactions: 197,128 + 42,620
Users: 20300 + 8700

Configuration Summary

Web Server Configuration:

1 x SPARC T4-1 server
1 x SPARC T4 processor, 2.85 GHz
128 GB memory
Oracle Solaris 10 8/11
iPlanet Web Server 7

Application Server Configuration:

3 x SPARC T4-2 servers, each with
2 x SPARC T4 processor, 2.85 GHz
256 GB memory
3 x 300 GB SAS internal disks
Oracle Solaris 10 8/11
Siebel CRM 8.1.1.4 SIA

Database Server Configuration:

1 x SPARC T4-1 server
1 x SPARC T4 processor, 2.85 GHz
128 GB memory
Oracle Solaris 11 11/11
Oracle Database 11g Release 2 (11.2.0.2)

Storage Configuration:

1 x Sun Storage F5100 Flash Array
80 x 24 GB flash modules

Benchmark Description

Siebel 8.1 PSPP benchmark includes Call Center and Order Management:

  • Siebel Financial Services Call Center – Provides the most complete solution for sales and service, allowing customer service and telesales representatives to provide superior customer support, improve customer loyalty, and increase revenues through cross-selling and up-selling.

    High-level description of the use cases tested: Incoming Call Creates Opportunity, Quote and Order and Incoming Call Creates Service Request . Three complex business transactions are executed simultaneously for specific number of concurrent users. The ratios of these 3 scenarios were 30%, 40%, 30% respectively, which together were totaling 70% of all transactions simulated in this benchmark. Between each user operation and the next one, the think time averaged approximately 10, 13, and 35 seconds respectively.

  • Siebel Order Management – Oracle's Siebel Order Management allows employees such as salespeople and call center agents to create and manage quotes and orders through their entire life cycle. Siebel Order Management can be tightly integrated with back-office applications allowing users to perform tasks such as checking credit, confirming availability, and monitoring the fulfillment process.

    High-level description of the use cases tested: Order & Order Items Creation and Order Updates. Two complex Order Management transactions were executed simultaneously for specific number of concurrent users concurrently with aforementioned three Call Center scenarios above. The ratio of these 2 scenarios was 50% each, which together were totaling 30% of all transactions simulated in this benchmark. Between each user operation and the next one, the think time averaged approximately 20 and 67 seconds respectively.

Key Points and Best Practices

  • No processor cores or cache were activated or deactivated on the SPARC T-Series systems to achieve special benchmark effects.

See Also

Disclosure Statement

Copyright 2012, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 30 September 2012.

SPARC T4-4 Delivers World Record First Result on PeopleSoft Combined Benchmark

Oracle's SPARC T4-4 servers running Oracle's PeopleSoft HCM 9.1 combined online and batch benchmark achieved World Record 18,000 concurrent users while executing a PeopleSoft Payroll batch job of 500,000 employees in 43.32 minutes and maintaining online users response time at < 2 seconds.

  • This world record is the first to run online and batch workloads concurrently.

  • This result was obtained with a SPARC T4-4 server running Oracle Database 11g Release 2, a SPARC T4-4 server running PeopleSoft HCM 9.1 application server and a SPARC T4-2 server running Oracle WebLogic Server in the web tier.

  • The SPARC T4-4 server running the application tier used Oracle Solaris Zones which provide a flexible, scalable and manageable virtualization environment.

  • The average CPU utilization on the SPARC T4-2 server in the web tier was 17%, on the SPARC T4-4 server in the application tier it was 59%, and on the SPARC T4-4 server in the database tier was 35% (online and batch) leaving significant headroom for additional processing across the three tiers.

  • The SPARC T4-4 server used for the database tier hosted Oracle Database 11g Release 2 using Oracle Automatic Storage Management (ASM) for database files management with I/O performance equivalent to raw devices.

  • This is the first three tier mixed workload (online and batch) PeopleSoft benchmark also processing PeopleSoft payroll batch workload.

Performance Landscape

PeopleSoft HR Self-Service and Payroll Benchmark
Systems Users Ave Response
Search (sec)
Ave Response
Save (sec)
Batch
Time (min)
Streams
SPARC T4-2 (web)
SPARC T4-4 (app)
SPARC T4-4 (db)
18,000 0.944 0.503 43.32 64

Configuration Summary

Application Configuration:

1 x SPARC T4-4 server with
4 x SPARC T4 processors, 3.0 GHz
512 GB memory
1 x 600 GB SAS internal disks
4 x 300 GB SAS internal disks
1 x 100 GB and 2 x 300 GB internal SSDs
2 x 10 Gbe HBA
Oracle Solaris 11 11/11
PeopleTools 8.52
PeopleSoft HCM 9.1
Oracle Tuxedo, Version 10.3.0.0, 64-bit, Patch Level 031
Java Platform, Standard Edition Development Kit 6 Update 32

Database Configuration:

1 x SPARC T4-4 server with
4 x SPARC T4 processors, 3.0 GHz
256 GB memory
1 x 600 GB SAS internal disks
2 x 300 GB SAS internal disks
Oracle Solaris 11 11/11
Oracle Database 11g Release 2
PeopleTools 8.52
Oracle Tuxedo, Version 10.3.0.0, 64-bit, Patch Level 031

Web Tier Configuration:

1 x SPARC T4-2 server with
2 x SPARC T4 processors, 2.85 GHz
256 GB memory
2 x 300 GB SAS internal disks
1 x 300 GB internal SSD
1 x 100 GB internal SSD
Oracle Solaris 11 11/11
PeopleTools 8.52
Oracle WebLogic Server 10.3.4
Java Platform, Standard Edition Development Kit 6 Update 32

Storage Configuration:

1 x Sun Server X2-4 as a COMSTAR head for data
4 x Intel Xeon X7550, 2.0 GHz
128 GB memory
1 x Sun Storage F5100 Flash Array (80 flash modules)
1 x Sun Storage F5100 Flash Array (40 flash modules)

1 x Sun Fire X4275 as a COMSTAR head for redo logs
12 x 2 TB SAS disks with Niwot Raid controller

Benchmark Description

This benchmark combines PeopleSoft HCM 9.1 HR Self Service online and PeopleSoft Payroll batch workloads to run on a unified database deployed on Oracle Database 11g Release 2.

The PeopleSoft HRSS benchmark kit is a Oracle standard benchmark kit run by all platform vendors to measure the performance. It's an OLTP benchmark where DB SQLs are moderately complex. The results are certified by Oracle and a white paper is published.

PeopleSoft HR SS defines a business transaction as a series of HTML pages that guide a user through a particular scenario. Users are defined as corporate Employees, Managers and HR administrators. The benchmark consist of 14 scenarios which emulate users performing typical HCM transactions such as viewing paycheck, promoting and hiring employees, updating employee profile and other typical HCM application transactions.

All these transactions are well-defined in the PeopleSoft HR Self-Service 9.1 benchmark kit. This benchmark metric is the weighted average response search/save time for all the transactions.

The PeopleSoft 9.1 Payroll (North America) benchmark demonstrates system performance for a range of processing volumes in a specific configuration. This workload represents large batch runs typical of a ERP environment during a mass update. The benchmark measures five application business process run times for a database representing large organization. They are Paysheet Creation, Payroll Calculation, Payroll Confirmation, Print Advice forms, and Create Direct Deposit File. The benchmark metric is the cumulative elapsed time taken to complete the Paysheet Creation, Payroll Calculation and Payroll Confirmation business application processes.

The benchmark metrics are taken for each respective benchmark while running simultaneously on the same database back-end. Specifically, the payroll batch processes are started when the online workload reaches steady state (the maximum number of online users) and overlap with online transactions for the duration of the steady state.

Key Points and Best Practices

  • Two Oracle PeopleSoft Domain sets with 200 application servers each on a SPARC T4-4 server were hosted in 2 separate Oracle Solaris Zones to demonstrate consolidation of multiple application servers, ease of administration and performance tuning.

  • Each Oracle Solaris Zone was bound to a separate processor set, each containing 15 cores (total 120 threads). The default set (1 core from first and third processor socket, total 16 threads) was used for network and disk interrupt handling. This was done to improve performance by reducing memory access latency by using the physical memory closest to the processors and offload I/O interrupt handling to default set threads, freeing up cpu resources for Application Servers threads and balancing application workload across 240 threads.

See Also

Disclosure Statement

Oracle's PeopleSoft HR and Payroll combined benchmark, www.oracle.com/us/solutions/benchmark/apps-benchmark/peoplesoft-167486.html, results 09/30/2012.

Monday Oct 01, 2012

World Record Batch Rate on Oracle JD Edwards Consolidated Workload with SPARC T4-2

Oracle produced a World Record batch throughput for single system results on Oracle's JD Edwards EnterpriseOne Day-in-the-Life benchmark using Oracle's SPARC T4-2 server running Oracle Solaris Containers and consolidating JD Edwards EnterpriseOne, Oracle WebLogic servers and the Oracle Database 11g Release 2. The workload includes both online and batch workload.

  • The SPARC T4-2 server delivered a result of 8,000 online users while concurrently executing a mix of JD Edwards EnterpriseOne Long and Short batch processes at 95.5 UBEs/min (Universal Batch Engines per minute).

  • In order to obtain this record benchmark result, the JD Edwards EnterpriseOne, Oracle WebLogic and Oracle Database 11g Release 2 servers were executed each in separate Oracle Solaris Containers which enabled optimal system resources distribution and performance together with scalable and manageable virtualization.

  • One SPARC T4-2 server running Oracle Solaris Containers and consolidating JD Edwards EnterpriseOne, Oracle WebLogic servers and the Oracle Database 11g Release 2 utilized only 55% of the available CPU power.

  • The Oracle DB server in a Shared Server configuration allows for optimized CPU resource utilization and significant memory savings on the SPARC T4-2 server without sacrificing performance.

  • This configuration with SPARC T4-2 server has achieved 33% more Users/core, 47% more UBEs/min and 78% more Users/rack unit than the IBM Power 770 server.

  • The SPARC T4-2 server with 2 processors ran the JD Edwards "Day-in-the-Life" benchmark and supported 8,000 concurrent online users while concurrently executing mixed batch workloads at 95.5 UBEs per minute. The IBM Power 770 server with twice as many processors supported only 12,000 concurrent online users while concurrently executing mixed batch workloads at only 65 UBEs per minute.

  • This benchmark demonstrates more than 2x cost savings by consolidating the complete solution in a single SPARC T4-2 server compared to earlier published results of 10,000 users and 67 UBEs per minute on two SPARC T4-2 and SPARC T4-1.

  • The Oracle DB server used mirrored (RAID 1) volumes for the database providing high availability for the data without impacting performance.

Performance Landscape

JD Edwards EnterpriseOne Day in the Life (DIL) Benchmark
Consolidated Online with Batch Workload

System Rack
Units
(U)
Batch
Rate
(UBEs/m)
Online
Users
Users
/ U
Users
/ Core
Version
SPARC T4-2 (2 x SPARC T4, 2.85 GHz) 3 95.5 8,000 2,667 500 9.0.2
IBM Power 770 (4 x POWER7, 3.3 GHz, 32 cores) 8 65 12,000 1,500 375 9.0.2

Batch Rate (UBEs/m) — Batch transaction rate in UBEs per minute

Configuration Summary

Hardware Configuration:

1 x SPARC T4-2 server with
2 x SPARC T4 processors, 2.85 GHz
256 GB memory
4 x 300 GB 10K RPM SAS internal disk
2 x 300 GB internal SSD
2 x Sun Storage F5100 Flash Arrays

Software Configuration:

Oracle Solaris 10
Oracle Solaris Containers
JD Edwards EnterpriseOne 9.0.2
JD Edwards EnterpriseOne Tools (8.98.4.2)
Oracle WebLogic Server 11g (10.3.4)
Oracle HTTP Server 11g
Oracle Database 11g Release 2 (11.2.0.1)

Benchmark Description

JD Edwards EnterpriseOne is an integrated applications suite of Enterprise Resource Planning (ERP) software. Oracle offers 70 JD Edwards EnterpriseOne application modules to support a diverse set of business operations.

Oracle's Day in the Life (DIL) kit is a suite of scripts that exercises most common transactions of JD Edwards EnterpriseOne applications, including business processes such as payroll, sales order, purchase order, work order, and manufacturing processes, such as ship confirmation. These are labeled by industry acronyms such as SCM, CRM, HCM, SRM and FMS. The kit's scripts execute transactions typical of a mid-sized manufacturing company.

  • The workload consists of online transactions and the UBE – Universal Business Engine workload of 61 short and 4 long UBEs.

  • LoadRunner runs the DIL workload, collects the user’s transactions response times and reports the key metric of Combined Weighted Average Transaction Response time.

  • The UBE processes workload runs from the JD Enterprise Application server.

    • Oracle's UBE processes come as three flavors:

      • Short UBEs < 1 minute engage in Business Report and Summary Analysis,

      • Mid UBEs > 1 minute create a large report of Account, Balance, and Full Address,

      • Long UBEs > 2 minutes simulate Payroll, Sales Order, night only jobs.

    • The UBE workload generates large numbers of PDF files reports and log files.

    • The UBE Queues are categorized as the QBATCHD, a single threaded queue for large and medium UBEs, and the QPROCESS queue for short UBEs run concurrently.

Oracle's UBE process performance metric is Number of Maximum Concurrent UBE processes at transaction rate, UBEs/minute.

Key Points and Best Practices

Two JD Edwards EnterpriseOne Application Servers, two Oracle WebLogic Servers 11g Release 1 coupled with two Oracle Web Tier HTTP server instances and one Oracle Database 11g Release 2 database on a single SPARC T4-2 server were hosted in separate Oracle Solaris Containers bound to four processor sets to demonstrate consolidation of multiple applications, web servers and the database with best resource utilizations.

  • Interrupt fencing was configured on all Oracle Solaris Containers to channel the interrupts to processors other than the processor sets used for the JD Edwards Application server, Oracle WebLogic servers and the database server.

  • A Oracle WebLogic vertical cluster was configured on each WebServer Container with twelve managed instances each to load balance users' requests and to provide the infrastructure that enables scaling to high number of users with ease of deployment and high availability.

  • The database log writer was run in the real time RT class and bound to a processor set.

  • The database redo logs were configured on the raw disk partitions.

  • The Oracle Solaris Container running the Enterprise Application server completed 61 Short UBEs, 4 Long UBEs concurrently as the mixed size batch workload.

  • The mixed size UBEs ran concurrently from the Enterprise Application server with the 8,000 online users driven by the LoadRunner.

See Also

Disclosure Statement

Copyright 2012, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 09/30/2012.

Oracle TimesTen In-Memory Database Performance on SPARC T4-2

The Oracle TimesTen In-Memory Database is optimized to run on Oracle's SPARC T4 processor platforms running Oracle Solaris 11 providing unsurpassed scalability, performance, upgradability, protection of investment and return on investment. The following demonstrate the value of combining Oracle TimesTen In-Memory Database with SPARC T4 servers and Oracle Solaris 11:

On a Mobile Call Processing test, the 2-socket SPARC T4-2 server outperforms:

  • Oracle's SPARC Enterprise M4000 server (4 x 2.66 GHz SPARC64 VII+) by 34%.

  • Oracle's SPARC T3-4 (4 x 1.65 GHz SPARC T3) by 2.7x, or 5.4x per processor.

Utilizing the TimesTen Performance Throughput Benchmark (TPTBM), the SPARC T4-2 server protects investments with:

  • 2.1x the overall performance of a 4-socket SPARC Enterprise M4000 server in read-only mode and 1.5x the performance in update-only testing. This is 4.2x more performance per processor than the SPARC64 VII+ 2.66 GHz based system.

  • 10x more performance per processor than the SPARC T2+ 1.4 GHz server.

  • 1.6x better performance per processor than the SPARC T3 1.65 GHz based server.

In replication testing, the two socket SPARC T4-2 server is over 3x faster than the performance of a four socket SPARC Enterprise T5440 server in both asynchronous replication environment and the highly available 2-Safe replication. This testing emphasizes parallel replication between systems.

Performance Landscape

Mobile Call Processing Test Performance

System Processor Sockets/Cores Tps Tps/
Socket
SPARC T4-2 SPARC T4, 2.85 GHz 2 16 218,400 109,200
M4000 SPARC64 VII+, 2.66 GHz 4 16 162,900 40,725
SPARC T3-4 SPARC T3, 1.65 GHz 4 64 80,400 20,100

TimesTen Performance Throughput Benchmark (TPTBM) Read-Only

System Processor Sockets/Cores Tps Tps/
Socket
SPARC T4-2 SPARC T4, 2.85 GHz 2 16 6.5M 3.3M
SPARC T3-4 SPARC T3, 1.65 GHz 4 64 7.9M 2.0M
M4000 SPARC64 VII+, 2.66 GHz 4 16 3.1M 0.8M
T5440 SPARC T2+, 1.4 GHz 4 32 3.1M 0.8M

TimesTen Performance Throughput Benchmark (TPTBM) Update-Only

System Processor Sockets/Cores Tps Tps/
Socket
SPARC T4-2 SPARC T4, 2.85 GHz 2 16 547,800 273,900
M4000 SPARC64 VII+, 2.66 GHz 4 16 363,800 90,950
SPARC T3-4 SPARC T3, 1.65 GHz 4 64 240,250 60,125

TimesTen Replication Tests

System Processor Sockets/Cores Asynchronous 2-Safe
SPARC T4-2 SPARC T4, 2.85 GHz 2 16 38,024 13,701
SPARC T5440 SPARC T2+, 1.4 GHz 4 32 11,621 4,615

Configuration Summary

Hardware Configurations:

SPARC T4-2 server
2 x SPARC T4 processors, 2.85 GHz
256 GB memory
1 x 8 Gbs FC Qlogic HBA
1 x 6 Gbs SAS HBA
4 x 300 GB internal disks
Sun Storage F5100 Flash Array (40 x 24 GB flash modules)
1 x Sun Fire X4275 server configured as COMSTAR head

SPARC T3-4 server
4 x SPARC T3 processors, 1.6 GHz
512 GB memory
1 x 8 Gbs FC Qlogic HBA
8 x 146 GB internal disks
1 x Sun Fire X4275 server configured as COMSTAR head

SPARC Enterprise M4000 server
4 x SPARC64 VII+ processors, 2.66 GHz
128 GB memory
1 x 8 Gbs FC Qlogic HBA
1 x 6 Gbs SAS HBA
2 x 146 GB internal disks
Sun Storage F5100 Flash Array (40 x 24 GB flash modules)
1 x Sun Fire X4275 server configured as COMSTAR head

Software Configuration:

Oracle Solaris 11 11/11
Oracle TimesTen 11.2.2.4

Benchmark Descriptions

TimesTen Performance Throughput BenchMark (TPTBM) is shipped with TimesTen and measures the total throughput of the system. The workload can test read-only, update-only, delete and insert operations as required.

Mobile Call Processing is a customer-based workload for processing calls made by mobile phone subscribers. The workload has a mixture of read-only, update, and insert-only transactions. The peak throughput performance is measured from multiple concurrent processes executing the transactions until a peak performance is reached via saturation of the available resources.

Parallel Replication tests using both asynchronous and 2-Safe replication methods. For asynchronous replication, transactions are processed in batches to maximize the throughput capabilities of the replication server and network. In 2-Safe replication, also known as no data-loss or high availability, transactions are replicated between servers immediately emphasizing low latency. For both environments, performance is measured in the number of parallel replication servers and the maximum transactions-per-second for all concurrent processes.

See Also

Disclosure Statement

Copyright 2012, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 1 October 2012.

Tuesday Aug 28, 2012

SPARC T4-2 Produces World Record Oracle Essbase Aggregate Storage Benchmark Result

Significance of Results

Oracle's SPARC T4-2 server configured with a Sun Storage F5100 Flash Array and running Oracle Solaris 10 with Oracle Database 11g has achieved exceptional performance for the Oracle Essbase Aggregate Storage Option benchmark. The benchmark has upwards of 1 billion records, 15 dimensions and millions of members. Oracle Essbase is a multi-dimensional online analytical processing (OLAP) server and is well-suited to work well with SPARC T4 servers.

  • The SPARC T4-2 server (2 cpus) running Oracle Essbase 11.1.2.2.100 outperformed the previous published results on Oracle's SPARC Enterprise M5000 server (4 cpus) with Oracle Essbase 11.1.1.3 on Oracle Solaris 10 by 80%, 32% and 2x performance improvement on Data Loading, Default Aggregation and Usage Based Aggregation, respectively.

  • The SPARC T4-2 server with Sun Storage F5100 Flash Array and Oracle Essbase running on Oracle Solaris 10 achieves sub-second query response times for 20,000 users in a 15 dimension database.

  • The SPARC T4-2 server configured with Oracle Essbase was able to aggregate and store values in the database for a 15 dimension cube in 398 minutes with 16 threads and in 484 minutes with 8 threads.

  • The Sun Storage F5100 Flash Array provides more than a 20% improvement out-of-the-box compared to a mid-size fiber channel disk array for default aggregation and user-based aggregation.

  • The Sun Storage F5100 Flash Array with Oracle Essbase provides the best combination for large Oracle Essbase databases leveraging Oracle Solaris ZFS and taking advantage of high bandwidth for faster load and aggregation.

  • Oracle Fusion Middleware provides a family of complete, integrated, hot pluggable and best-of-breed products known for enabling enterprise customers to create and run agile and intelligent business applications. Oracle Essbase's performance demonstrates why so many customers rely on Oracle Fusion Middleware as their foundation for innovation.

Performance Landscape

System Data Size
(millions of items)
Database
Load
(minutes)
Default
Aggregation
(minutes)
Usage Based
Aggregation
(minutes)
SPARC T4-2, 2 x SPARC T4 2.85 GHz 1000 149 398* 55
Sun M5000, 4 x SPARC64 VII 2.53 GHz 1000 269 526 115
Sun M5000, 4 x SPARC64 VII 2.4 GHz 400 120 448 18

* – 398 mins with CALCPARALLEL set to 16; 484 mins with CALCPARALLEL threads set to 8

Configuration Summary

Hardware Configuration:

1 x SPARC T4-2
2 x 2.85 GHz SPARC T4 processors
128 GB memory
2 x 300 GB 10000 RPM SAS internal disks

Storage Configuration:

1 x Sun Storage F5100 Flash Array
40 x 24 GB flash modules
SAS HBA with 2 SAS channels
Data Storage Scheme Striped - RAID 0
Oracle Solaris ZFS

Software Configuration:

Oracle Solaris 10 8/11
Installer V 11.1.2.2.100
Oracle Essbase Client v 11.1.2.2.100
Oracle Essbase v 11.1.2.2.100
Oracle Essbase Administration services 64-bit
Oracle Database 11g Release 2 (11.2.0.3)
HP's Mercury Interactive QuickTest Professional 9.5.0

Benchmark Description

The objective of the Oracle Essbase Aggregate Storage Option benchmark is to showcase the ability of Oracle Essbase to scale in terms of user population and data volume for large enterprise deployments. Typical administrative and end-user operations for OLAP applications were simulated to produce benchmark results.

The benchmark test results include:

  • Database Load: Time elapsed to build a database including outline and data load.
  • Default Aggregation: Time elapsed to build aggregation.
  • User Based Aggregation: Time elapsed of the aggregate views proposed as a result of tracked retrieval queries.

Summary of the data used for this benchmark:

  • 40 flat files, each of size 1.2 GB, 49.4 GB in total
  • 10 million rows per file, 1 billion rows total
  • 28 columns of data per row
  • Database outline has 15 dimensions (five of them are attribute dimensions)
  • Customer dimension has 13.3 million members
  • 3 rule files

Key Points and Best Practices

  • The Sun Storage F5100 Flash Array has been used to accelerate the application performance.

  • Setting data load threads (DLTHREADSPREPARE) to 64 and Load Buffer to 6 improved dataloading by about 9%.

  • Factors influencing aggregation materialization performance are "Aggregate Storage Cache" and "Number of Threads" (CALCPARALLEL) for parallel view materialization. The optimal values for this workload on the SPARC T4-2 server were:

      Aggregate Storage Cache: 32 GB
      CALCPARALLEL: 16

     

See Also

Disclosure Statement

Copyright 2012, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 28 August 2012.

Tuesday May 01, 2012

SPARC T4 Servers Running Oracle Solaris 11 and Oracle RAC Deliver World Record on PeopleSoft HRMS 9.1

Oracle's SPARC T4-4 server running Oracle's PeopleSoft HRMS Self-Service 9.1 benchmark achieved world record performance with 18,000 interactive users. This was accomplished using a high availability configuration using Oracle Real Application Clusters (RAC) 11g Release 2 software for the database tier running on Oracle Solaris 11. The benchmark configuration included the SPARC T4-4 server for the application tier, a SPARC T4-2 server for the web tier and two SPARC T4-2 servers for the database tier.

  • The combination of the SPARC T4 servers running PeopleSoft HRSS 9.1 benchmark supports 4.5x the number of users an IBM pSeries 570 running PeopleSoft HRSS 8.9, with an average response time 40 percent better than IBM.

  • This result was obtained with two SPARC T4-2 servers running the database service using Oracle Real Application Clusters 11g Release 2 software in a high availability configuration.

  • The two SPARC T4-2 servers in the database tier used Oracle Solaris 11, and Oracle RAC 11g Release 2 software with database shared disk storage managed by Oracle Automatic Storage Management (ASM).

  • The average CPU utilization on one SPARC T4-4 server in the application tier handling 18,000 users is 54 percent, showing significant headroom for growth.

  • The SPARC T4 server for the application tier used Oracle Solaris Containers on Oracle Solaris 10, which provides a flexible, scalable and manageable virtualized environment.

  • The Peoplesoft HRMS Self-Service benchmark demonstrates better performance on Oracle hardware and software, engineered to work together, than Oracle software on IBM.

Performance Landscape

PeopleSoft HRMS Self-Service 9.1 Benchmark
Systems Processors Users Ave Response -
Search (sec)
Ave Response -
Save (sec)
SPARC T4-2 (web)
SPARC T4-4 (app)
2 x SPARC T4-2 (db)
2 x SPARC T4, 2.85 GHz
4 x SPARC T4, 3.0 GHz
2 x (2 x SPARC T4, 2.85 GHz)
18,000 1.048 0.742
SPARC T4-2 (web)
SPARC T4-4 (app)
SPARC T4-4 (db)
2 x SPARC T4, 2.85 GHz
4 x SPARC T4, 3.0 GHz
4 x SPARC T4, 3.0 GHz
15,000 1.01 0.63
PeopleSoft HRMS Self-Service 8.9 Benchmark
IBM Power 570 (web/app)
IBM Power 570 (db)
12 x POWER5, 1.9 GHz
4 x POWER5, 1.9 GHz
4,000 1.74 1.25
IBM p690 (web)
IBM p690 (app)
IBM p690 (db)
4 x POWER4, 1.9 GHz
12 x POWER4, 1.9 GHz
6 x 4392 MIPS/Gen1
4,000 1.35 1.01

The main differences between version 9.1 and version 8.9 of the benchmark are:

  • the database expanded from 100K employees and 20K managers to 500K employees and 100K managers,
  • the manager data was expanded,
  • a new transaction, "Employee Add Profile," was added, the percent of users executing it is less then 2%, and the transaction has a heavier footprint,
  • version 9.1 has a different benchmark metric (Average Response Search/Save time for x number of users) versus single user search/save time,
  • newer versions of the PeopleSoft application and PeopleTools software are used.

Configuration Summary

Application Server:

1 x SPARC T4-4 server
4 x SPARC T4 processors 3.0 GHz
512 GB main memory
5 x 300 GB SAS internal disks,
2 x 100 GB internal SSDs
1 x 300 GB internal SSD
Oracle Solaris 10 8/11
PeopleSoft PeopleTools 8.51.02
PeopleSoft HCM 9.1
Oracle Tuxedo, Version 10.3.0.0, 64-bit, Patch Level 031
Java HotSpot(TM) 64-Bit Server VM on Solaris, version 1.6.0_20

Web Server:

1 x SPARC T4-2 server
2 x SPARC T4 processors 2.85 GHz
256 GB main memory
2 x 300 GB SAS internal disks
1 x 100 GB internal SSD
Oracle Solaris 10 8/11
PeopleSoft PeopleTools 8.51.02
Oracle WebLogic Server 11g (10.3.3)
Java HotSpot(TM) 64-Bit Server VM on Solaris, version 1.6.0_20

Database Server:

2 x SPARC T4-2 servers, each with
2 x SPARC T4 processors 2.85 GHz
128 GB main memory
3 x 300 GB SAS internal disks
Oracle Solaris 11 11/11
Oracle Database 11g Release 2
Oracle Real Application Clusters

Database Storage:

Data
1 x Sun Storage F5100 Flash Array (80 flash modules)
1 x COMSTAR Sun Fire X4470 M2 server
4 x Intel Xeon X7550 processors 2.0 GHz
128 GB main memory
Oracle Solaris 11 11/11
Redo
2 x COMSTAR Sun Fire X4275 servers, each with
1 x Intel Xeon E5540 processor 2.53 GHz
6 GB main memory)
12 x 2 TB SAS disks
Oracle Solaris 11 Express 2010.11

Connectivity:

1 x 8-port 10GbE switch
1 x 24-port 1GbE switch
1 x 32-port Brocade FC switch

Benchmark Description

The purpose of the PeopleSoft HRMS Self-Service 9.1 benchmark is to measure comparative online performance of the selected processes in PeopleSoft Enterprise HCM 9.1 with Oracle Database 11g. The benchmark kit is an Oracle standard benchmark kit run by all platform vendors to measure the performance. It is an OLTP benchmark with no dependency on remote COBOL calls, there is no batch workload, and DB SQLs are moderately complex. The results are certified by Oracle and a white paper is published.

PeopleSoft defines a business transaction as a series of HTML pages that guide a user through a particular scenario. Users are defined as corporate Employees, Managers and HR administrators. The benchmark consists of 14 scenarios which emulate users performing typical HCM transactions such as viewing paychecks, promoting and hiring employees, updating employee profiles and other typical HCM application transactions.

All of these transactions are well defined in the PeopleSoft HR Self-Service 9.1 benchmark kit. This benchmark metric is the Weighted Average Response search/save time for all users.

Key Points and Best Practices

  • The combined processing power of two SPARC T4-2 servers running the highly available Oracle RAC database can provide greater throughput and Oracle RAC scalability than is available from a single server.

  • All database data files/recovery files and Oracle Clusterware files were created with Oracle Automatic Storage Management (Oracle ASM) volume manager and file system which resulted in equivalent performance of conventional volume managers, file systems, and raw devices, but with the added benefit of the ease of management provided by Oracle ASM integrated storage management solution.

  • Five Oracle PeopleSoft Domains with 200 application servers (40 per each Domain) on the SPARC T4-4 server were hosted in two separate Oracle Solaris Containers for a total of 10 Domains/400 application servers processes to demonstrate consolidation of multiple application servers, ease of administration and load balancing.

  • Each Oracle Solaris Container was bound to a separate processor set, each containing 124 virtual processors. The default set (composed of 4 virtual processors from first and third processor socket, total of 8 virtual processors) was used for network and disk interrupt handling. This was done to improve performance by reducing memory access latency by using the physical memory closest to the processors and offload I/O interrupt handling to default set virtual processors, freeing up processing resources for application server virtual processors.

See Also

Disclosure Statement

Oracle's PeopleSoft HRMS 9.1 benchmark, www.oracle.com/us/solutions/benchmark/apps-benchmark/peoplesoft-167486.html, results 5/1/2012.

Thursday Apr 19, 2012

Sun ZFS Storage 7420 Appliance Delivers 2-Node World Record SPECsfs2008 NFS Benchmark

Oracle's Sun ZFS Storage 7420 appliance delivered world record two-node performance on the SPECsfs2008 NFS benchmark, beating results published on NetApp's dual-controller and 4-node high-end FAS6240 storage systems.

  • The Sun ZFS Storage 7420 appliance delivered a world record two-node result of 267,928 SPECsfs2008_nfs.v3 Ops/sec with an Overall Response Time (ORT) of 1.31 msec on the SPECsfs2008 NFS benchmark.

  • The Sun ZFS Storage 7420 appliance delivered 1.4x higher throughput than the dual-controller NetApp FAS6240 and 2.6x higher throughput than the dual-controller NetApp FAS3270 on the SPECsfs2008_nfs.v3 benchmark at less than half the list price of either result.

  • The Sun ZFS Storage 7420 appliance required 10 percent less rack space than the dual-controller NetApp FAS6240.

  • The Sun ZFS Storage 7420 appliance had 3 percent higher throughput than the 4-node NetApp FAS6240 on the SPECsfs2008_nfs.v3 benchmark.

  • The Sun ZFS Storage 7420 appliance required 25 percent less rack space than the 4-node NetApp FAS6240.

  • The Sun ZFS Storage 7420 appliance has 14 percent better Overall Response Time than the 4-node NetApp FAS6240 on the SPECsfs2008_nfs.v3 benchmark.

Performance Landscape

SPECsfs2008_nfs.v3 Performance Chart (in decreasing SPECsfs2008_nfs.v3 Ops/sec order)

Sponsor System Throughput
(Ops/sec)
Overall Response
Time (msec)
Nodes Memory (GB)
Including Flash
Disks Rack Units –
Controllers
+Disks
Oracle 7420 267,928 1.31 2 6,728 280 54
NetApp FAS6240 260,388 1.53 4 2,256 288 72
NetApp FAS6240 190,675 1.17 2 1,128 288 60
EMC VG8 135,521 1.92 280 312
Oracle 7320 134,140 1.51 2 4,968 136 26
EMC NS-G8 110,621 2.32 264 100
NetApp FAS3270 101,183 1.66 2 40 360 66

Throughput SPECsfs2008_nfs.v3 Ops/sec — the Performance Metric
Overall Response Time — the corresponding Response Time Metric
Nodes — Nodes and Controllers are being used interchangeably

Complete SPECsfs2008 benchmark results may be found at http://www.spec.org/sfs2008/results/sfs2008.html.

Configuration Summary

Storage Configuration:

Sun ZFS Storage 7420 appliance in clustered configuration
2 x Sun ZFS Storage 7420 controllers, each with
4 x 2.4 GHz Intel Xeon E7-4870 processors
1 TB memory
4 x 512 GB SSD flash-enabled read-cache
2 x 10GbE NICs
12 x Sun Disk shelves
10 x shelves with 24 x 300 GB 15K RPM SAS-2 drives
2 x shelves with 20 x 300 GB 15K RPM SAS-2 drives and 4 x 73 GB SAS-2 flash-enabled write-cache

Server Configuration:

4 x Sun Fire X4270 M2 servers, each with
2 x 3.3 GHz Intel Xeon E5680 processors
144 GB memory
1 x 10 GbE NIC
Oracle Solaris 10 9/10

Switches:

1 x 24-port 10Gb Ethernet Switch

Benchmark Description

SPECsfs2008 is the latest version of the Standard Performance Evaluation Corporation (SPEC) benchmark suite measuring file server throughput and response time, providing a standardized method for comparing performance across different vendor platforms. SPECsfs2008 results summarize the server's capabilities with respect to the number of operations that can be handled per second, as well as the overall latency of the operations. The suite is a follow-on to the SFS97_R1 benchmark, adding a CIFS workload, an updated NFSv3 workload, support for additional client platforms, and a new test harness and reporting/submission framework.

See Also

Disclosure Statement

SPEC and SPECsfs are registered trademarks of Standard Performance Evaluation Corporation (SPEC). Results as of April 18, 2012, for more information see www.spec.org. Sun ZFS Storage 7420 Appliance 267,928 SPECsfs2008_nfs.v3 Ops/sec, 1.31 msec ORT, NetApp Data ONTAP 8.1 Cluster-Mode (4-node FAS6240) 260,388 SPECsfs2008_nfs.v3 Ops/Sec, 1.53 msec ORT, NetApp FAS6240 190,675 SPECsfs2008_nfs.v3 Ops/Sec, 1.17 msec ORT. NetApp FAS3270 101,183 SPECsfs2008_nfs.v3 Ops/Sec, 1.66 msec ORT.

Nodes refer to the item in the SPECsfs2008 disclosed Configuration Bill of Materials that have the Processing Elements that perform the NFS Processing Function. These are the first item listed in each of disclosed Configuration Bill of Materials except for EMC where it is both the first and third items listed, and HP, where it is the second item listed as Blade Servers. The number of nodes is from the QTY disclosed in the Configuration Bill of Materials as described above. Configuration Bill of Materials list price for Oracle result of US$ 423,644. Configuration Bill of Materials list price for NetApp FAS3270 result of US$ 1,215,290. Configuration Bill of Materials list price for NetApp FAS6240 result of US$ 1,028,118. Oracle pricing from https://shop.oracle.com/pls/ostore/f?p=dstore:home:0, traverse to "Storage and Tape" and then to "NAS Storage". NetApp's pricing from http://www.netapp.com/us/media/na-list-usd-netapp-custom-state-new-discounts.html.

Sunday Apr 15, 2012

Sun ZFS Storage 7420 Appliance Delivers Top High-End Price/Performance Result for SPC-2 Benchmark

Oracle's Sun ZFS Storage 7420 appliance delivered leading high-end price/performance on the SPC Benchmark 2 (SPC-2).

  • The Sun ZFS Storage 7420 appliance delivered a result of 10,704 SPC-2 MB/s at $35.24 $/SPC-2 MB/s on the SPC-2 benchmark.

  • The Sun ZFS Storage 7420 appliance beats the IBM DS8800 result by over 10% on SPC-2 MB/s and has 7.7x better $/SPC-2 MB/s.

  • The Sun ZFS Storage 7420 appliance achieved the best price/performance for the top 18 posted unique performance results on the SPC-2 benchmark.

Performance Landscape

SPC-2 Performance Chart (in decreasing performance order)

System SPC-2
MB/s
$/SPC-2
MB/s
ASU
Capacity
(GB)
TSC Price Data
Protection
Level
Date Results
Identifier
HP StorageWorks P9500 13,148 $88.34 129,112 $1,161,504 RAID-5 03/07/12 B00056
Sun ZFS Storage 7420 10,704 $35.24 31,884 $377,225 Mirroring 04/12/12 B00058
IBM DS8800 9,706 $270.38 71,537 $2,624,257 RAID-5 12/01/10 B00051
HP XP24000 8,725 $187.45 18,401 $1,635,434 Mirroring 09/08/08 B00035
Hitachi Storage Platform V 8,725 $187.49 18,401 $1,635,770 Mirroring 09/08/08 B00036
TMS RamSan-630 8,323 $49.37 8,117 $410,927 RAID-5 05/10/11 B00054
IBM XIV 7,468 $152.34 154,619 $1,137,641 RAID-1 10/19/11 BE00001
IBM DS8700 7,247 $277.22 32,642 $2,009,007 RAID-5 11/30/09 B00049
IBM SAN Vol Ctlr 4.2 7,084 $463.66 101,155 $3,284,767 RAID-5 07/12/07 B00024
Fujitsu ETERNUS DX440 S2 5,768 $66.50 42,133 $383,576 Mirroring 04/12/12 B00057
IBM DS5300 5,634 $74.13 16,383 $417,648 RAID-5 10/21/09 B00045
Sun Storage 6780 5,634 $47.03 16,383 $264,999 RAID-5 10/28/09 B00047
IBM DS5300 5,544 $75.33 14,043 $417,648 RAID-6 10/21/09 B00046
Sun Storage 6780 5,544 $47.80 14,043 $264,999 RAID-6 10/28/09 B00048
IBM DS5300 4,818 $93.80 16,383 $451,986 RAID-5 09/25/08 B00037
Sun Storage 6780 4,818 $53.61 16,383 $258,329 RAID-5 02/02/09 B00039
IBM DS5300 4,676 $96.67 14,043 $451,986 RAID-6 09/25/08 B00038
Sun Storage 6780 4,676 $55.25 14,043 $258,329 RAID-6 02/03/09 B00040
IBM SAN Vol Ctlr 4.1 4,544 $400.78 51,265 $1,821,301 RAID-5 09/12/06 B00011
IBM SAN Vol Ctlr 3.1 3,518 $563.93 20,616 $1,983,785 Mirroring 12/14/05 B00001
Fujitsu ETERNUS8000 1100 3,481 $238.93 4,570 $831,649 Mirroring 03/08/07 B00019
IBM DS8300 3,218 $539.38 15,393 $1,735,473 Mirroring 12/14/05 B00006
IBM Storwize V7000 3,133 $71.32 29,914 $223,422 RAID-5 12/13/10 B00052

SPC-2 MB/s = the Performance Metric
$/SPC-2 MB/s = the Price/Performance Metric
ASU Capacity = the Capacity Metric
Data Protection = Data Protection Metric
TSC Price = Total Cost of Ownership Metric
Results Identifier = A unique identification of the result Metric

Complete SPC-2 benchmark results may be found at http://www.storageperformance.org.

Configuration Summary

Storage Configuration:

Sun ZFS Storage 7420 appliance in clustered configuration
2 x Sun ZFS Storage 7420 controllers, each with
4 x 2.0 GHz Intel Xeon X7550 processors
512 GB memory, 64 x 8 GB 1066 MHz DDR3 DIMMs
16 x Sun Disk shelves, each with
24 x 300 GB 15K RPM SAS-2 drives

Server Configuration:

1 x Sun Fire X4470 server, with
4 x 2.4 GHz Intel Xeon E7-4870 processors
512 GB memory
8 x 8 Gb FC connections to the Sun ZFS Storage 7420 appliance
Oracle Solaris 11 11/11

2 x Sun Fire X4470 servers, each with
4 x 2.4 GHz Intel Xeon E7-4870 processors
256 GB memory
8 x 8 Gb FC connections to the Sun ZFS Storage 7420 appliance
Oracle Solaris 11 11/11

Benchmark Description

SPC Benchmark-2 (SPC-2): Consists of three distinct workloads designed to demonstrate the performance of a storage subsystem during the execution of business critical applications that require the large-scale, sequential movement of data. Those applications are characterized predominately by large I/Os organized into one or more concurrent sequential patterns. A description of each of the three SPC-2 workloads is listed below as well as examples of applications characterized by each workload.

  • Large File Processing: Applications in a wide range of fields, which require simple sequential process of one or more large files such as scientific computing and large-scale financial processing.
  • Large Database Queries: Applications that involve scans or joins of large relational tables, such as those performed for data mining or business intelligence.
  • Video on Demand: Applications that provide individualized video entertainment to a community of subscribers by drawing from a digital film library.

SPC-2 is built to:

  • Provide a level playing field for test sponsors.
  • Produce results that are powerful and yet simple to use.
  • Provide value for engineers as well as IT consumers and solution integrators.
  • Is easy to run, easy to audit/verify, and easy to use to report official results.

See Also

Disclosure Statement

SPC-2, SPC-2 MB/s, $/SPC-2 MB/s are registered trademarks of Storage Performance Council (SPC). Results as of April 12, 2012, for more information see www.storageperformance.org. Sun ZFS Storage 7420 Appliance http://www.storageperformance.org/results/benchmark_results_spc2#b00058; IBM DS8800 http://www.storageperformance.org/results/benchmark_results_spc2#b00051.

Thursday Apr 12, 2012

Sun Fire X4270 M3 SAP Enhancement Package 4 for SAP ERP 6.0 (Unicode) Two-Tier Standard Sales and Distribution (SD) Benchmark

Oracle's Sun Fire X4270 M3 server (now known as Sun Server X3-2L) achieved 8,320 SAP SD Benchmark users running SAP enhancement package 4 for SAP ERP 6.0 with unicode software using Oracle Database 11g and Oracle Solaris 10.

  • The Sun Fire X4270 M3 server using Oracle Database 11g and Oracle Solaris 10 beat both IBM Flex System x240 and IBM System x3650 M4 server running DB2 9.7 and Windows Server 2008 R2 Enterprise Edition.

  • The Sun Fire X4270 M3 server running Oracle Database 11g and Oracle Solaris 10 beat the HP ProLiant BL460c Gen8 server using SQL Server 2008 and Windows Server 2008 R2 Enterprise Edition by 6%.

  • The Sun Fire X4270 M3 server using Oracle Database 11g and Oracle Solaris 10 beat Cisco UCS C240 M3 server running SQL Server 2008 and Windows Server 2008 R2 Datacenter Edition by 9%.

  • The Sun Fire X4270 M3 server running Oracle Database 11g and Oracle Solaris 10 beat the Fujitsu PRIMERGY RX300 S7 server using SQL Server 2008 and Windows Server 2008 R2 Enterprise Edition by 10%.

Performance Landscape

SAP-SD 2-Tier Performance Table (in decreasing performance order).

SAP ERP 6.0 Enhancement Pack 4 (Unicode) Results
(benchmark version from January 2009 to April 2012)

System OS
Database
Users SAP
ERP/ECC
Release
SAPS SAPS/
Proc
Date
Sun Fire X4270 M3
2xIntel Xeon E5-2690 @2.90GHz
128 GB
Oracle Solaris 10
Oracle Database 11g
8,320 2009
6.0 EP4
(Unicode)
45,570 22,785 10-Apr-12
IBM Flex System x240
2xIntel Xeon E5-2690 @2.90GHz
128 GB
Windows Server 2008 R2 EE
DB2 9.7
7,960 2009
6.0 EP4
(Unicode)
43,520 21,760 11-Apr-12
HP ProLiant BL460c Gen8
2xIntel Xeon E5-2690 @2.90GHz
128 GB
Windows Server 2008 R2 EE
SQL Server 2008
7,865 2009
6.0 EP4
(Unicode)
42,920 21,460 29-Mar-12
IBM System x3650 M4
2xIntel Xeon E5-2690 @2.90GHz
128 GB
Windows Server 2008 R2 EE
DB2 9.7
7,855 2009
6.0 EP4
(Unicode)
42,880 21,440 06-Mar-12
Cisco UCS C240 M3
2xIntel Xeon E5-2690 @2.90GHz
128 GB
Windows Server 2008 R2 DE
SQL Server 2008
7,635 2009
6.0 EP4
(Unicode)
41,800 20,900 06-Mar-12
Fujitsu PRIMERGY RX300 S7
2xIntel Xeon E5-2690 @2.90GHz
128 GB
Windows Server 2008 R2 EE
SQL Server 2008
7,570 2009
6.0 EP4
(Unicode)
41,320 20,660 06-Mar-12

Complete benchmark results may be found at the SAP benchmark website http://www.sap.com/benchmark.

Configuration and Results Summary

Hardware Configuration:

Sun Fire X4270 M3
2 x 2.90 GHz Intel Xeon E5-2690 processors
128 GB memory
Sun StorageTek 6540 with 4 * 16 * 300GB 15Krpm 4Gb FC-AL

Software Configuration:

Oracle Solaris 10
Oracle Database 11g
SAP enhancement package 4 for SAP ERP 6.0 (Unicode)

Certified Results (published by SAP):

Number of benchmark users:
8,320
Average dialog response time:
0.95 seconds
Throughput:

Fully processed order line:
911,330

Dialog steps/hour:
2,734,000

SAPS:
45,570
SAP Certification:
2012014

Benchmark Description

The SAP Standard Application SD (Sales and Distribution) Benchmark is a two-tier ERP business test that is indicative of full business workloads of complete order processing and invoice processing, and demonstrates the ability to run both the application and database software on a single system. The SAP Standard Application SD Benchmark represents the critical tasks performed in real-world ERP business environments.

SAP is one of the premier world-wide ERP application providers, and maintains a suite of benchmark tests to demonstrate the performance of competitive systems on the various SAP products.

See Also

Disclosure Statement

Two-tier SAP Sales and Distribution (SD) standard SAP SD benchmark based on SAP enhancement package 4 for SAP ERP 6.0 (Unicode) application benchmark as of 04/11/12: Sun Fire X4270 M3 (2 processors, 16 cores, 32 threads) 8,320 SAP SD Users, 2 x 2.90 GHz Intel Xeon E5-2690, 128 GB memory, Oracle 11g, Solaris 10, Cert# 2012014. IBM Flex System x240 (2 processors, 16 cores, 32 threads) 7,960 SAP SD Users, 2 x 2.90 GHz Intel Xeon E5-2690, 128 GB memory, DB2 9.7, Windows Server 2008 R2 EE, Cert# 2012016. IBM System x3650 M4 (2 processors, 16 cores, 32 threads) 7,855 SAP SD Users, 2 x 2.90 GHz Intel Xeon E5-2690, 128 GB memory, DB2 9.7, Windows Server 2008 R2 EE, Cert# 2012010. Cisco UCS C240 M3 (2 processors, 16 cores, 32 threads) 7,635 SAP SD Users, 2 x 2.90 GHz Intel Xeon E5-2690, 128 GB memory, SQL Server 2008, Windows Server 2008 R2 DE, Cert# 2012011. Fujitsu PRIMERGY RX300 S7 (2 processors, 16 cores, 32 threads) 7,570 SAP SD Users, 2 x 2.90 GHz Intel Xeon E5-2690, 128 GB memory, SQL Server 2008, Windows Server 2008 R2 EE, Cert# 2012008. HP ProLiant DL380p Gen8 (2 processors, 16 cores, 32 threads) 7,865 SAP SD Users, 2 x 2.90 GHz Intel Xeon E5-2690, 128 GB memory, SQL Server 2008, Windows Server 2008 R2 EE, Cert# 2012012.

SAP, R/3, reg TM of SAP AG in Germany and other countries. More info www.sap.com/benchmark

Tuesday Apr 10, 2012

World Record Oracle E-Business Suite 12.1.3 Standard Extra-Large Payroll (Batch) Benchmark on Sun Server X3-2L

Oracle's Sun Server X3-2L (formerly Sun Fire X4270 M3) server set a world record running the Oracle E-Business Suite 12.1.3 Standard Extra-Large Payroll (Batch) benchmark.

  • This is the first published result using Oracle E-Business 12.1.3.

  • The Sun Server X3-2L result ran the Extra-Large Payroll workload in 19 minutes.

Performance Landscape

This is the first published result for the Payroll Extra-Large model using Oracle E-Business 12.1.3 benchmark.

Batch Workload: Payroll Extra-Large Model
System Employees/Hr Elapsed Time
Sun Server X3-2L 789,515 19 minutes

Configuration Summary

Hardware Configuration:

Sun Server X3-2L
2 x Intel Xeon E5-2690, 2.9 GHz
128 GB memory
8 x 100 GB SSD for data
1 x 300 GB SSD for log

Software Configuration:

Oracle Linux 5.7
Oracle E-Business Suite R12 (12.1.3)
Oracle Database 11g (11.2.0.3)

Benchmark Description

The Oracle E-Business Suite Standard R12 Benchmark combines online transaction execution by simulated users with concurrent batch processing to model a typical scenario for a global enterprise. This benchmark ran one Batch component, Payroll, in the Extra-Large size. The goal of the benchmark proposal is to execute and achieve best batch-payroll performance using X-Large configuragion.

Results can be published in four sizes and use one or more online/batch modules

  • X-large: Maximum online users running all business flows between 10,000 to 20,000; 750,000 order to cash lines per hour and 250,000 payroll checks per hour.
    • Order to Cash Online -- 2400 users
      • The percentage across the 5 transactions in Order Management module is:
        • Insert Manual Invoice -- 16.66%
        • Insert Order -- 32.33%
        • Order Pick Release -- 16.66%
        • Ship Confirm -- 16.66%
        • Order Summary Report -- 16.66%
    • HR Self-Service -- 4000 users
    • Customer Support Flow -- 8000 users
    • Procure to Pay -- 2000 users
  • Large: 10,000 online users; 100,000 order to cash lines per hour and 100,000 payroll checks per hour.
  • Medium: up to 3000 online users; 50,000 order to cash lines per hour and 10,000 payroll checks per hour.
  • Small: up to 1000 online users; 10,000 order to cash lines per hour and 5,000 payroll checks per hour.

See Also

Disclosure Statement

Oracle E-Business X-Large Batch-Payroll benchmark, Sun Server X3-2L, 2.90 GHz, 2 chips, 16 cores, 32 threads, 128 GB memory, elapsed time 19.0 minutes, 789,515 Employees/HR, Oracle Linux 5.7, Oracle E-Business Suite 12.1.3, Oracle Database 11g Release 2, Results as of 7/10/2012.

SPEC CPU2006 Results on Oracle's Sun x86 Servers

Oracle's new Sun x86 servers delivered world records on the benchmarks SPECfp2006 and SPECint_rate2006 for two processor servers. This was accomplished with Oracle Solaris 11 and Oracle Solaris Studio 12.3 software.

  • The Sun Fire X4170 M3 (now known as Sun Server X3-2) server achieved a world record result in for SPECfp2006 benchmark with a score of 96.8.

  • The Sun Blade X6270 M3 server module (now known as Sun Blade X3-2B) produced best integer throughput performance for all 2-socket servers with a SPECint_rate2006 score of 705.

  • The Sun x86 servers with Intel Xeon E5-2690 2.9 GHz processors produced a cross-generational performance improvement up to 1.8x over the previous generation, Sun x86 M2 servers.

Performance Landscape

Complete benchmark results are at the SPEC website, SPEC CPU2006 Results. The tables below provide the new Oracle results, as well as, select results from other vendors.

SPECint2006
System Processor c/c/t * Peak Base O/S Compiler
Fujitsu PRIMERGY BX924 S3 Intel E5-2690, 2.9 GHz 2/16/16 60.8 56.0 RHEL 6.2 Intel 12.1.2.273
Sun Fire X4170 M3 Intel E5-2690, 2.9 GHz 2/16/32 58.5 54.3 Oracle Linux 6.1 Intel 12.1.0.225
Sun Fire X4270 M2 Intel X5690, 3.47 GHz 2/12/12 46.2 43.9 Oracle Linux 5.5 Intel 12.0.1.116

SPECfp2006
System Processor c/c/t * Peak Base O/S Compiler
Sun Fire X4170 M3 Intel E5-2690, 2.9 GHz 2/16/32 96.8 86.4 Oracle Solaris 11 Studio 12.3
Sun Blade X6270 M3 Intel E5-2690, 2.9 GHz 2/16/32 96.0 85.2 Oracle Solaris 11 Studio 12.3
Sun Fire X4270 M3 Intel E5-2690, 2.9 GHz 2/16/32 95.9 85.1 Oracle Solaris 11 Studio 12.3
Fujitsu CELSIUS R920 Intel E5-2687, 2.9 GHz 2/16/16 93.8 87.6 RHEL 6.1 Intel 12.1.2.273
Sun Fire X4270 M2 Intel X5690, 3.47 GHz 2/12/24 64.2 59.2 Oracle Solaris 10 Studio 12.2

Only 2-chip server systems listed below, excludes workstations.

SPECint_rate2006
System Processor Base
Copies
c/c/t * Peak Base O/S Compiler
Sun Blade X6270 M3 Intel E5-2690, 2.9 GHz 32 2/16/32 705 632 Oracle Solaris 11 Studio 12.3
Sun Fire X4270 M3 Intel E5-2690, 2.9 GHz 32 2/16/32 705 630 Oracle Solaris 11 Studio 12.3
Sun Fire X4170 M3 Intel E5-2690, 2.9 GHz 32 2/16/32 702 628 Oracle Solaris 11 Studio 12.3
Cisco UCS C220 M3 Intel E5-2690, 2.9 GHz 32 2/16/32 697 671 RHEL 6.2 Intel 12.1.0.225
Sun Blade X6270 M2 Intel X5690, 3.47 GHz 24 2/12/24 410 386 Oracle Linux 5.5 Intel 12.0.1.116

SPECfp_rate2006
System Processor Base
Copies
c/c/t * Peak Base O/S Compiler
Cisco UCS C240 M3 Intel E5-2690, 2.9 GHz 32 2/16/32 510 496 RHEL 6.2 Intel 12.1.2.273
Sun Fire X4270 M3 Intel E5-2690, 2.9 GHz 64 2/16/32 497 461 Oracle Solaris 11 Studio 12.3
Sun Blade X6270 M3 Intel E5-2690, 2.9 GHz 32 2/16/32 497 460 Oracle Solaris 11 Studio 12.3
Sun Fire X4170 M3 Intel E5-2690, 2.9 GHz 64 2/16/32 495 464 Oracle Solaris 11 Studio 12.3
Sun Fire X4270 M2 Intel E5690, 3.47 GHz 24 2/12/24 273 265 Oracle Linux 5.5 Intel 12.0.1.116

* c/c/t — chips / cores / threads enabled

Configuration Summary and Results

Hardware Configuration:

Sun Fire X4170 M3 server
2 x 2.90 GHz Intel Xeon E5-2690 processors
128 GB memory (16 x 8 GB 2Rx4 PC3-12800R-11, ECC)

Sun Fire X4270 M3 server
2 x 2.90 GHz Intel Xeon E5-2690 processors
128 GB memory (16 x 8 GB 2Rx4 PC3-12800R-11, ECC)

Sun Blade X6270 M3 server module
2 x 2.90 GHz Intel Xeon E5-2690 processors
128 GB memory (16 x 8 GB 2Rx4 PC3-12800R-11, ECC)

Software Configuration:

Oracle Solaris 11 11/11 (SRU2)
Oracle Solaris Studio 12.3 (patch update 1 nightly build 120313) Oracle Linux Server Release 6.1
Intel C++ Studio XE 12.1.0.225
SPEC CPU2006 V1.2

Benchmark Description

SPEC CPU2006 is SPEC's most popular benchmark. It measures:

  • Speed — single copy performance of chip, memory, compiler
  • Rate — multiple copy (throughput)

The benchmark is also divided into integer intensive applications and floating point intensive applications:

  • integer: 12 benchmarks derived from real applications such as perl, gcc, XML processing, and pathfinding
  • floating point: 17 benchmarks derived from real applications, including chemistry, physics, genetics, and weather.

It is also divided depending upon the amount of optimization allowed:

  • base: optimization is consistent per compiled language, all benchmarks must be compiled with the same flags per language.
  • peak: specific compiler optimization is allowed per application.

The overall metrics for the benchmark which are commonly used are:

  • SPECint_rate2006, SPECint_rate_base2006: integer, rate
  • SPECfp_rate2006, SPECfp_rate_base2006: floating point, rate
  • SPECint2006, SPECint_base2006: integer, speed
  • SPECfp2006, SPECfp_base2006: floating point, speed

See here for additional information.

See Also

Disclosure Statement

SPEC and the benchmark names SPECfp and SPECint are registered trademarks of the Standard Performance Evaluation Corporation. Results as of 10 April 2012 from www.spec.org and this report.

SPEC CPU2006 Results on Oracle's Netra Server X3-2

Oracle's Netra Server X3-2 (formerly Sun Netra X4270 M3) equipped with the new Intel Xeon processor E5-2658, is up to 2.5x faster than the previous generation Netra systems on SPEC CPU2006 workloads.

Performance Landscape

Complete benchmark results are at the SPEC website, SPEC CPU2006 results. The tables below provide the new Oracle results and previous generation results.

SPECint2006
System Processor c/c/t * Peak Base O/S Compiler
Netra Server X3-2
Intel E5-2658, 2.1 GHz 2/16/32 38.5 36.0 Oracle Linux 6.1 Intel 12.1.0.225
Sun Netra X4270 Intel L5518, 2.13 GHz 2/8/16 27.9 25.0 Oracle Linux 5.4 Intel 11.1
Sun Netra X4250 Intel L5408, 2.13 GHz 2/8/8 20.3 17.9 SLES 10 SP1 Intel 11.0

SPECfp2006
System Processor c/c/t * Peak Base O/S Compiler
Netra Server X3-2 Intel E5-2658, 2.1 GHz 2/16/32 65.3 61.6 Oracle Linux 6.1 Intel 12.1.0.225
Sun Netra X4270 Intel L5518, 2.13 GHz 2/8/16 32.5 29.4 Oracle Linux 5.4 Intel 11.1
Sun Netra X4250 Intel L5408, 2.13 GHz 2/8/8 18.5 17.7 SLES 10 SP1 Intel 11.0

SPECint_rate2006
System Processor Base
Copies
c/c/t * Peak Base O/S Compiler
Netra Server X3-2 Intel E5-2658, 2.1 GHz 32 2/16/32 477 455 Oracle Linux 6.1 Intel 12.1.0.225
Sun Netra X4270 Intel L5518, 2.13 GHz 16 2/8/16 201 189 Oracle Linux 5.4 Intel 11.1
Sun Netra X4250 Intel L5408, 2.13 GHz 8 2/8/8 103 82.0 SLES 10 SP1 Intel 11.0

SPECfp_rate2006
System Processor Base
Copies
c/c/t * Peak Base O/S Compiler
Netra Server X3-2 Intel E5-2658, 2.1 GHz 32 2/16/32 392 383 Oracle Linux 6.1 Intel 12.1.0.225
Sun Netra X4270 Intel L5518, 2.13 GHz 16 2/8/16 155 153 Oracle Linux 5.4 Intel 11.1
Sun Netra X4250 Intel L5408, 2.13 GHz 8 2/8/8 55.9 52.3 SLES 10 SP1 Intel 11.0

* c/c/t — chips / cores / threads enabled

Configuration Summary

Hardware Configuration:

Netra Server X3-2
2 x 2.10 GHz Intel Xeon E5-2658 processors
128 GB memory (16 x 8 GB 2Rx4 PC3-12800R-11, ECC)

Software Configuration:

Oracle Linux Server Release 6.1
Intel C++ Studio XE 12.1.0.225
SPEC CPU2006 V1.2

Benchmark Description

SPEC CPU2006 is SPEC's most popular benchmark. It measures:

  • Speed — single copy performance of chip, memory, compiler
  • Rate — multiple copy (throughput)

The benchmark is also divided into integer intensive applications and floating point intensive applications:

  • integer: 12 benchmarks derived from real applications such as perl, gcc, XML processing, and pathfinding
  • floating point: 17 benchmarks derived from real applications, including chemistry, physics, genetics, and weather.

It is also divided depending upon the amount of optimization allowed:

  • base: optimization is consistent per compiled language, all benchmarks must be compiled with the same flags per language.
  • peak: specific compiler optimization is allowed per application.

The overall metrics for the benchmark which are commonly used are:

  • SPECint_rate2006, SPECint_rate_base2006: integer, rate
  • SPECfp_rate2006, SPECfp_rate_base2006: floating point, rate
  • SPECint2006, SPECint_base2006: integer, speed
  • SPECfp2006, SPECfp_base2006: floating point, speed

See here for additional information.

See Also

Disclosure Statement

SPEC and the benchmark names SPECfp and SPECint are registered trademarks of the Standard Performance Evaluation Corporation. Results as of 10 July 2012 from www.spec.org and this report.

About

BestPerf is the source of Oracle performance expertise. In this blog, Oracle's Strategic Applications Engineering group explores Oracle's performance results and shares best practices learned from working on Enterprise-wide Applications.

Index Pages
Search

Archives
« February 2016
SunMonTueWedThuFriSat
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
     
       
Today