Wednesday Dec 08, 2010

Sun Blade X6275 M2 Delivers Best Fluent (MCAE Application) Performance on Tested Configurations

This Manufacturing Engineering benchmark highlights the performance advantage the Sun Blade X6275 M2 server module offers over IBM, Cray, and SGI solutions as shown by the ANSYS FLUENT fluid dynamics application.

A cluster of eight of Oracle's Sun Blade X6275 M2 server modules delivered outstanding performance running the FLUENT 12 benchmark test suite.

  • The Sun Blade X6275 M2 server module cluster delivered the best results in all 36 of the test configurations run, outperforming the best posted results by as much as 42%.
  • The Sun Blade X6275 M2 server module demonstrated up to 76% performance improvement over the previous generation Sun Blade X6275 server module.

Performance Landscape

In the following tables, results are "Ratings" (bigger is better).
Rating = No. of sequential runs of test case possible in 1 day: 86,400/(Total Elapsed Run Time in Seconds)

The following table compares results on the basis of core count, irrespective of processor generation. This means that in some cases, i.e., for the 32-core and 64-core configurations, systems with the Intel Xeon X5670 six-core processors did not utilize quite all of the cores available for the specified processor count.


FLUENT 12 Benchmark Test Suite

Competitive Comparisons

System
Processors Cores Benchmark Test Case Ratings
eddy
417k
turbo
500k
aircraft
2m
sedan
4m
truck
14m
truck_poly
14m

Sun Blade X6275 M2 16 96 9340.5 39272.7 8307.7 8533.3 903.8 786.9
Best Posted 24 96

7562.4
797.0 712.9
Best Posted 16 96 7337.6 33553.4 6533.1 5989.6 739.1 683.5

Sun Blade X6275 M2 11 64 6306.6 27212.6 5592.2 5158.2 568.8 518.9
Best Posted 16 64 5556.3 26381.7 5494.4 4902.1 566.6 518.6

Sun Blade X6275 M2 8 48 4620.3 19093.9 4080.3 3251.2 376.0 359.4
Best Posted 8 48 4494.1 18989.0 3990.8 3185.3 372.7 354.5

Sun Blade X6275 M2 6 32 4061.1 15091.7 3275.8 3013.1 299.5 267.8
Best Posted 8 32 3404.9 14832.6 3211.9 2630.1 286.7 266.7

Sun Blade X6275 M2 4 24 2751.6 10441.1 2161.4 1907.3 188.2 182.5
Best Posted 6 24 1458.2 9626.7 1820.9 1747.2 185.1 180.8
Best Posted 4 24 2565.7 10164.7 2109.9 1608.2 187.1 180.8

Sun Blade X6275 M2 2 12 1429.9 5358.1 1097.5 813.2 95.9 95.9
Best Posted 2 12 1338.0 5308.8 1073.3 808.6 92.9 94.4



The following table compares results on the basis of processor count showing inter-generational processor performance improvement.


FLUENT 12 Benchmark Test Suite

Intergenerational Comparisons

System
Processors Cores Benchmark Test Case Ratings
eddy
417k
turbo
500k
aircraft
2m
sedan
4m
truck
14m
truck_poly
14m

Sun Blade X6275 M2 16 96 9340.5 39272.7 8307.7 8533.3 903.8 786.9
Sun Blade X6275 16 64 5308.8 26790.7 5574.2 5074.9 547.2 525.2
X6275 M2 : X6275 16
1.76 1.47 1.49 1.68 1.65 1.50

Sun Blade X6275 M2 8 48 4620.3 19093.9 4080.3 3251.2 376.0 359.4
Sun Blade X6275 8 32 3066.5 13768.9 3066.5 2602.4 289.0 270.3
X6275 M2 : X6275 8
1.51 1.39 1.33 1.25 1.30 1.33

Sun Blade X6275 M2 4 24 2751.6 10441.1 2161.4 1907.3 188.2 182.5
Sun Blade X6275 4 16 1714.3 7545.9 1519.1 1345.8 144.4 141.8
X6275 M2 : X6275 4
1.61 1.38 1.42 1.42 1.30 1.29

Sun Blade X6275 M2 2 12 1429.9 5358.1 1097.5 813.2 95.9 95.9
Sun Blade X6275 2 8 931.8 4061.1 827.2 681.5 73.0 73.8
X6275 M2 : X6275 2
1.53 1.32 1.33 1.19 1.31 1.30

Configuration Summary

Hardware Configuration:

8 x Sun Blade X6275 M2 server modules, each with
4 Intel Xeon X5670 2.93 GHz processors, turbo enabled
96 GB memory 1333 MHz
2 x 24 GB SATA-based Sun Flash Modules
2 x QDR InfiniBand Host Channel Adapter
Sun Datacenter InfiniBand Switch IB-36

Software Configuration:

Oracle Enterprise Linux Enterprise Server 5.5
ANSYS FLUENT V12.1.2
ANSYS FLUENT Benchmark Test Suite

Benchmark Description

The following description is from the ANSYS FLUENT website:

The FLUENT benchmarks suite comprises of a set of test cases covering a large range of mesh sizes, physical models and solvers representing typical industry usage. The cases range in size from a few 100 thousand cells to more than 100 million cells. Both the segregated and coupled implicit solvers are included, as well as hexahedral, mixed and polyhedral cell cases. This broad coverage is expected to demonstrate the breadth of FLUENT performance on a variety of hardware platforms and test cases.

The performance of a CFD code will depend on several factors, including size and topology of the mesh, physical models, numerics and parallelization, compilers and optimization, in addition to performance characteristics of the hardware where the simulation is performed. The principal objective of this benchmark suite is to provide comprehensive and fair comparative information of the performance of FLUENT on available hardware platforms.

About the ANSYS FLUENT 12 Benchmark Test Suite

    CFD models tend to be very large where grid refinement is required to capture with accuracy conditions in the boundary layer region adjacent to the body over which flow is occurring. Fine grids are required to also determine accurate turbulence conditions. As such these models can run for many hours or even days as well using a large number of processors.

Key Points and Best Practices

  • ANSYS FLUENT has not yet been certified by the vendor on Oracle Enterprise Linux (OEL). However, the ANSYS FLUENT benchmark tests have been run successfully on Oracle hardware running OEL as is (i.e. with NO changes or modifications).
  • The performance improvement of the Sun Blade X6275 M2 server module over the previous generation Sun Blade X6275 server module was due to two main factors: the increased core count per processor (6 vs. 4), and the more optimal, iterative dataset partitioning scheme used for the Sun Blade X6275 M2 server module.

See Also

Disclosure Statement

All information on the FLUENT website (http://www.fluent.com) is Copyrighted 1995-2010 by ANSYS Inc. Results as of December 06, 2010.

Tuesday Jun 29, 2010

Sun Fire X2270 M2 Achieves Leading Single Node Results on ANSYS FLUENT Benchmark

Oracle's Sun Fire X2270 M2 server produced leading single node performance results running the ANSYS FLUENT benchmark cases as compared to the best single node results currently posted at the ANSYS FLUENT website. ANSYS FLUENT is a prominent MCAE application used for computational fluid dynamics (CFD).

  • The Sun Fire X2270 M2 server outperformed all single node systems in 5 of 6 test cases at the 12 core level, beating systems from Cray and SGI.
  • For the truck_14m test, the Sun Fire X2270 M2 server outperformed all single node systems at all posted core counts, beating systems from SGI, Cray and HP. When considering performance on a single node, the truck_14m model is most representative of customer CFD model sizes in the test suite.
  • The Sun Fire X2270 M2 server with 12 cores performed up to 1.3 times faster than the previous generation Sun Fire X2270 server with 8 cores.

Performance Landscape

Results are presented for six of the seven ANSYS FLUENT benchmark tests. The seventh test is not a practical test for a single system. Results are ratings, where bigger is better. A rating is the number of jobs that could be run in a single day (86,400 / run time). Competitive results are from the ANSYS FLUENT benchmark website as of 25 June 2010.

Single System Performance

ANSYS FLUENT Benchmark Tests
Results are Ratings, Bigger is Better
System Benchmark Test
eddy_417k turbo_500k aircraft_2m sedan_4m truck_14m truck_poly_14m
Sun Fire X2270 M2 1129.4 5391.6 1105.9 814.1 94.8 96.4
SGI Altix 8400EX 1338.0 5308.8 1073.3 796.3 - -
SGI Altix XE1300C 1299.2 5284.4 1071.3 801.3 90.2 -
Cray CX1 1060.8 5127.6 1069.6 808.6 86.1 87.5

Scaling of Benchmark Test truck_14m

ANSYS FLUENT truck_14m Model
Results are Ratings, Bigger is Better
System Cores Used
12 8 4 2 1
Sun Fire X2270 M2 94.8 73.6 41.4 21.0 10.4
SGI Altix XE1300C 90.2 60.9 41.1 20.7 9.0
Cray CX1 (X5570) - 71.7 33.2 18.9 8.1
HP BL460 G6 (X5570) - 70.3 38.6 19.6 9.2

Comparing System Generations, Sun Fire X2270 M2 to Sun Fire X2270

ANSYS FLUENT Benchmark Tests
Results are Ratings, Bigger is Better
System Benchmark Test
eddy_417k turbo_500k aircraft_2m sedan_4m truck_14m truck_poly_14m
Sun Fire X2270 M2 1129.4 5374.8 1103.8 814.1 94.8 96.4
Sun Fire X2270 981.5 4163.9 862.7 691.2 73.6 73.3

Ratio 1.15 1.29 1.28 1.18 1.29 1.32

Results and Configuration Summary

Hardware Configuration:

Sun Fire X2270 M2
2 x 2.93 GHz Intel Xeon X5670 processors
48 GB memory
1 x 500 GB 7200 rpm SATA internal HDD

Sun Fire X2270
2 x 2.93 GHz Intel Xeon X5570 processors
48 GB memory
2 x 24 GB internal striped SSDs

Software Configuration:

64-bit SUSE Linux Enterprise Server 10 SP 3 (SP 2 for X2270)
ANSYS FLUENT V12.1.2
ANSYS FLUENT Benchmark Test Suite

Benchmark Description

The following description is from the ANSYS FLUENT website:

The FLUENT benchmarks suite comprises of a set of test cases covering a large range of mesh sizes, physical models and solvers representing typical industry usage. The cases range in size from a few 100 thousand cells to more than 100 million cells. Both the segregated and coupled implicit solvers are included, as well as hexahedral, mixed and polyhedral cell cases. This broad coverage is expected to demonstrate the breadth of FLUENT performance on a variety of hardware platforms and test cases.

The performance of a CFD code will depend on several factors, including size and topology of the mesh, physical models, numerics and parallelization, compilers and optimization, in addition to performance characteristics of the hardware where the simulation is performed. The principal objective of this benchmark suite is to provide comprehensive and fair comparative information of the performance of FLUENT on available hardware platforms.

About the ANSYS FLUENT 12 Benchmark Test Suite

    CFD models tend to be very large where grid refinement is required to capture with accuracy conditions in the boundary layer region adjacent to the body over which flow is occurring. Fine grids are required to also determine accurate turbulence conditions. As such these models can run for many hours or even days as well using a large number of processors.

See Also

Disclosure Statement

All information on the FLUENT website (http://www.fluent.com) is Copyrighted 1995-2010 by ANSYS Inc. Results as of June 25, 2010.

Sun Fire X2270 M2 Demonstrates Outstanding Single Node Performance on MSC.Nastran Benchmarks

Oracle's Sun Fire X2270 M2 server results showed outstanding performance running the MCAE application MSC.Nastran as shown by the MD Nastran MDR3 serial and parallel test cases.

Performance Landscape

Complete information about the serial results presented below can be found on the MSC Nastran website.


MD Nastran MDR3 Serial Test Results
Platform Benchmark Problem
Results are total elapsed run time in seconds
xl0imf1 xx0xst0 xl1fn40 vl0sst1
Sun Fire X2270 M2 999 704 2337 115
Sun Blade X6275 1107 798 2285 120
Intel Nehalem 1235 971 2453 123
Intel Nehalem w/ SSD 1484 767 2456 120
IBM:P6 570 ( I8 )
1510 4612 132
IBM:P6 570 ( I4 ) 1016 1618 5534 147

Complete information about the parallel results presented below can be found on the MSC Nastran website.


MD Nastran MDR3 Parallel Test Results
Platform Benchmark Problem
Results are total elapsed run time in seconds
xx0cmd2 md0mdf1
Serial DMP=2 DMP=4 DMP=8 Serial DMP=2 DMP=4
Sun Blade X6275 840 532 391 279 880 422 223
Sun Fire X2270 M2 847 558 371 297 889 462 232
Intel Nehalem w/ 4 SSD 887 639 405
902 479 235
Intel Nehalem 915 561 408
922 470 251
IBM:P6 570 ( I8 ) 920 574 392 322


IBM:P6 570 ( I4 ) 959 616 419 343 911 469 242

Results and Configuration Summary

Hardware Configuration:

Sun Fire X2270 M2
2 x 2.93 GHz Intel Xeon X5670 processors
48 GB memory
4 x 24 GB SSDs (striped)

Software Configuration:

64-bit SUSE Linux Enterprise Server 10 SP 3
MSC Software MD 2008 R3
MD Nastran MDR3 benchmark test suite

Benchmark Description

The benchmark tests are representative of typical MSC.Nastran applications including both serial and parallel (DMP) runs involving linear statics, nonlinear statics, and natural frequency extraction as well as others. MD Nastran is an integrated simulation system with a broad set of multidiscipline analysis capabilities.

Key Points and Best Practices

  • The test cases for the MSC.Nastran module all have a substantial I/O component where 15% to 25% of the total run times are associated with I/O activity (primarily scratch files). The required scratch file size ranges from less than 1 GB on up to about 140 GB. To obtain best performance, it is important to have a high performance storage system when running MD Nastran.

  • To improve performance, it is possible to make use of the MD Nastran feature which sets the maximum amount of memory the application will use. This allows a user to configure where temporary files are held, including in memory file systems like tmpfs.

See Also

Disclosure Statement

MSC.Software is a registered trademark of MSC. All information on the MSC.Software website is copyrighted. MD Nastran MDR3 results from http://www.mscsoftware.com and this report as of June 28, 2010.

Friday Nov 20, 2009

Sun Blade X6275 cluster delivers leading results for Fluent truck_111m benchmark

A Sun Blade 6048 Modular System with 16 Sun Blade X6275 Server Modules configured with QDR InfiniBand cluster interconnect delivered outstanding performance running the FLUENT benchmark test suite truck_111m case.

  • A cluster of Sun Blade X6275 server modules with 2.93 GHz Intel X5570 processors achieved leading 32-node performance for the largest truck test case, truck_111m.
  • The Sun Blade X6275 cluster delivered the best performance for the 64-core/8-node, 128-core/16-node, and 256-core/32-node configurations, outperforming the SGI Altix result by as much as 8%.
  • NOTE: These results are will not be published on the Fluent website as Fluent has stopped accepting results for this version.

Performance Landscape


FLUENT 12 Benchmark Test Suite - truck_111m
  Results are "Ratings" (bigger is better)
  Rating = No. of sequential runs of test case possible in 1 day = 86,400 sec/(Total Elapsed Run Time in seconds)

System (1)
cores Benchmark Test Case
truck
111m

Sun Blade X6275, 32 nodes 256 240.0
SGI Altix ICE 8200 IP95, 32 nodes 256 238.9
Intel Whitebox, 32 nodes 256 219.8

Sun Blade X6275, 16 nodes 128 129.6
SGI Altix ICE 8200 IP95, 16 nodes 128 120.8
Intel Whitebox, 16 nodes 128 116.9

Sun Blade X6275, 8 nodes 64 64.6
SGI Altix ICE 8200 IP95, 8 nodes 64 59.8
Intel Whitebox, 8 nodes 64 57.4

(1) Sun Blade X6275, X5570 QC 2.93GHz, QDR
Intel Whitebox, X5560 QC 2.8GHz, DDR
SGI Altix ICE 8200, X5570 QC 2.93GHz, DDR

Results and Configuration Summary

Hardware Configuration:

    16 x Sun Blade X6275 Server Module ( Dual-Node Blade, 32 nodes ) each node with
      2 x 2.93GHz Intel X5570 QC processors
      24 GB (6 x 4GB, 1333 MHz DDR3 dimms)
      On-board QDR InfiniBand Host Channel Adapters, QNEM

Software Configuration:

    OS: 64-bit SUSE Linux Enterprise Server SLES 10 SP 2
    Interconnect Software: OFED ver 1.4.1
    Shared File System: Lustre ver 1.8.1
    Application: FLUENT V12.0.16
    Benchmark: FLUENT 12 Benchmark Test Suite

Benchmark Description

The benchmark test are representative of typical user large CFD models intended for execution in distributed memory processor (DMP) mode over a cluster of multi-processor platforms.

Key Points and Best Practices

Observations About the Results

The Sun Blade X6275 cluster delivered excellent performance on the largest Fluent benchmark problem, truck_111m.

The Intel X5570 processors include a turbo boost feature coupled with a speedstep option in the CPU section of the advanced BIOS settings. This, under specific circumstances, can provide a cpu upclocking, temporarily increasing the processor frequency from 2.93GHz to 3.2GHz.

Memory placement is a very significant factor with Nehalem processors. Current Nehalem platforms have two sockets. Each socket has three memory channels and each channel has 3 bays for DIMMs. For example if one DIMM is placed in the 1st bay of each of the 3 channels the DIMM speed will be 1333 MHz with the X5570's altering the DIMM arrangement to an off balance configuration by say adding just one more DIMM into the 2nd bay of one channel will cause the DIMM frequency to drop from 1333 MHz to 1067 MHz.

About the FLUENT 12 Benchmark Test Suite

The FLUENT application performs computational fluid dynamic analysis on a variety of different types of flow and allows for chemically reacting species. transient dynamic and can be linear or nonlinear as far

  • CFD models tend to be very large where grid refinement is required to capture with accuracy conditions in the boundary layer region adjacent to the body over which flow is occurring. Fine grids are required to also determine accurate turbulence conditions. As such these models can run for many hours or even days as well using a large number of processors.
  • CFD models typically scale very well and are very suited for execution on clusters. The FLUENT 12 benchmark test cases scale well.
  • The memory requirements for the test cases in the FLUENT 12 benchmark test suite range from a few hundred megabytes to about 25 GB. As the job is distributed over multiple nodes the memory requirements per node correspondingly are reduced.
  • The benchmark test cases for the FLUENT module do not have a substantial I/O component. component. However performance will be enhanced very substantially by using high performance interconnects such as InfiniBand for inter node cluster message passing. This nodal message passing data can be stored locally on each node or on a shared file system.

See Also

Current FLUENT 12 Benchmark:
http://www.fluent.com/software/fluent/fl6bench/fl6bench_6.4.x/

Disclosure Statement

All information on the Fluent website is Copyrighted 1995-2009 by Fluent Inc. Results from http://www.fluent.com/software/fluent/fl6bench/ as of November 12, 2009 and this presentation.

Monday Nov 02, 2009

Sun Blade X6275 Cluster Beats SGI Running Fluent Benchmarks

A Sun Blade 6048 Modular System with 8 Sun Blade X6275 Server Modules configured with QDR InfiniBand cluster interconnect delivered outstanding performance running the FLUENT 12 benchmark test suite. Sun consistently delivered the best or near best results per node for the 6 benchmark tests considered up to the available nodes considered for these runs.

  • The Sun Blade X6275 cluster delivered the best results for the truck_poly_14M tests for all Rank counts tested.
  • For this large truck_poly_14m test case, the Sun Blade X6275 cluster beat the best results by SGI by as much as 19%.

  • Of the 54 test cases presented here, the Sun Blade X6275 cluster delivered the best results in 87% of the tests, 47 of the 54 cases.

Performance Landscape


FLUENT 12 Benchmark Test Suite
  Results are "Ratings" (bigger is better)
  Rating = No. of sequential runs of test case possible in 1 day 86,400/(Total Elapsed Run Time in Seconds)

System
Nodes Ranks Benchmark Test Case
eddy
417k
turbo
500k
aircraft
2m
sedan
4m
truck
14m
truck_poly
14m

Sun Blade X6275 16 128 6496.2 19307.3 8408.8 6341.3 1060.1 984.1
Best Intel 16 128 5236.4 (3) 15638.0 (7) 7981.5 (1) 6582.9 (1) 1005.8 (1) 933.0 (1)
Best SGI 16 128 7578.9 (5) 14706.4 (6) 6789.8 (4) 6249.5 (5) 1044.7 (4) 926.0 (4)

Sun Blade X6275 8 64 5308.8 26790.7 5574.2 5074.9 547.2 525.2
Best Intel 8 64 5016.0 (1) 25226.3 (1) 5220.5 (1) 4614.2 (1) 513.4 (1) 490.9 (1)
Best SGI 8 64 5142.9 (4) 23834.5 (4) 4614.2 (4) 4352.6 (4) 529.4 (4) 479.2 (4)

Sun Blade X6275 4 32 3066.5 13768.9 3066.5 2602.4 289.0 270.3
Best Intel 4 32 2856.2 (1) 13041.5 (1) 2837.4 (1) 2465.0 (1) 266.4 (1) 251.2 (1)
Best SGI 4 32 3083.0 (4) 13190.8 (4) 2588.8 (5) 2445.9 (5) 266.6 (4) 246.5 (4)

Sun Blade X6275 2 16 1714.3 7545.9 1519.1 1345.8 144.4 141.8
Best Intel 2 16 1585.3 (1) 7125.8 (1) 1428.1 (1) 1278.6 (1) 134.7 (1) 132.5 (1)
Best SGI 2 16 1708.4 (4) 7384.6 (4) 1507.9 (4) 1264.1 (5) 128.8 (4) 133.5 (4)

Sun Blade X6275 1 8 931.8 4061.1 827.2 681.5 73.0 73.8
Best Intel 1 8 920.1 (2) 3900.7 (2) 784.9 (2) 644.9 (1) 70.2 (2)) 70.9 (2)
Best SGI 1 8 953.1 (4) 4032.7 (4) 843.3 (4) 651.0 (4) 71.4 (4) 72.0 (4)

Sun Blade X6275 1 4 550.4 2425.3 533.6 423.0 41.6 41.6
Best Intel 1 4 515.7 (1) 2244.2 (1) 490.8 (1) 392.2 (1) 37.8 (1) 38.4 (1)
Best SGI 1 4 561.6 (4) 2416.8 (4) 526.9 (4) 412.6 (4) 40.9 (4) 40.8 (4)

Sun Blade X6275 1 2 299.6 1328.2 293.9 232.1 21.3 21.6
Best Intel 1 2 274.3 (1) 1201.7 (1) 266.1 (1) 214.2 (1) 18.9 (1) 19.6 (1)
Best SGI 1 2 294.2 (4) 1302.7 (4) 289.0 (4) 226.4 (4) 20.5 (4) 21.2 (4)

Sun Blade X6275 1 1 154.7 682.6 149.1 114.8 9.7 10.1
Best Intel 1 1 143.5 (1) 631.1 (1) 137.4 (1) 106.2 (1) 8.8 (1) 9.0 (1)
Best SGI 1 1 153.3 (4) 677.5 (4) 147.3 (4) 111.2 (4) 10.3 (4) 9.5 (4)

Sun Blade X6275 1 serial 155.6 676.6 156.9 110.0 9.4 10.3
Best Intel 1 serial 146.6 (2) 650.0 (2) 150.2 (2) 105.6 (2) 8.8 (2) 9.7 (2)

    Sun Blade X6275, X5570 QC 2.93 GHz, QDR SMT on / Turbo mode on

    (1) Intel Whitebox (X5560 QC 2.80 GHz, RHEL5, IB)
    (2) Intel Whitebox (X5570 QC 2.93 GHz, RHEL5)
    (3) Intel Whitebox (X5482 QC 3.20 GHz, RHEL5, IB)
    (4) SGI Altix ICE_8200IP95 (X5570 2.93 GHz +turbo, SLES10, IB)
    (5) SGI Altix_ICE_8200IP95 (X5570 2.93 GHz, SLES10, IB)
    (6) SGI Altix_ICE_8200EX (Intel64 QC 3.00 GHz, Linux, IB)
    (7) Qlogic Cluster (X5472 QC 3.00 GHz, RHEL5.2, IB Truescale)

Results and Configuration Summary

Hardware Configuration:

    8 x Sun Blade X6275 Server Module ( Dual-Node Blade, 16 nodes ) each node with
      2 x 2.93GHz Intel X5570 QC processors
      24 GB (6 x 4GB, 1333 MHz DDR3 dimms)
      On-board QDR InfiniBand Host Channel Adapters, QNEM

Software Configuration:

    OS: 64-bit SUSE Linux Enterprise Server SLES 10 SP 2
    Interconnect Software: OFED ver 1.4.1
    Shared File System: Lustre ver 1.8.0.1
    Application: FLUENT V12.0.16
    Benchmark: FLUENT 12 Benchmark Test Suite

Benchmark Description

The benchmark tests are representative of typical user large CFD models intended for execution in distributed memory processor (DMP) mode over a cluster of multi-processor platforms.

Key Points and Best Practices

Observations About the Results

The Sun Blade X6275 cluster delivered excellent performance, especially shining with the larger models

These processors include a turbo boost feature coupled with a speedstep option in the CPU section of the Advanced BIOS settings. This, under specific circumstances, can provide a cpu up clocking, temporarily increasing the processor frequency from 2.93GHz to 3.2GHz.

Memory placement is a very significant factor with Nehalem processors. Current Nehalem platforms have two sockets. Each socket has three memory channels and each channel has 3 bays for DIMMs. For example if one DIMM is placed in the 1st bay of each of the 3 channels the DIMM speed will be 1333 MHz with the X5570's altering the DIMM arrangement to an off balance configuration by say adding just one more DIMM into the 2nd bay of one channel will cause the DIMM frequency to drop from 1333 MHz to 1067 MHz.

About the FLUENT 12 Benchmark Test Suite

The FLUENT application performs computational fluid dynamic analysis on a variety of different types of flow and allows for chemically reacting species. transient dynamic and can be linear or nonlinear as far

  • CFD models tend to be very large where grid refinement is required to capture with accuracy conditions in the boundary layer region adjacent to the body over which flow is occurring. Fine grids are required to also determine accurate turbulence conditions. As such these models can run for many hours or even days as well using a large number of processors.
  • CFD models typically scale very well and are very suited for execution on clusters. The FLUENT 12 benchmark test cases scale well.
  • The memory requirements for the test cases in the FLUENT 12 benchmark test suite range from a few hundred megabytes to about 25 GB. As the job is distributed over multiple nodes the memory requirements per node correspondingly are reduced.
  • The benchmark test cases for the FLUENT module do not have a substantial I/O component. component. However performance will be enhanced very substantially by using high performance interconnects such as InfiniBand for inter node cluster message passing. This nodal message passing data can be stored locally on each node or on a shared file system.
  • As a result of the large amount of inter node message passing performance can be further enhanced by more than a 3x factor as indicated here by implementing the Lustre based shared file I/O system.

See Also

FLUENT 12.0 Benchmark:
http://www.fluent.com/software/fluent/fl6bench/fl6bench_6.4.x/

Disclosure Statement

All information on the Fluent website is Copyrighted 1995-2009 by Fluent Inc. Results from http://www.fluent.com/software/fluent/fl6bench/ as of October 20, 2009 and this presentation.

Monday Oct 12, 2009

MCAE ABAQUS faster on Sun F5100 and Sun X4270 - Single Node World Record

The Sun Storage F5100 Flash Array can substantially improve performance over internal hard disk drives as shown by the I/O intensive ABAQUS MCAE application Standard benchmark tests on a Sun Fire X4270 server.

The I/O intensive ABAQUS "Standard" benchmarks test cases were run on a single Sun Fire X4270 server. Data is presented for runs at both 8 and 16 thread counts.

The ABAQUS "Standard" module is an MCAE application based on the finite element method (FEA) of analysis. This computer based numerical method inherently involves a substantial I/O component. The purpose was to evaluate the performance of the Sun Storage F5100 Flash Array relative to high performance 15K RPM internal striped HDDs.

  • The Sun Storage F5100 Flash Array outperformed the high performance 15K RPM SAS drives on the "S4b" test case by 14%.

  • The Sun Fire X4270 server coupled with a Sun Storage F5100 Flash Array established the world record performance on a single node for the four test cases S2A, S4B, S4D and S6.

Performance Landscape

ABAQUS "Standard" Benchmark Test S4B: Advantage of Sun Storage F5100

Results are total elapsed run times in seconds

Threads 4x15K RPM
72 GB SAS HDD
striped HW RAID0
Sun F5100
r/w buff 4096
striped
Sun F5100
Performance
Advantage
8 1504 1318 14%
16 1811 1649 10%

ABAQUS Standard Server Benchmark Subset: Single Node Record Performance

Results are total elapsed run times in seconds

Platform Cores S2a S4b S4d S6
X4270 w/F5100 8 302 1192 779 1237
HP BL460c G6 8 324 1309 843 1322
X4270 w/F5100 4 552 1970 1181 1706
HP BL460c G6 4 561 2062 1234 1812

Results and Configuration Summary

Hardware Configuration:
    Sun Fire X4270
      2 x 2.93 GHz QC Intel Xeon X5570 processors
      Hyperthreading enabled
      24 GB memory
      4 x 72 GB 15K RPM striped (HW RAID0) SAS disks
    Sun Storage F5100 Flash Array
      20 x 24 GB flash modules
      Intel controller

Software Configuration:

    O/S: 64-bit SUSE Linux Enterprise Server 10 SP 2
    Application: ABAQUS V6.9-1 Standard Module
    Benchmark: ABAQUS Standard Benchmark Test Suite

Benchmark Description

Abaqus/Standard Benchmark Problems

These problems provide an estimate of the performance that can be expected when running Abaqus/Standard or similar commercially available MCAE (FEA) codes like ANSYS and MSC/Nastran on different computers. The jobs are representative of those typically analyzed by Abaqus/Standard and other MCAE applications. These analyses include linear statics, nonlinear statics, and natural frequency extraction.

Please go here for a more complete description of the tests.

Key Points and Best Practices

  • The memory requirements for the test cases in the ABAQUS Standard benchmark test suite are rather substantial with some of the test cases requiring slightly over 20GB of memory. There are two memory limits one a minimum where out of core "memory" will be used when this limit is exceeded. This requires more time consuming cpu and another maximum memory limit that minimizes I/O operations. These memory limits are given in the ABAQUS output and can be established before making a full execution in a preliminary diagnostic mode run.
  • Based on the maximum physical memory on a platform the user can stipulate the maximum portion of this memory that can be allocated to the ABAQUS job. This is done in the "abaqus_v6.env" file that either resides in the subdirectory from where the job was launched or in the abaqus "site" subdirectory under the home installation directory.
  • Sometimes when running multiple cores on a single node, it is preferable from a performance standpoint to run in "smp" shared memory mode This is specified using the "THREADS" option on the "mpi_mode" line in the abaqus_v6.env file as opposed to the "MPI" option on this line. The test case considered here illustrates this point.
  • The test cases for the ABAQUS standard module all have a substantial I/O component where 15% to 25% of the total run times are associated with I/O activity (primarily scratch files). Performance will be enhanced by using the fastest available drives and striping together more than one of them or using a high performance disk storage system with high performance interconnects. On Linux OS's advantage can be taken of excess memory that can be used to cache and accelerate I/O.

See Also

Disclosure Statement

The following are trademarks or registered trademarks of Abaqus, Inc. or its subsidiaries in the United States and/or o ther countries: Abaqus, Abaqus/Standard, Abaqus/Explicit. All information on the ABAQUS website is Copyrighted 2004-2009 by Dassault Systemes. Results from http://www.simulia.com/support/v69/v69_performance.php as of October 12, 2009.

MCAE ANSYS faster on Sun F5100 and Sun X4270

Significance of Results

The Sun Storage F5100 Flash Array can greatly improve performance over internal hard disk drives as shown by the I/O intensive ANSYS MCAE application BMD benchmark tests on a Sun Fire X4270 server.

Select ANSYS 12 BMD benchmarks were run on a single Sun Fire X4270 server. These I/O intensive test cases were run to compare the performance of conventional high performance disk to Sun FlashFire technology.

The ANSYS 12.0 module is an MCAE application based on the finite element method (FEA) of analysis. This computer based numerical method inherently involves a substantial I/O component. The purpose was to evaluate the performance of the Sun Storage F5100 Flash Array relative to high performance 15K RPM internal stripped HDDs.

  • The Sun Storage F5100 Flash Array outperformed the high performance 15K RPM SAS drives on the "BMD-4" test case by 67% in the 8-core/8-thread server configuration.

  • The Sun Storage F5100 Flash Array outperformed the high performance 15K RPM SAS drives on the "BMD-7" test case by 18% in the 8-core/16-thread server configuration.

Performance Landscape

ANSYS 12 "BMD" Test Suite on Single X4270 (24GB mem.) - SMP Mode

Results are total elapsed run times in seconds

Test Case SMP 4x15K RPM
72 GB SAS HDD
striped HW RAID0
Sun F5100
r/w buff 4096
striped
Sun F5100
Performance
Advantage
bmd-4 8 523 314 67%
bmd-7 16 357 303 18%

Results and Configuration Summary

Hardware Configuration:
    Sun Fire X4270
      2 x 2.93 GHz QC Intel Xeon X5570 processors
      Hyperthreading enabled
      24 GB memory
      4 x 72 GB 15K RPM striped (HW RAID0) SAS disks
    Sun Storage F5100 Flash Array
      20 x 24 GB flash modules
      Intel controller

Software Configuration:

    O/S: 64-bit SUSE Linux Enterprise Server 10 SP 2
    Application: ANSYS Multiphysics 12.0
    Benchmark: ANSYS 12 "BMD" Benchmark Test Suite

Benchmark Description

ANSYS is a general purpose engineering analysis MCAE application that is based on the Finite Element Method. It performs both structural (stress) analysis and thermal analysis. These analyses may be either static or transient dynamic and can be linear or nonlinear as far as material behavior or deformations are concerned. Ansys provides a number of benchmark tests which exercise the capabilities of the software.

Please go here for a more complete description of the tests.

Key Points and Best Practices

Performance Considerations

The performance of Ansys (IO-intensive MCAE application) can be increased by reducing the IO demands of the application by increasing server memory or by using SSDs to increase the bandwidth and reduce the latency. The most I/O intensive case in the ANSYS distributed "BMD" test suite is BMD-4 particularly at the (maximum) 8 core level for a single node.


  • Ansys now takes full advantage of inexpensive RAID0 disk arrays and delivers sustained I/O rates.

  • Large memory can cache file accesses but often the size of ANSYS files grows much larger than the available physical memory so that system file caching is not able to hide the I/O cost.
  • For fast ANSYS runs the recommended configuration is a RAID 0 setup using 4 or more disks and a fast RAID controller. These fast I/O configurations are inexpensive to put together for systems and can achieve I/O rates in excess of 200 MB/sec.
  • SSD drives have much lower seek times, use less power, and tend to be about 2X faster than the fastest rotating disks for sustained throughput. The observed speed of a RAID 0 configuration of SSD drives for ANSYS simulations has been nearly as fast as I/O that is cached by large memory systems. SSD drives then may be the most affordable way to extend the capacity of a system to jobs that are too large to run in-core without incurring the performance penalty usually associated with I/O demands.

More About The ANSYS BMD "Distributed" Benchmarks

ANSYS is a general purpose engineering analysis MCAE application that is based on the Finite Element Method. It performs both structural (stress) analysis and thermal analysis. These analyses may be either static or transient dynamic and can be linear or nonlinear as far as material behavior or deformations are concerned.

In the most recent release of the ANSYS benchmarks there are now two test suites: The SMP "BM" suite designed to run on a single node with multi processors and the DMP "BMD" suite intended to run on multi node clusters but which can also run on a single node in SMP mode as in this study.

  • The test cases from both ANSYS test suites all have a substantial I/O component where 15% to 20% of the total run times are associated with I/O activity (primarily scratch files). Performance will be enhanced by using the fastest available drives and striping together more than one of them or using a high performance disk storage system with high performance interconnects. When running with the SX64 build a ZFS system might be a good idea to employ.
  • The ANSYS test cases don't scale very well (BMD better than BM) ; at best on up 8 cores.
  • The memory requirements for the test cases in the ANSYS BMD are greater than for the standard benchmark test suite. The requirements for the standard suite are not great requiring less than 3GB.

See Also

MCAE, SSD, HPC, ANSYS, Linux, SuSE, Performance, X64, Intel

Disclosure Statement

The following are trademarks or registered trademarks of ANSYS, Inc., ANSYS Multiphysics TM. All information on the ANSYS website is Copyrighted by ANSYS, Inc. Results from http://www.ansys.com/services/ss-intel-bench120.htm as of October 12, 2009.

MCAE MCS/NASTRAN faster on Sun F5100 and Fire X4270

Significance of Results

The Sun Storage F5100 Flash Array can double performance over internal hard disk drives as shown by the I/O intensive MSC/Nastran MCAE application MDR3 benchmark tests on a Sun Fire X4270 server.

The MD Nastran MDR3 benchmarks were run on a single Sun Fire X4270 server. The I/O intensive test cases were run at different core levels from one up to the maximum of 8 available cores in SMP mode.

The MSC/Nastran MD 2008 R3 module is an MCAE application based on the finite element method (FEA) of analysis. This computer based numerical method inherently involves a substantial I/O component. The purpose was to evaluate the performance of the Sun Storage F5100 Flash Array relative to high performance 15K RPM internal stripped HDDs.

  • The Sun Storage F5100 Flash Array outperformed the high performance 15K RPM SAS drives on the "xx0cmd2" test case by 107% in the 8-core server configuration.

  • The Sun Storage F5100 Flash Array outperformed the high performance 15K RPM SAS drives on the "xl0tdf1"test case by 85% in the 8-core server configuration.

The MD Nastran MDR3 test suite was designed to include some very I/O intensive test cases albeit some are not very scalable. These cases are the called "xx0wmd0" and "xx0xst0". Both were run and results are presented using a single core server configuration.

  • The Sun Storage F5100 Flash Array outperformed the high performance 15K RPM SAS drives on the "xx0xst0"test case by 33% in the single-core server configuration.

  • The Sun Storage F5100 Flash Array outperformed the high performance 15K RPM SAS drives on the "xx0wmd0"test case by 20% in the single-core server configuration.

Performance Landscape

MD Nastran MDR3 Benchmark Tests

Results in seconds

Test Case DMP 4x15K RPM
72 GB SAS HDD
striped HW RAID0
Sun F5100
r/w buff 4096
striped
Sun F5100
Performance
Advantage
xx0cmd2 8 959 463 107%
xl0tdf1 8 1104 596 85%
xx0xst0 1 1307 980 33%
xx0wmd0 1 20250 16806 20%

Results and Configuration Summary

Hardware Configuration:
    Sun Fire X4270
      2 x 2.93 GHz QC Intel Xeon X5570 processors
      24 GB memory
      4 x 72 GB 15K RPM striped (HW RAID0) SAS disks
    Sun Storage F5100 Flash Array
      20 x 24 GB flash modules
      Intel controller

Software Configuration:

    O/S: 64-bit SUSE Linux Enterprise Server 10 SP 2
    Application: MSC/NASTRAN MD 2008 R3
    Benchmark: MDR3 Benchmark Test Suite
    HP MPI: 02.03.00.00 [7585] Linux x86-64

Benchmark Description

The benchmark tests are representative of typical MSC/Nastran applications including both SMP and DMP runs involving linear statics, nonlinear statics, and natural frequency extraction.

The MD (Multi Discipline) Nastran 2008 application performs both structural (stress) analysis and thermal analysis. These analyses may be either static or transient dynamic and can be linear or nonlinear as far as material behavior and/or deformations are concerned. The new release includes the MARC module for general purpose nonlinear analyses and the Dytran module that employs an explicit solver to analyze crash and high velocity impact conditions.

Please go here for a more complete description of the tests.

Key Points and Best Practices

  • Based on the maximum physical memory on a platform the user can stipulate the maximum portion of this memory that can be allocated to the Nastran job. This is done on the command line with the mem= option. On Linux based systems where the platform has a large amount of memory and where the model does not have large scratch I/O requirements the memory can be allocated to a tmpfs scratch space file system. On Solaris X64 systems advantage can be taken of ZFS for higher I/O performance.

  • The MD Nastran MDR3 test cases don't scale very well, a few not at all and the rest on up to 8 cores at best.

  • The test cases for the MSC/Nastran module all have a substantial I/O component where 15% to 25% of the total run times are associated with I/O activity (primarily scratch files). The required scratch file size ranges from less than 1 GB on up to about 140 GB. Performance will be enhanced by using the fastest available drives and striping together more than one of them or using a high performance disk storage system, further enhanced as indicated here by implementing the Lustre based I/O system. High performance interconnects such as InfiniBand for inter node cluster message passing as well as I/O transfer from the storage system can also enhance performance substantially.

See Also

Disclosure Statement

MSC.Software is a registered trademark of MSC. All information on the MSC.Software website is copyrighted. MD Nastran MDR3 results from http://www.mscsoftware.com and this report as of October 12, 2009.

Monday Jul 06, 2009

Sun Blade 6048 Chassis with Sun Blade X6275: RADIOSS Benchmark Results

Significance of Results

The Sun Blade X6275 cluster, equipped with 2.93 GHz Intel QC X5570 processors and QDR InfiniBand interconnect, delivered the best performance at 32, 64 and 128 cores for the RADIOSS Neon_1M and Taurus_Frontal benchmarks.

  • Using half the nodes (16), the Sun Blade X6275 cluster was 3% faster than the 32-node SGI cluster running the Neon_1M test case.
  • In the 128-core configuration, the Sun Blade X6275 cluster was 49% faster than the SGI cluster running the Neon_1M test case.
  • In the 128-core configuration, the Sun Blade X6275 cluster was 49% faster than the SGI cluster running the Neon_1M test case.
  • In the 128-core configuration, the Sun Blade X6275 cluster was 16% faster than the top SGI cluster running the Taurus_Frontal test case.
  • At both the 32- and 64-core levels the Sun Blade X6275 cluster was 60% faster running the Neon_1M test case.
  • At both the 32- and 64-core levels the Sun Blade X6275 cluster was 4% faster running the Taurus_Frontal test case.

Performance Landscape


RADIOSS Public Benchmark Test Suite
  Results are Total Elapsed Run Times (sec.)

System
cores Benchmark Test Case
TAURUS_FRONTAL
1.8M
NEON_1M
1.06M
NEON_300K
277K

SGI Altix ICE 8200 IP95 2.93GHz, 32 nodes, DDR 256 3559 1672 310

Sun Blade X6275 2.93GHz, 16 nodes, QDR 128 4397 1627 361
SGI Altix ICE 8200 IP95 2.93GHz, 16 nodes, DDR 128 5033 2422 360

Sun Blade X6275 2.93GHz, 8 nodes, QDR 64 5934 2526 587
SGI Altix ICE 8200 IP95 2.93GHz, 8 nodes, DDR 64 6181 4088 584

Sun Blade X6275 2.93GHz, 4 nodes, QDR 32 9764 4720 1035
SGI Altix ICE 8200 IP95 2.93GHz, 4 nodes, DDR 32 10120 7574 1017

Results and Configuration Summary

Hardware Configuration:
    8 x Sun Blade X6275
    2x2.93 GHz Intel QC X5570 processors, turbo enabled (per half blade)
    24 GB (6 x 4GB 1333 MHz DDR3 dimms)
    InfiniBand QDR interconnects

Software Configuration:

    OS: 64-bit SUSE Linux Enterprise Server SLES 10 SP 2
    Application: RADIOSS V9.0 SP 1
    Benchmark: RADIOSS Public Benchmark Test Suite

Benchmark Description

Altair has provided a suite of benchmarks to demonstrate the performance of RADIOSS. The initial set of benchmarks provides four automotive crash models. Future updates will add in marine and aerospace applications, as well as including automotive NVH applications. The benchmarks use real data, requiring double precision computations and the parith feature (Parallel arithmetic algorithm) to obtain exactly the same results whatever the number of processors used.

Please go here for a more complete description of the tests.

Key Points and Best Practices

The Intel QC X5570 processors include a turbo boost feature coupled with a speed-step option in the CPU section of the Advanced BIOS settings. Under specific circumstances, this can provide cpu overclocking which increases the processor frequency from 2.93GHz to 3.2GHz. This feature was was enabled when generating the results reported here.

Node to Node MPI ping-pong tests show a bandwidth of 3000 MB/sec on the Sun Blade X6275 cluster using QDR. The same tests performed on a Sun Fire X2270 cluster and equipped with DDR interconnect produced a bandwidth of 1500 MB/sec. On another recent Intel based Sun Fire X2250 cluster (3.4 GHz DC E5272 processors) also equipped with DDR interconnects, the bandwidth was 1250 MB/sec. This same Sun Fire X2250 cluster equipped with SDR IB interconnect produced an MPI ping-pong bandwidth of 975 MB/sec.

See Also

Current RADIOSS Benchmark Results:
http://www.altairhyperworks.com/Benchmark.aspx

Disclosure Statement

All information on the Fluent website is Copyright 2009 Altair Engineering, Inc. All Rights Reserved. Results from http://www.altairhyperworks.com/Benchmark.aspx

Friday Jun 26, 2009

Sun Fire X2270 Cluster Fluent Benchmark Results

Significance of Results

A Sun Fire X2270 cluster equipped with 2.93 GHz QC Intel X5570 proceesors and DDR Infiniband interconnects delivered outstanding performance running the FLUENT benchmark test suite.

  • The Sun Fire X2270 cluster running at 64-cores delivered the best performance for the 3 largest test cases. On the "truck" workload Sun was 14% faster than SGI Altix ICE 8200.
  • The Sun Fire X2270 cluster running at 32-cores delivered the best performance for 5 of the 6 test cases.
  • The Sun Fire X2270 cluster running at 16-cores beat all comers in all 6 test cases.

Performance Landscape


New FLUENT Benchmark Test Suite
  Results are "Ratings" (bigger is better)
  Rating = No. of sequential runs of test case possible in 1 day 86,400/(Total Elapsed Run Time in Seconds)
  Results ordered by truck_poly column

System (1)
cores Benchmark Test Case
eddy
417k
turbo
500k
aircraft
2m
sedan
4m
truck
14m
truck_poly
14m

Sun Fire X2270, 8 node 64 4645.2 23671.2 3445.7 4909.1 566.9 494.8
Intel Endeavor, 8 node 64 5016.0 25226.3 5220.5 4614.2 513.4 490.9
SGI Altix ICE 8200 IP95, 8 node 64 5142.9 23834.5 4614.2 4352.6 496.8 479.2

Sun Fire X2270, 4-node 32 2971.6 13824.0 3074.7 2644.2 291.8 271.8
Intel Endeavor, 4-node 32 2856.2 13041.5 2837.4 2465.0 266.4 251.2
SGI Altix ICE 8200 IP95, 4-node 32 3083.0 13190.8 2563.8 2405.0 266.6 246.5
Sun Fire X2250, 8-node 32 2095.8 9600.0 1844.2 1394.1 203.2 196.8

Sun Fire X2270, 2-node 16 1726.3 7595.6 1520.5 1363.3 145.5 141.8
SGI Altix ICE 8200 IP95, 2-node 16 1708.4 7384.6 1507.9 1211.8 128.8 133.5
Intel Endeavor, 2-node 16 1585.3 7125.8 1428.1 1278.6 134.7 132.5
Sun Fire X2250, 4-node 16 1404.9 6249.5 1324.6 996.3 127.7 129.2

Sun Fire X2270, 1-node 8 945.8 4129.0 883.0 682.5 73.5 72.4
SGI Altix ICE 8200 IP95, 1-node 8 953.1 4032.7 843.3 651.0 71.4 72.0
Sun Fire X2250, 2-node 8 824.2 3248.1 711.4 517.9 66.1 67.9

SGI Altix ICE 8200 IP95, 1-node 4 561.6 2416.8 526.9 412.6 40.9 40.8
Sun Fire X2270, 1-node 4 541.5 2346.2 515.7 409.3 40.8 40.2
Sun Fire X2250, 1-node 4 449.2 1691.6 389.0 271.8 33.6 34.9

Sun Fire X2270, 1-node 2 292.8 1282.4 283.4 223.1 20.9 21.2
SGI Altix ICE 8200 IP95, 1-node 2 294.2 1302.7 289.0 226.4 20.5 21.2
Sun Fire X2250, 1-node 2 224.4 881.0 197.9 134.4 16.3 17.6

Sun Fire X2270, 1-node 1 150.7 658.3 143.2 110.1 10.2 10.6
SGI Altix ICE 8200 IP95, 1-node 1 153.3 677.5 147.3 111.2 10.3 9.5
Sun Fire X2250, 1-node 1 115.4 458.2 100.1 66.6 8.0 9.0

Sun Fire X2270, 1-node serial 151.4 656.7 151.3 107.1 9.3 10.1
Intel Endeavor, 1-node serial 146.6 650.0 150.2 105.6 8.8 9.7
Sun Fire X2250, 1-node serial 115.2 461.7 101.0 65.0 7.2 9.0

(1) SGI Altix ICE 8200, X5570 QC 2.93GHz, DDR
Intel Endeavor, X5560 QC 2.8GHz, DDR
Sun Fire X2250, X5272 DC 3.4GHz, DDR IB
Sun Fire X2270, X5570 QC 3.4GHz, DDR

Results and Configuration Summary

Hardware Configuration

    8 x Sun Fire X2270 (each with)
    2 x 2.93GHz Intel X5570 QC processors (Nehalem)
    1333 MHz DDR3 dimms
    Infiniband (Voltaire) DDR interconnects & DDR switch, IB

Software Configuration

    OS: 64-bit SUSE Linux Enterprise Server SLES 10 SP 2
    Interconnect software: Voltaire OFED GridStack-5.1.3.1_5
    Application: FLUENT Beta V12.0.15
    Benchmark: FLUENT "6.3" Benchmark Test Suite

Benchmark Description

The benchmark test are representative of typical user large CFD models intended for execution in distributed memory processor (DMP) mode over a cluster of multi-processor platforms.

Please go here for a more complete description of the tests.

Key Points and Best Practices

Observations About the Results

The Sun Fires X2270 cluster delivered excellent performance, especially shining with the larger problems (truck and truck_poly).

These processors include a turbo boost feature coupled with a speedstep option in the CPU section of the Advanced BIOS settings. This, under specific circumstances, can provide a cpu upclocking, temporarily increasing the processor frequency from 2.93GHz to 3.2GHz.

Memory placement is a very significant factor with Nehalem processors. Current Nehalem platforms have two sockets. Each socket has three memory channels and each channel has 3 bays for DIMMs. For example if one DIMM is placed in the 1st bay of each of the 3 channels the DIMM speed will be 1333 MHz with the X5570's altering the DIMM arrangement to an off balance configuration by say adding just one more DIMM into the 2nd bay of one channel will cause the DIMM frequency to drop from 1333 MHz to 1067 MHz.

About the FLUENT "6.3" Benchmark Test Suite

The FLUENT application performs computational fluid dynamic analysis on a variety of different types of flow and allows for chemically reacting species. transient dynamic and can be linear or nonlinear as far

  • CFD models tend to be very large where grid refinement is required to capture with accuracy conditions in the boundary layer region adjacent to the body over which flow is occurring. Fine grids are required to also determine accurate turbulence conditions. As such these models can run for many hours or even days as well using a large number of processors.
  • CFD models typically scale very well and are very suited for execution on clusters. The FLUENT "6.3" benchmark test cases scale well particularly up to 64 cores.
  • The memory requirements for the test cases in the new FLUENT "6.3" benchmark test suite range from a few hundred megabytes to about 25 GB. As the job is distributed over multiple nodes the memory requirements per node correspondingly are reduced.
  • The benchmark test cases for the FLUENT module do not have a substantial I/O component. component. However performance will be enhanced very substantially by using high performance interconnects such as Infiniband for inter node cluster message passing. This nodal message passing data can be stored locally on each node or on a shared file system.
  • As a result of the large amount of inter node message passing performance can be further enhanced by more than a 3x factor as indicated here by implementing the Lustre based shared file I/O system.

See Also

Current FLUENT "12.0 Beta" Benchmark:
http://www.fluent.com/software/fluent/fl6bench/fl6bench_6.4.x/

Disclosure Statement

All information on the Fluent website is Copyrighted 1995-2009 by Fluent Inc. Results from http://www.fluent.com/software/fluent/fl6bench/ as of June 9, 2009 and this presentation.

Tuesday Jun 16, 2009

Sun Fire X2270 MSC/Nastran Vendor_2008 Benchmarks

Significance of Results

The I/O intensive MSC/Nastran Vendor_2008 benchmark test suite was used to compare the performance on a Sun Fire X2270 server when using SSDs internally instead of HDDs.

The effect on performance from increasing memory to augment I/O caching was also examined. The Sun Fire X2270 server was equipped with Intel QC Xeon X5570 processors (Nehalem). The positive effect of adding memory to increase I/O caching is offset to some degree by the reduction in memory frequency with additional DIMMs in the bays of each memory channel on each cpu socket for these Nehalem processors.

  • SSDs can significantly improve NASTRAN performance especially on runs with larger core counts.
  • Additional memory in the server can also increase performance, however in some systems additional memory can decrease memory GHz so this may offset the benefits of increased capacity.
  • If SSDs are not used striped disks will often improve performance of IO-bound MCAE applications.
  • To obtain the highest performance it is recommended that SSDs be used and servers be configured with the largest memory possible without decreasing memory GHz. One should always look at the workload characteristics and compare against this benchmark to correctly set expectations.

SSD vs. HDD Performance

The performance of two striped 30GB SSDs was compared to two striped 7200 rpm 500GB SATA drives on a Sun Fire X2270 server.

  • At the 8-core level (maximum cores for a single node) SSDs were 2.2x faster for the larger xxocmd2 and the smaller xlotdf1 cases.
  • For 1-core results SSDs are up to 3% faster.
  • On the smaller mdomdf1 test case there was no increase in performance on the 1-, 2-, and 4-cores configurations.

Performance Enhancement with I/O Memory Caching

Performance for Nastran can often be increased by additional memory to provide additional in-core space to cache I/O and thereby reduce the IO demands.

The main memory was doubled from 24GB to 48GB. At the 24GB level one 4GB DIMM was placed in the first bay of each of the 3 CPU memory channels on each of the two CPU sockets on the Sun Fire X2270 platform. This configuration allows a memory frequency of 1333MHz.

At the 48GB level a second 4GB DIMM was placed in the second bay of each of the 3 CPU memory channels on each socket. This reduces the memory frequency to 1066MHz.

Adding Memory With HDDs (SATA)

  • The additional server memory increased the performance when running with the slower SATA drives at the higher core levels (e.g. 4- & 8-cores on a single node)
  • The larger xxocmd2 case was 42% faster and the smaller xlotdf1 case was 32% faster at the maximum 8-core level on a single system.
  • The special I/O intensive getrag case was 8% faster at the 1-core level.

Adding Memory With SDDs

  • At the maximum 8-core level (for a single node) the larger xxocmd2 case was 47% faster in overall run time.
  • The effects were much smaller at lower core counts and in the tests at the 1-core level most test cases ran from 5% to 14% slower with the slower CPU memory frequency dominating over the added in-core space available for I/O caching vs. direct transfer to SSD.
  • Only the special I/O intensive getrag case was an exception running 6% faster at the 1-core level.

Increasing performance with Two Striped (SATA) Drives

The performance of multiple striped drives was also compared to single drive. The study compared two striped internal 7200 rpm 500GB SATA drives to a singe single internal SATA drive.

  • On a single node with 8 cores, the largest test xx0cmd2 was 40% faster, a smaller test case xl0tdf1 was 33% faster and even the smallest test case mdomdf1 case was 12% faster.

  • On 1-core the added boost in performance with striped disks was from 4% to 13% on the various test cases.

  • One 1-core the special I/O-intensive test case getrag was 29% faster.

Performance Landscape

Times in table are elapsed time (sec).


MSC/Nastran Vendor_2008 Benchmark Test Suite

Test Cores Sun Fire X2270
2 x X5570 QC 2.93 GHz
2 x 7200 RPM SATA HDDs
Sun Fire X2270
2 x X5570 QC 2.93 GHz
2 x SSDs
48 GB
1067MHz
24 GB
2 SATA
1333MHz
24 GB
1 SATA
1333MHz
Ratio (2xSATA):
48GB/
24GB
Ratio:
2xSATA/
1xSATA
48 GB
1067MHz
24 GB
1333MHz
Ratio:
48GB/
24GB
Ratio (24GB):
2xSATA/
2xSSD

vlosst1 1 133 127 134 1.05 0.95 133 126 1.05 1.01

xxocmd2 1
2
4
8
946
622
466
1049
895
614
631
1554
978
703
991
2590
1.06
1.01
0.74
0.68
0.87
0.87
0.64
0.60
947
600
426
381
884
583
404
711
1.07
1.03
1.05
0.53
1.01
1.05
1.56
2.18

xlotdf1 1
2
4
8
2226
1307
858
912
2000
1240
833
1562
2081
1308
1030
2336
1.11
1.05
1.03
0.58
0.96
0.95
0.81
0.67
2214
1315
744
674
1939
1189
751
712
1.14
1.10
0.99
0.95
1.03
1.04
1.11
2.19

xloimf1 1 1216 1151 1236 1.06 0.93 1228 1290 0.95 0.89

mdomdf1 1
2
4
987
524
270
913
485
237
983
520
269
1.08
1.08
1.14
0.93
0.93
0.88
987
524
270
911
484
250
1.08
1.08
1.08
1.00
1.00
0.95

Sol400_1
(xl1fn40_1)
1 2555 2479 2674 1.03 0.93 2549 2402 1.06 1.03

Sol400_S
(xl1fn40_S)
1 2450 2302 2481 1.06 0.93 2449 2262 1.08 1.02

getrag
(xx0xst0)
1 778 843 1178 0.92 0.71 771 817 0.94 1.03

Results and Configuration Summary

Hardware Configuration:
    Sun Fire X2270
      1 2-socket rack mounted server
      2 x 2.93 GHz QC Intel Xeon X5570 processors
      2 x internal striped SSDs
      2 x internal striped 7200 rpm 500GB SATA drives

Software Configuration:

    O/S: Linux 64-bit SUSE SLES 10 SP 2
    Application: MSC/NASTRAN MD 2008
    Benchmark: MSC/NASTRAN Vendor_2008 Benchmark Test Suite
    HP MPI: 02.03.00.00 [7585] Linux x86-64
    Voltaire OFED-5.1.3.1_5 GridStack for SLES 10

Benchmark Description

The benchmark tests are representative of typical MSC/Nastran applications including both SMP and DMP runs involving linear statics, nonlinear statics, and natural frequency extraction.

The MD (Multi Discipline) Nastran 2008 application performs both structural (stress) analysis and thermal analysis. These analyses may be either static or transient dynamic and can be linear or nonlinear as far as material behavior and/or deformations are concerned. The new release includes the MARC module for general purpose nonlinear analyses and the Dytran module that employs an explicit solver to analyze crash and high velocity impact conditions.

  • As of the Summer '08 there is now an official Solaris X64 version of the MD Nastran 2008 system that is certified and maintained.
  • The memory requirements for the test cases in the new MSC/Nastran Vendor 2008 benchmark test suite range from a few hundred megabytes to no more than 5 GB.

Please go here for a more complete description of the tests.

Key Points and Best Practices

For more on Best Practices of SSD on HPC applications also see the Sun Blueprint:
http://wikis.sun.com/display/BluePrints/Solid+State+Drives+in+HPC+-+Reducing+the+IO+Bottleneck

Additional information on the MSC/Nastran Vendor 2008 benchmark test suite.

  • Based on the maximum physical memory on a platform the user can stipulate the maximum portion of this memory that can be allocated to the Nastran job. This is done on the command line with the mem= option. On Linux based systems where the platform has a large amount of memory and where the model does not have large scratch I/O requirements the memory can be allocated to a tmpfs scratch space file system. On Solaris X64 systems advantage can be taken of ZFS for higher I/O performance.

  • The MSC/Nastran Vendor 2008 test cases don't scale very well, a few not at all and the rest on up to 8 cores at best.

  • The test cases for the MSC/Nastran module all have a substantial I/O component where 15% to 25% of the total run times are associated with I/O activity (primarily scratch files). The required scratch file size ranges from less than 1 GB on up to about 140 GB. Performance will be enhanced by using the fastest available drives and striping together more than one of them or using a high performance disk storage system, further enhanced as indicated here by implementing the Lustre based I/O system. High performance interconnects such as Infiniband for inter node cluster message passing as well as I/O transfer from the storage system can also enhance performance substantially.

See Also

Disclosure Statement

MSC.Software is a registered trademark of MSC. All information on the MSC.Software website is copyrighted. MSC/Nastran Vendor 2008 results from http://www.mscsoftware.com and this report as of June 9, 2009.

About

BestPerf is the source of Oracle performance expertise. In this blog, Oracle's Strategic Applications Engineering group explores Oracle's performance results and shares best practices learned from working on Enterprise-wide Applications.

Index Pages
Search

Archives
« April 2014
SunMonTueWedThuFriSat
  
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
   
       
Today