Monday Oct 26, 2015

AES Encryption: SPARC T7-2 Beats x86 E5 v3

Oracle's cryptography benchmark measures security performance on important AES security modes. Oracle's SPARC M7 processor with its software in silicon security is faster than x86 servers that have the AES-NI instructions. In this test, the performance of on-processor encryption operations is measured (32 KB encryptions). Multiple threads are used to measure each processor's maximum throughput. Oracle's SPARC T7-2 server shows dramatically faster encryption compared to current x86 two processor servers.

  • SPARC M7 processors running Oracle Solaris 11.3 ran 4.0 times faster executing AES-CFB 256-bit key encryption (in cache) than Intel Xeon E5-2699 v3 processors (with AES-NI) running Oracle Linux 6.5.

  • SPARC M7 processors running Oracle Solaris 11.3 ran 3.7 times faster executing AES-CFB 128-bit key encryption (in cache) than Intel Xeon E5-2699 v3 processors (with AES-NI) running Oracle Linux 6.5.

  • SPARC M7 processors running Oracle Solaris 11.3 ran 6.4 times faster executing AES-CFB 256-bit key encryption (in cache) than the Intel Xeon E5-2697 v2 processors (with AES-NI) running Oracle Linux 6.5.

  • SPARC M7 processors running Oracle Solaris 11.3 ran 6.0 times faster executing AES-CFB 128-bit key encryption (in cache) than the Intel Xeon E5-2697 v2 processors (with AES-NI) running Oracle Linux 6.5.

  • AES-CFB encryption is used by Oracle Database for Transparent Data Encryption (TDE) which provides security for database storage.

Oracle has also measured SHA digest performance on the SPARC M7 processor.

Performance Landscape

Presented below are results for running encryption using the AES cipher with the CFB, CBC, GCM and CCM modes for key sizes of 128, 192 and 256. Decryption performance was similar and is not presented. Results are presented as MB/sec (10**6). All SPARC M7 processor results were run as part of this benchmark effort. All other results were run during previous benchmark efforts.

Encryption Performance – AES-CFB (used by Oracle Database)

Performance is presented for in-cache AES-CFB128 mode encryption. Multiple key sizes of 256-bit, 192-bit and 128-bit are presented. The encryption was performance on 32 KB of pseudo-random data (same data for each run).

AES-CFB
Microbenchmark Performance (MB/sec)
Processor GHz Chips Performance Software Environment
AES-256-CFB
SPARC M7 4.13 2 126,948 Oracle Solaris 11.3, libsoftcrypto + libumem
SPARC T5 3.60 2 53,794 Oracle Solaris 11.2, libsoftcrypto + libumem
Intel E5-2699 v3 2.30 2 31,924 Oracle Linux 6.5, IPP/AES-NI
Intel E5-2697 v2 2.70 2 19,964 Oracle Linux 6.5, IPP/AES-NI
AES-192-CFB
SPARC M7 4.13 2 144,299 Oracle Solaris 11.3, libsoftcrypto + libumem
SPARC T5 3.60 2 60,736 Oracle Solaris 11.2, libsoftcrypto + libumem
Intel E5-2699 v3 2.30 2 37,157 Oracle Linux 6.5, IPP/AES-NI
Intel E5-2697 v2 2.70 2 23,218 Oracle Linux 6.5, IPP/AES-NI
AES-128-CFB
SPARC M7 4.13 2 166,324 Oracle Solaris 11.3, libsoftcrypto + libumem
SPARC T5 3.60 2 68,691 Oracle Solaris 11.2, libsoftcrypto + libumem
Intel E5-2699 v3 2.30 2 44,388 Oracle Linux 6.5, IPP/AES-NI
Intel E5-2697 v2 2.70 2 27,755 Oracle Linux 6.5, IPP/AES-NI

Encryption Performance – AES-CBC

Performance is presented for in-cache AES-CBC mode encryption. Multiple key sizes of 256-bit, 192-bit and 128-bit are presented. The encryption was performance on 32 KB of pseudo-random data (same data for each run).

AES-CBC
Microbenchmark Performance (MB/sec)
Processor GHz Chips Performance Software Environment
AES-256-CBC
SPARC M7 4.13 2 134,278 Oracle Solaris 11.3, libsoftcrypto + libumem
SPARC T5 3.60 2 56,788 Oracle Solaris 11.2, libsoftcrypto + libumem
Intel E5-2699 v3 2.30 2 31,894 Oracle Linux 6.5, IPP/AES-NI
Intel E5-2697 v2 2.70 2 19,961 Oracle Linux 6.5, IPP/AES-NI
AES-192-CBC
SPARC M7 4.13 2 152,961 Oracle Solaris 11.3, libsoftcrypto + libumem
SPARC T5 3.60 2 63,937 Oracle Solaris 11.2, libsoftcrypto + libumem
Intel E5-2699 v3 2.30 2 37,021 Oracle Linux 6.5, IPP/AES-NI
Intel E5-2697 v2 2.70 2 23,224 Oracle Linux 6.5, IPP/AES-NI
AES-128-CBC
SPARC M7 4.13 2 175,151 Oracle Solaris 11.3, libsoftcrypto + libumem
SPARC T5 3.60 2 72,870 Oracle Solaris 11.2, libsoftcrypto + libumem
Intel E5-2699 v3 2.30 2 44,103 Oracle Linux 6.5, IPP/AES-NI
Intel E5-2697 v2 2.70 2 27,730 Oracle Linux 6.5, IPP/AES-NI

Encryption Performance – AES-GCM (used by ZFS Filesystem)

Performance is presented for in-cache AES-GCM mode encryption with authentication. Multiple key sizes of 256-bit, 192-bit and 128-bit are presented. The encryption/authentication was performance on 32 KB of pseudo-random data (same data for each run).

AES-GCM
Microbenchmark Performance (MB/sec)
Processor GHz Chips Performance Software Environment
AES-256-GCM
SPARC M7 4.13 2 74,221 Oracle Solaris 11.3, libsoftcrypto + libumem
SPARC T5 3.60 2 34,022 Oracle Solaris 11.2, libsoftcrypto + libumem
Intel E5-2697 v2 2.70 2 15,338 Oracle Solaris 11.1, libsoftcrypto + libumem
AES-192-GCM
SPARC M7 4.13 2 81,448 Oracle Solaris 11.3, libsoftcrypto + libumem
SPARC T5 3.60 2 36,820 Oracle Solaris 11.2, libsoftcrypto + libumem
Intel E5-2697 v2 2.70 2 15,768 Oracle Solaris 11.1, libsoftcrypto + libumem
AES-128-GCM
SPARC M7 4.13 2 86,223 Oracle Solaris 11.3, libsoftcrypto + libumem
SPARC T5 3.60 2 38,845 Oracle Solaris 11.2, libsoftcrypto + libumem
Intel E5-2697 v2 2.70 2 16,405 Oracle Solaris 11.1, libsoftcrypto + libumem

Encryption Performance – AES-CCM (alternative used by ZFS Filesystem)

Performance is presented for in-cache AES-CCM mode encryption with authentication. Multiple key sizes of 256-bit, 192-bit and 128-bit are presented. The encryption/authentication was performance on 32 KB of pseudo-random data (same data for each run).

AES-CCM
Microbenchmark Performance (MB/sec)
Processor GHz Chips Performance Software Environment
AES-256-CCM
SPARC M7 4.13 2 67,669 Oracle Solaris 11.3, libsoftcrypto + libumem
SPARC T5 3.60 2 28,909 Oracle Solaris 11.2, libsoftcrypto + libumem
Intel E5-2697 v2 2.70 2 19,447 Oracle Linux 6.5, IPP/AES-NI
AES-192-CCM
SPARC M7 4.13 2 77,711 Oracle Solaris 11.3, libsoftcrypto + libumem
SPARC T5 3.60 2 33,116 Oracle Solaris 11.2, libsoftcrypto + libumem
Intel E5-2697 v2 2.70 2 22,634 Oracle Linux 6.5, IPP/AES-NI
AES-128-CCM
SPARC M7 4.13 2 90,729 Oracle Solaris 11.3, libsoftcrypto + libumem
SPARC T5 3.60 2 38,529 Oracle Solaris 11.2, libsoftcrypto + libumem
Intel E5-2697 v2 2.70 2 26,951 Oracle Linux 6.5, IPP/AES-NI

Configuration Summary

SPARC T7-2 server
2 x SPARC M7 processor, 4.13 GHz
1 TB memory
Oracle Solaris 11.3

SPARC T5-2 server
2 x SPARC T5 processor, 3.60 GHz
512 GB memory
Oracle Solaris 11.2

Oracle Server X5-2 system
2 x Intel Xeon E5-2699 v3 processors, 2.30 GHz
256 GB memory
Oracle Linux 6.5

Sun Server X4-2 system
2 x Intel Xeon E5-2697 v2 processors, 2.70 GHz
256 GB memory
Oracle Linux 6.5

Benchmark Description

The benchmark measures cryptographic capabilities in terms of general low-level encryption, in-cache and on-chip using various ciphers, including AES-128-CFB, AES-192-CFB, AES-256-CFB, AES-128-CBC, AES-192-CBC, AES-256-CBC, AES-128-CCM, AES-192-CCM, AES-256-CCM, AES-128-GCM, AES-192-GCM and AES-256-GCM.

The benchmark results were obtained using tests created by Oracle which use various application interfaces to perform the various ciphers. They were run using optimized libraries for each platform to obtain the best possible performance. The encryption tests were run with pseudo-random data of size 32 KB. The benchmark tests were designed to run out of cache, so memory bandwidth and latency are not the limitations.

See Also

Disclosure Statement

Copyright 2015, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 10/25/2015.

SHA Digest Encryption: SPARC T7-2 Beats x86 E5 v3

Oracle's cryptography benchmark measures security performance on important Secure Hash Algorithm (SHA) functions. Oracle's SPARC M7 processor with its security software in silicon is faster than current and recent x86 servers. In this test, the performance of on-processor digest operations is measured for three sizes of plaintext inputs (64, 1024 and 8192 bytes) using three SHA2 digests (SHA512, SHA384, SHA256) and the older, weaker SHA1 digest. Multiple parallel threads are used to measure each processor's maximum throughput. Oracle's SPARC T7-2 server shows dramatically faster digest computation compared to current x86 two processor servers.

  • SPARC M7 processors running Oracle Solaris 11.3 ran 17 times faster computing multiple parallel SHA512 digests of 8 KB inputs (in cache) than Cryptography for Intel Integrated Performance Primitives for Linux (library) on Intel Xeon E5-2699 v3 processors running Oracle Linux 6.5.

  • SPARC M7 processors running Oracle Solaris 11.3 ran 14 times faster computing multiple parallel SHA256 digests of 8 KB inputs (in cache) than Cryptography for Intel Integrated Performance Primitives for Linux (library) on Intel Xeon E5-2699 v3 processors running Oracle Linux 6.5.

  • SPARC M7 processors running Oracle Solaris 11.3 ran 4.8 times faster computing multiple parallel SHA1 digests of 8 KB inputs (in cache) than Cryptography for Intel Integrated Performance Primitives for Linux (library) on Intel Xeon E5-2699 v3 processors running Oracle Linux 6.5.

  • SHA1 and SHA2 operations are an integral part of Oracle Solaris, while on Linux they are performed using the add-on Cryptography for Intel Integrated Performance Primitives for Linux (library).

Oracle has also measured AES (CFB, GCM, CCM, CBC) cryptographic performance on the SPARC M7 processor.

Performance Landscape

Presented below are results for computing SHA1, SHA256, SHA384 and SHA512 digests for input plaintext sizes of 64, 1024 and 8192 bytes. Results are presented as MB/sec (10**6). All SPARC M7 processor results were run as part of this benchmark effort. All other results were run during previous benchmark efforts.

Digest Performance – SHA512

Performance is presented for SHA512 digest. The digest was computed for 64, 1024 and 8192 bytes of pseudo-random input data (same data for each run).

Processors Performance (MB/sec)
64B input 1024B input 8192B input
2 x SPARC M7, 4.13 GHz 39,201 167,072 184,944
2 x SPARC T5, 3.6 GHz 18,717 73,810 78,997
2 x Intel Xeon E5-2699 v3, 2.3 GHz 3,949 9,214 10,681
2 x Intel Xeon E5-2697 v2, 2.7 GHz 2,681 6,631 7,701

Digest Performance – SHA384

Performance is presented for SHA384 digest. The digest was computed for 64, 1024 and 8192 bytes of pseudo-random input data (same data for each run).

Processors Performance (MB/sec)
64B input 1024B input 8192B input
2 x SPARC M7, 4.13 GHz 39,697 166,898 185,194
2 x SPARC T5, 3.6 GHz 18,814 73,770 78,997
2 x Intel Xeon E5-2699 v3, 2.3 GHz 4,061 9,263 10,678
2 x Intel Xeon E5-2697 v2, 2.7 GHz 2,774 6,669 7,706

Digest Performance – SHA256

Performance is presented for SHA256 digest. The digest was computed for 64, 1024 and 8192 bytes of pseudo-random input data (same data for each run).

Processors Performance (MB/sec)
64B input 1024B input 8192B input
2 x SPARC M7, 4.13 GHz 45,148 113,648 119,929
2 x SPARC T5, 3.6 GHz 21,140 49,483 51,114
2 x Intel Xeon E5-2699 v3, 2.3 GHz 3,446 7,785 8,463
2 x Intel Xeon E5-2697 v2, 2.7 GHz 2,404 5,570 6,037

Digest Performance – SHA1

Performance is presented for SHA1 digest. The digest was computed for 64, 1024 and 8192 bytes of pseudo-random input data (same data for each run).

Processors Performance (MB/sec)
64B input 1024B input 8192B input
2 x SPARC M7, 4.13 GHz 47,640 92,515 97,545
2 x SPARC T5, 3.6 GHz 21,052 40,107 41,584
2 x Intel Xeon E5-2699 v3, 2.3 GHz 6,677 18,165 20,405
2 x Intel Xeon E5-2697 v2, 2.7 GHz 4,649 13,245 14,842

Configuration Summary

SPARC T7-2 server
2 x SPARC M7 processor, 4.13 GHz
1 TB memory
Oracle Solaris 11.3

SPARC T5-2 server
2 x SPARC T5 processor, 3.60 GHz
512 GB memory
Oracle Solaris 11.2

Oracle Server X5-2 system
2 x Intel Xeon E5-2699 v3 processors, 2.30 GHz
256 GB memory
Oracle Linux 6.5
Intel Integrated Performance Primitives for Linux, Version 8.2 (Update 1) 07 Nov 2014

Sun Server X4-2 system
2 x Intel Xeon E5-2697 v2 processors, 2.70 GHz
256 GB memory
Oracle Linux 6.5
Intel Integrated Performance Primitives for Linux, Version 8.2 (Update 1) 07 Nov 2014

Benchmark Description

The benchmark measures cryptographic capabilities in terms of general low-level encryption, in-cache and on-chip using various digests, including SHA1 and SHA2 (SHA256, SHA384, SHA512).

The benchmark results were obtained using tests created by Oracle which use various application interfaces to perform the various digests. They were run using optimized libraries for each platform to obtain the best possible performance. The encryption tests were run with pseudo-random data of sizes 64 bytes, 1024 bytes and 8192 bytes. The benchmark tests were designed to run out of cache, so memory bandwidth and latency are not the limitations.

See Also

Disclosure Statement

Copyright 2015, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 10/25/2015.

Oracle Internet Directory: SPARC T7-2 World Record

Oracle's SPARC T7-2 server running Oracle Internet Directory (OID, Oracle's LDAP Directory Server) on Oracle Solaris 11 on a virtualized processor configuration achieved a record result on the Oracle Internet Directory benchmark.

  • The SPARC T7-2 server, virtualized to use a single processor, achieved world record performance running Oracle Internet Directory benchmark with 50M users.

  • The SPARC T7-2 server and Oracle Internet Directory using Oracle Database 12c running on Oracle Solaris 11 achieved record result of 1.18M LDAP searches/sec with an average latency of 0.85 msec with 1000 clients.

  • The SPARC T7 server demonstrated 25% better throughput and 23% better latency for LDAP search/sec over similarly configured SPARC T5 server benchmark environment.

  • Oracle Internet Directory achieved near linear scalability on the virtualized single processor domain on the SPARC T7-2 server with 79K LDAP searches/sec with 2 cores to 1.18M LDAP searches/sec with 32 cores.

  • Oracle Internet Directory and the virtualized single processor domain on the SPARC T7-2 server achieved up to 22,408 LDAP modify/sec with an average latency of 2.23 msec for 50 clients.

Performance Landscape

A virtualized single SPARC M7 processor in a SPARC T7-2 server was used for the test results presented below. The SPARC T7-2 server and SPARC T5-2 server results were run as part of this benchmark effort. The remaining results were part of a previous benchmark effort.

Oracle Internet Directory Tests
System chips/
cores
Search Modify Add
ops/sec lat (msec) ops/sec lat (msec) ops/sec lat (msec)
SPARC T7-2 1/32 1,177,947 0.85 22,400 2.2 1,436 11.1
SPARC T5-2 2/32 944,624 1.05 16,700 2.9 1,000 15.95
SPARC T4-4 4/32 682,000 1.46 12,000 4.0 835 19.0

Scaling runs were also made on the virtualized single processor domain on the SPARC T7-2 server.

Scaling of Search Tests – SPARC T7-2, One Processor
Cores Clients ops/sec Latency (msec)
32 1000 1,177,947 0.85
24 1000 863,343 1.15
16 500 615,563 0.81
8 500 280,029 1.78
4 100 156,114 0.64
2 100 79,300 1.26

Configuration Summary

System Under Test:

SPARC T7-2
2 x SPARC M7 processors, 4.13 GHz
512 GB memory
6 x 600 GB internal disks
1 x Sun Storage ZS3-2 (used for database and log files)
Flash storage (used for redo logs)
Oracle Solaris 11.3
Oracle Internet Directory 11g Release 1 PS7 (11.1.1.7.0)
Oracle Database 12c Enterprise Edition 12.1.0.2 (64-bit)

Benchmark Description

Oracle Internet Directory (OID) is Oracle's LDAPv3 Directory Server. The throughput for five key operations are measured — Search, Compare, Modify, Mix and Add.

LDAP Search Operations Test

This test scenario involved concurrent clients binding once to OID and then performing repeated LDAP Search operations. The salient characteristics of this test scenario is as follows:

  • SLAMD SearchRate job was used.
  • BaseDN of the search is root of the DIT, the scope is SUBTREE, the search filter is of the form UID=, DN and UID are the required attribute.
  • Each LDAP search operation matches a single entry.
  • The total number concurrent clients was 1000 and were distributed amongst two client nodes.
  • Each client binds to OID once and performs repeated LDAP Search operations, each search operation resulting in the lookup of a unique entry in such a way that no client looks up the same entry twice and no two clients lookup the same entry and all entries are searched randomly.
  • In one run of the test, random entries from the 50 Million entries are looked up in as many LDAP Search operations.
  • Test job was run for 60 minutes.

LDAP Compare Operations Test

This test scenario involved concurrent clients binding once to OID and then performing repeated LDAP Compare operations on userpassword attribute. The salient characteristics of this test scenario is as follows:

  • SLAMD CompareRate job was used.
  • Each LDAP compare operation matches user password of user.
  • The total number concurrent clients was 1000 and were distributed amongst two client nodes.
  • Each client binds to OID once and performs repeated LDAP compare operations.
  • In one run of the test, random entries from the 50 Million entries are compared in as many LDAP compare operations.
  • Test job was run for 60 minutes.

LDAP Modify Operations Test

This test scenario consisted of concurrent clients binding once to OID and then performing repeated LDAP Modify operations. The salient characteristics of this test scenario is as follows:

  • SLAMD LDAP modrate job was used.
  • A total of 50 concurrent LDAP clients were used.
  • Each client updates a unique entry each time and a total of 50 Million entries are updated.
  • Test job was run for 60 minutes.
  • Value length was set to 11.
  • Attribute that is being modified is not indexed.

LDAP Mixed Load Test

The test scenario involved both the LDAP search and LDAP modify clients enumerated above.

  • The ratio involved 60% LDAP search clients, 30% LDAP bind and 10% LDAP modify clients.
  • A total of 1000 concurrent LDAP clients were used and were distributed on 2 client nodes.
  • Test job was run for 60 minutes.

LDAP Add Load Test

The test scenario involved concurrent clients adding new entries as follows.

  • Slamd standard add rate job is used.
  • A total of 500,000 entries were added.
  • A total of 16 concurrent LDAP clients were used.
  • Slamd add's inetorgperson objectclass entry with 21 attributes (includes operational attributes).

See Also

Disclosure Statement

Copyright 2015, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 25 October 2015.

Virtualized Network Performance: SPARC T7-1

Oracle's SPARC T7-1 server using Oracle VM Server for SPARC exhibits lower network latency under virtualization. The network latency and bandwidth were measured using the Netperf benchmark.

  • TCP network latency between two Oracle VM Server for SPARC guests running on separate SPARC T7-1 servers each using SR-IOV is similar to that of two SPARC T7-1 servers without virtualization (native/bare metal).

  • TCP and UDP network latencies between two Oracle VM Server for SPARC guests running on separate SPARC T7-1 servers each using assigned I/O were significantly less than the other two I/O configurations (SR-IOV and paravirtual I/O).

  • TCP and UDP network latencies between two Oracle VM Server for SPARC guests running on separate SPARC T7-1 servers each using SR-IOV were significantly less than when using paravirtual I/O.

Terminology notes:

  • VM – virtual machine
  • guest – encapsulated operating system instance, typically running in a VM.
  • assigned I/O – network hardware driven directly and exclusively by guests
  • paravirtual I/O – network hardware driven by hosts, indirectly by guests via paravirtualized drivers
  • SR-IOV – single root i/o virtualization; virtualized network interfaces provided by network hardware, driven directly by guests.
  • LDom – logical domain (previous name for Oracle VM Server for SPARC)

Performance Landscape

The following tables show the results for TCP and UDP Netperf Latency and Bandwidth tests (single stream). Netperf latency, often called the round-trip time, is measured in microseconds (usec) (smaller is better).

TCP
Networking
Method
Netperf Latency
(usec)
Bandwidth
(Mb/sec)
MTU=1500MTU=9000 MTU=1500MTU=9000
Native/Bare Metal 5858 91009900
assigned I/O 5151 94009900
SR-IOV 5859 94009900
paravirtual I/O 9191 48009800


UDP
Networking
Method
Netperf Latency
(usec)
Bandwidth
(Mb/sec)
MTU=1500MTU=9000 MTU=1500MTU=9000
Native/Bare Metal 5757 91009900
assigned I/O 5151 94009900
SR-IOV 6663 94009900
paravirtual I/O 9897 48009800
Specifically, the Netperf benchmark latency:
  • is the average request/response time computed by inverse of the throughput reported by the program,
  • is measured within the program from 20 sample-runs of 30 seconds each,
  • uses single-in-flight [i.e. non-burst] 1 byte messages,
  • sends between separate servers connected by 10 GbE,
  • for each test, uses servers connected back-to-back (no network switch) and configured identically: native or guest VM.

Configuration Summary

System Under Test:

2 x SPARC T7-1 servers, each with
1 x SPARC M7 processor (4.13 GHz)
256 GB memory (16 x 16 GB)
2 x 600 GB 10K RPM SAS-2 HDD
10 GbE (on-board and PCIe network devices)
Oracle Solaris 11.3
Oracle VM Server for SPARC 3.2

Benchmark Description

Using the Netperf 2.6.0 benchmark to evaluate native and virtualized (LDoms) network performance. Netperf is a client/server benchmark measuring network performance providing a number of independent tests, including the omni Request/Response (aka ping-pong) test with TCP or UDP protocols used here to obtain the Netperf latency measurements, and TCP stream for bandwidth. Netperf was run between separate servers connected back-to-back (no network switch) by 10 GbE network interconnection.

To measure the cost of virtualization, for each test the servers were configured identically: native (without virtualization) or guest VM. When in a virtual environment, in similar identical fashion on each server, some representative methods were configured to connect the environment to the network hardware (e.g. assigned I/O, paravirtualization, SR-IOV).

Key Points and Best Practices

  • Oracle VM Server for SPARC requires explicit partitioning of guests into Logical Domains of bound CPUs and memory, typically chosen to be local, and does not provide dynamic load balancing between guests on a host.

  • Oracle VM Server for SPARC guests (LDoms) were assigned 32 virtual CPUs (4 complete processor cores) and 64 GB of memory. The control domain served as the I/O domain (for paravirtualized I/O) and was assigned 4 cores and 64 GB of memory.

  • Each latency average reported was computed from the inverse of the reported throughput (similar to the transaction rate) of a Netperf Request/Response test run using 20 samples (aka iterations) of 30 second measurements of non-concurrent 1 byte messages.

  • To obtain a meaningful average latency from a Netperf Request/Response test, it is important that the transactions consist of single messages, which is Netperf's default. If, for instance, Netperf options for burst and TCP_NODELAY are turned on, multiple messages can overlap in the transactions and the reported transaction rate or throughput cannot be used to compute the latency.

  • All results were obtained with interrupt coalescence (aka interrupt throttling, interrupt blanking) turned on in the physical NIC, and if applicable, for the attachment driver in the guest. Also, interrupt coalescence turned on is the default for all the platforms used here.

  • All the results were obtained with large receive offload (LRO) turned off in the physical NIC, and, if applicable, for the attachment driver in the guest, in order to reduce the network latency between the two guests.

  • The netperf bandwidth test used send and receive 1MB (1048576 Bytes) messages.

  • The paravirtual variation of the measurements refers to the use of a paravirtualized network driver in the guest instance. IP traffic consequently is routed across the guest, the virtualization subsystem in the host, a virtual network switch or bridge (depending upon the platform), and the network interface card.

  • The assigned I/O variation of the measurements refers to the use of the card's driver in the guest instance itself. This use is possible by exclusively assigning the device to the guest. Device assignment results in less (software) routing for IP traffic and consequently less overhead than using paravirtualized drivers, but virtualization still can impose significant overhead. Note also NICs used in this way cannot be shared amongst guests, and may obviate the use of certain other VM features like migration. The T7-1 system has four on-board 10 GbE devices, but all of them are connected to the same PCIe branch, making it impossible to configure them as assigned I/O devices. Using a PCIe 10 GbE NIC allows configuring it as an assigned I/O device.

  • In the context of Oracle VM Server for SPARC and these tests, assigned I/O refers to PCI endpoint device assignment, while paravirtualized I/O refers to virtual I/O using a virtual network device (vnet) in the guest connected to a virtual switch (vsw) through the I/O domain to the physical network device (NIC).

See Also

Disclosure Statement

Copyright 2015, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 25 October 2015.

Wednesday Sep 25, 2013

SPARC T5 Encryption Performance Tops Intel E5-2600 v2 Processor

The cryptography benchmark suite was developed by Oracle to measure security performance on important AES security modes. Oracle's SPARC T5 processor with it security software in silicon is faster than x86 servers that have the AES-NI instructions. In this test, the performance of on-processor encryption operations is measured (32 KB encryptions). Multiple threads are used to measure each processors maximum throughput. The SPARC T5-8 shows dramatically faster encryption.

  • A SPARC T5 processor running Oracle Solaris 11.1 is 2.7 times faster executing AES-CFB 256-bit key encryption (in cache) than the Intel E5-2697 v2 processor (with AES-NI) running Oracle Linux 6.3. AES-CFB encryption is used by Oracle Database for Transparent Data Encryption (TDE) which provides security for database storage.

  • On the AES-CFB 128-bit key encryption, the SPARC T5 processor is 2.5 times faster than the Intel E5-2697 v2 processor (with AES-NI) running Oracle Linux 6.3 for in-cache encryption. AES-CFB mode is used by Oracle Database for Transparent Data Encryption (TDE) which provides security for database storage.

  • The IBM POWER7+ has three hardware security units for 8-core processors, but IBM has not publicly shown any measured performance results on AES-CFB or other encryption modes.

Performance Landscape

Presented below are results for running encryption using the AES cipher with the CFB, CBC, CCM and GCM modes for key sizes of 128, 192 and 256. Decryption performance was similar and is not presented. Results are presented as MB/sec (10**6).

Encryption Performance – AES-CFB

Performance is presented for in-cache AES-CFB128 mode encryption. Multiple key sizes of 256-bit, 192-bit and 128-bit are presented. The encryption was performance on 32 KB of pseudo-random data (same data for each run).

AES-CFB
Microbenchmark Performance (MB/sec)
Processor GHz Chips Performance Software Environment
AES-256-CFB
SPARC T5 3.60 2 54,396 Oracle Solaris 11.1, libsoftcrypto + libumem
Intel E5-2697 v2 2.70 2 19,960 Oracle Linux 6.3, IPP/AES-NI
Intel E5-2690 2.90 2 12,823 Oracle Linux 6.3, IPP/AES-NI
AES-192-CFB
SPARC T5 3.60 2 61,000 Oracle Solaris 11.1, libsoftcrypto + libumem
Intel E5-2697 v2 2.70 2 23,217 Oracle Linux 6.3, IPP/AES-NI
Intel E5-2690 2.90 2 14,928 Oracle Linux 6.3, IPP/AES-NI
AES-128-CFB
SPARC T5 3.60 2 68,695 Oracle Solaris 11.1, libsoftcrypto + libumem
Intel E5-2697 v2 2.70 2 27,740 Oracle Linux 6.3, IPP/AES-NI
Intel E5-2690 2.90 2 17,824 Oracle Linux 6.3, IPP/AES-NI

Encryption Performance – AES-GCM

Performance is presented for in-cache AES-GCM mode encryption with authentication. Multiple key sizes of 256-bit, 192-bit and 128-bit are presented. The encryption/authentication was performance on 32 KB of pseudo-random data (same data for each run).

AES-GCM
Microbenchmark Performance (MB/sec)
Processor GHz Chips Performance Software Environment
AES-256-GCM
SPARC T5 3.60 2 34,101 Oracle Solaris 11.1, libsoftcrypto + libumem
Intel E5-2697 v2 2.70 2 15,338 Oracle Solaris 11.1, libsoftcrypto + libumem
Intel E5-2690 2.90 2 13,520 Oracle Linux 6.3, IPP/AES-NI
AES-192-GCM
SPARC T5 3.60 2 36,852 Oracle Solaris 11.1, libsoftcrypto + libumem
Intel E5-2697 v2 2.70 2 15,768 Oracle Solaris 11.1, libsoftcrypto + libumem
Intel E5-2690 2.90 2 14,159 Oracle Linux 6.3, IPP/AES-NI
AES-128-GCM
SPARC T5 3.60 2 39,003 Oracle Solaris 11.1, libsoftcrypto + libumem
Intel E5-2697 v2 2.70 2 16,405 Oracle Solaris 11.1, libsoftcrypto + libumem
Intel E5-2690 2.90 2 14,877 Oracle Linux 6.3, IPP/AES-NI

Encryption Performance – AES-CCM

Performance is presented for in-cache AES-CCM mode encryption with authentication. Multiple key sizes of 256-bit, 192-bit and 128-bit are presented. The encryption/authentication was performance on 32 KB of pseudo-random data (same data for each run).

AES-CCM
Microbenchmark Performance (MB/sec)
Processor GHz Chips Performance Software Environment
AES-256-CCM
SPARC T5 3.60 2 29,431 Oracle Solaris 11.1, libsoftcrypto + libumem
Intel E5-2697 v2 2.70 2 19,447 Oracle Linux 6.3, IPP/AES-NI
Intel E5-2690 2.90 2 12,493 Oracle Linux 6.3, IPP/AES-NI
AES-192-CCM
SPARC T5 3.60 2 33,715 Oracle Solaris 11.1, libsoftcrypto + libumem
Intel E5-2697 v2 2.70 2 22,634 Oracle Linux 6.3, IPP/AES-NI
Intel E5-2690 2.90 2 14,507 Oracle Linux 6.3, IPP/AES-NI
AES-128-CCM
SPARC T5 3.60 2 39,188 Oracle Solaris 11.1, libsoftcrypto + libumem
Intel E5-2697 v2 2.70 2 26,951 Oracle Linux 6.3, IPP/AES-NI
Intel E5-2690 2.90 2 17,256 Oracle Linux 6.3, IPP/AES-NI

Encryption Performance – AES-CBC

Performance is presented for in-cache AES-CBC mode encryption. Multiple key sizes of 256-bit, 192-bit and 128-bit are presented. The encryption was performance on 32 KB of pseudo-random data (same data for each run).

AES-CBC
Microbenchmark Performance (MB/sec)
Processor GHz Chips Performance Software Environment
AES-256-CBC
SPARC T5 3.60 2 56,933 Oracle Solaris 11.1, libsoftcrypto + libumem
Intel E5-2697 v2 2.70 2 19,962 Oracle Linux 6.3, IPP/AES-NI
Intel E5-2690 2.90 2 12,822 Oracle Linux 6.3, IPP/AES-NI
AES-192-CBC
SPARC T5 3.60 2 63,767 Oracle Solaris 11.1, libsoftcrypto + libumem
Intel E5-2697 v2 2.70 2 23,224 Oracle Linux 6.3, IPP/AES-NI
Intel E5-2690 2.90 2 14,915 Oracle Linux 6.3, IPP/AES-NI
AES-128-CBC
SPARC T5 3.60 2 72,508 Oracle Solaris 11.1, libsoftcrypto + libumem
Intel E5-2697 v2 2.70 2 27,733 Oracle Linux 6.3, IPP/AES-NI
Intel E5-2690 2.90 2 17,823 Oracle Linux 6.3, IPP/AES-NI

Configuration Summary

SPARC T5-2 server
2 x SPARC T5 processor, 3.6 GHz
512 GB memory
Oracle Solaris 11.1 SRU 4.2

Sun Server X4-2L server
2 x E5-2697 v2 processors, 2.70 GHz
256 GB memory
Oracle Linux 6.3

Sun Server X3-2 server
2 x E5-2690 processors, 2.90 GHz
128 GB memory
Oracle Linux 6.3

Benchmark Description

The benchmark measures cryptographic capabilities in terms of general low-level encryption, in-cache (32 KB encryptions) and on-chip using various ciphers, including AES-128-CFB, AES-192-CFB, AES-256-CFB, AES-128-CBC, AES-192-CBC, AES-256-CBC, AES-128-CCM, AES-192-CCM, AES-256-CCM, AES-128-GCM, AES-192-GCM and AES-256-GCM.

The benchmark results were obtained using tests created by Oracle which use various application interfaces to perform the various ciphers. They were run using optimized libraries for each platform to obtain the best possible performance.

See Also

Disclosure Statement

Copyright 2013, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 9/23/2013.

Friday Mar 29, 2013

SPARC T5 System Performance for Encryption Microbenchmark

The cryptography benchmark suite was internally developed by Oracle to measure the maximum throughput of in-memory, on-chip encryption operations that a system can perform. Multiple threads are used to achieve the maximum throughput. Systems powered by Oracle's SPARC T5 processor show outstanding performance on the tested encryption operations, beating Intel processor based systems.

  • A SPARC T5 processor running Oracle Solaris 11.1 runs from 2.4x to 4.4x faster on AES 256-bit key encryption than the Intel E5-2690 processor running in-memory encryption of 32 KB blocks using CFB128, CBC, CCM and GCM modes fully hardware subscribed.

  • AES CFB mode is used by the Oracle Database 11g for Transparent Data Encryption (TDE) which provides security to database storage.

Performance Landscape

Presented below are results for running encryption using the AES cipher with the CFB, CBC, CCM and GCM modes for key sizes of 128, 192 and 256. Decryption performance was similar and is not presented. Results are presented as MB/sec (10**6).

Encryption Performance – AES-CFB

Performance is presented for in-memory AES-CFB128 mode encryption. Multiple key sizes of 256-bit, 192-bit and 128-bit are presented. The encryption was performance on 32 KB of pseudo-random data (same data for each run).

AES-CFB
Microbenchmark Performance (MB/sec)
Processor GHz Chips Performance Software Environment
AES-256-CFB
SPARC T5 3.60 2 54,396 Oracle Solaris 11.1, libsoftcrypto + libumem
Intel E5-2690 2.90 2 12,823 IPP/AES-NI
AES-192-CFB
SPARC T5 3.60 2 61,000 Oracle Solaris 11.1, libsoftcrypto + libumem
Intel E5-2690 2.90 2 14,928 IPP/AES-NI
AES-128-CFB
SPARC T5 3.60 2 68,695 Oracle Solaris 11.1, libsoftcrypto + libumem
Intel E5-2690 2.90 2 17,824 IPP/AES-NI

Encryption Performance – AES-CBC

Performance is presented for in-memory AES-CBC mode encryption. Multiple key sizes of 256-bit, 192-bit and 128-bit are presented. The encryption was performance on 32 KB of pseudo-random data (same data for each run).

AES-CBC
Microbenchmark Performance (MB/sec)
Processor GHz Chips Performance Software Environment
AES-256-CBC
SPARC T5 3.60 2 56,933 Oracle Solaris 11.1, libsoftcrypto + libumem
Intel E5-2690 2.90 2 12,822 IPP/AES-NI
AES-192-CBC
SPARC T5 3.60 2 63,767 Oracle Solaris 11.1, libsoftcrypto + libumem
Intel E5-2690 2.90 2 14,915 IPP/AES-NI
AES-128-CBC
SPARC T5 3.60 2 72,508 Oracle Solaris 11.1, libsoftcrypto + libumem
SPARC T4 2.85 2 31,085 Oracle Solaris 11.1, libsoftcrypto + libumem
Intel X5690 3.47 2 20,721 IPP/AES-NI
Intel E5-2690 2.90 2 17,823 IPP/AES-NI

Encryption Performance – AES-CCM

Performance is presented for in-memory AES-CCM mode encryption with authentication. Multiple key sizes of 256-bit, 192-bit and 128-bit are presented. The encryption/authentication was performance on 32 KB of pseudo-random data (same data for each run).

AES-CCM
Microbenchmark Performance (MB/sec)
Processor GHz Chips Performance Software Environment
AES-256-CCM
SPARC T5 3.60 2 29,431 Oracle Solaris 11.1, libsoftcrypto + libumem
Intel E5-2690 2.90 2 12,493 IPP/AES-NI
AES-192-CCM
SPARC T5 3.60 2 33,715 Oracle Solaris 11.1, libsoftcrypto + libumem
Intel E5-2690 2.90 2 14,507 IPP/AES-NI
AES-128-CCM
SPARC T5 3.60 2 39,188 Oracle Solaris 11.1, libsoftcrypto + libumem
Intel E5-2690 2.90 2 17,256 IPP/AES-NI

Encryption Performance – AES-GCM

Performance is presented for in-memory AES-GCM mode encryption with authentication. Multiple key sizes of 256-bit, 192-bit and 128-bit are presented. The encryption/authentication was performance on 32 KB of pseudo-random data (same data for each run).

AES-GCM
Microbenchmark Performance (MB/sec)
Processor GHz Chips Performance Software Environment
AES-256-GCM
SPARC T5 3.60 2 34,101 Oracle Solaris 11.1, libsoftcrypto + libumem
Intel E5-2690 2.90 2 13,520 IPP/AES-NI
AES-192-GCM
SPARC T5 3.60 2 36,852 Oracle Solaris 11.1, libsoftcrypto + libumem
Intel E5-2690 2.90 2 14,159 IPP/AES-NI
AES-128-GCM
SPARC T5 3.60 2 39,003 Oracle Solaris 11.1, libsoftcrypto + libumem
Intel E5-2690 2.90 2 14,877 IPP/AES-NI

Configuration Summary

SPARC T5-2 server
2 x SPARC T5 processor, 3.6 GHz
512 GB memory
Oracle Solaris 11.1 SRU 4.2

Sun Server X3-2 server
2 x E5-2690 processors, 2.90 GHz
128 GB memory

Benchmark Description

The benchmark measures cryptographic capabilities in terms of general low-level encryption, in-memory and on-chip using various ciphers, including AES-128-CFB, AES-192-CFB, AES-256-CFB, AES-128-CBC, AES-192-CBC, AES-256-CBC, AES-128-CCM, AES-192-CCM, AES-256-CCM, AES-128-GCM, AES-192-GCM and AES-256-GCM.

The benchmark results were obtained using tests created by Oracle which use various application interfaces to perform the various ciphers. They were run using optimized libraries for each platform to obtain the best possible performance.

See Also

Disclosure Statement

Copyright 2013, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 3/26/2013.

Tuesday Mar 26, 2013

SPARC T5-2 Obtains Oracle Internet Directory Benchmark World Record Performance

Oracle's SPARC T5-2 server running Oracle Internet Directory (OID, Oracle's LDAP Directory Server) on Oracle Solaris 11 achieved a record result for LDAP searches/second with 1000 clients.

  • The SPARC T5-2 server running Oracle Internet Directory on Oracle Solaris 11 achieved a result of 944,624 LDAP searches/sec with an average latency of 1.05 ms with 1000 clients.

  • The SPARC T5-2 server running Oracle Internet Directory demonstrated 2.7x better throughput and 39% better latency improvement over similarly configured OID and SPARC T4 benchmark environment.

  • The SPARC T5-2 server running Oracle Internet Directory demonstrates 39% better throughput and latency for LDAP searches on core-to-core comparison over an x86 system configured with two Intel Xeon X5675 processors.

  • Oracle Internet Directory achieved near linear scaling on the SPARC T5-2 server with 68,399 LDAP searches/sec with 2 cores to 944,624 LDAP searches/sec with 32 cores.

  • Oracle Internet Directory and the SPARC T5-2 server achieved up to 12,453 LDAP modifys/sec with an average latency of 3.9 msec for 50 clients.

Performance Landscape

Oracle Internet Directory Tests
System c/c/th Search Modify Add
ops/sec lat (msec) ops/sec lat (msec) ops/sec lat (msec)
SPARC T5-2 2/32/256 944,624 1.05 12,453 3.9 888 17.9
SPARC T4-4 4/32/256 682,000 1.46 12,000 4.0 835 19.0

In order to compare the SPARC T5-2 to a 12-core x86 system, only 1 processor and 12 cores was used in the SPARC T5-2.

Oracle Internet Directory Tests – Comparing Against x86
System c/c/th Search Compare Authentication
ops/sec lat (msec) ops/sec lat (msec) ops/sec lat (msec)
SPARC T5-2 1/12/96 417,000 1.19 274,185 1.82 149,623 3.30
x86 2 x Intel X5675 2/12/24 299,000 1.66 202,433 2.46 119,198 4.19

Scaling runs were also made on the SPARC T5-2 server.

Scaling of Search Tests – SPARC T5-2
Cores Clients ops/sec Latency (msec)
32 1000 944,624 1.05
24 1000 823,741 1.21
16 500 560,709 0.88
8 500 270,601 1.84
4 100 145,879 0.68
2 100 68,399 1.46

Configuration Summary

System Under Test:

SPARC T5-2
2 x SPARC T5 processors, 3.6 GHz
512 GB memory
4 x 300 GB internal disks
Flash Storage (used for database and log files)
1 x Sun Storage 2540-M2 (used for redo logs)
Oracle Solaris 11.1
Oracle Internet Directory 11g Release 1 PS6 (11.1.1.7.0)
Oracle Database 11g Enterprise Edition 11.2.0.3 (64-bit)

Benchmark Description

Oracle Internet Directory (OID) is Oracle's LDAPv3 Directory Server. The throughput for five key operations are measured — Search, Compare, Modify, Mix and Add.

LDAP Search Operations Test

This test scenario involved concurrent clients binding once to OID and then performing repeated LDAP Search operations. The salient characteristics of this test scenario is as follows:

  • SLAMD SearchRate job was used.
  • BaseDN of the search is root of the DIT, the scope is SUBTREE, the search filter is of the form UID=, DN and UID are the required attribute.
  • Each LDAP search operation matches a single entry.
  • The total number concurrent clients was 1000 and were distributed amongst two client nodes.
  • Each client binds to OID once and performs repeated LDAP Search operations, each search operation resulting in the lookup of a unique entry in such a way that no client looks up the same entry twice and no two clients lookup the same entry and all entries are searched randomly.
  • In one run of the test, random entries from the 50 Million entries are looked up in as many LDAP Search operations.
  • Test job was run for 60 minutes.

LDAP Compare Operations Test

This test scenario involved concurrent clients binding once to OID and then performing repeated LDAP Compare operations on userpassword attribute. The salient characteristics of this test scenario is as follows:

  • SLAMD CompareRate job was used.
  • Each LDAP compare operation matches user password of user.
  • The total number concurrent clients was 1000 and were distributed amongst two client nodes.
  • Each client binds to OID once and performs repeated LDAP compare operations.
  • In one run of the test, random entries from the 50 Million entries are compared in as many LDAP compare operations.
  • Test job was run for 60 minutes.

LDAP Modify Operations Test

This test scenario consisted of concurrent clients binding once to OID and then performing repeated LDAP Modify operations. The salient characteristics of this test scenario is as follows:

  • SLAMD LDAP modrate job was used.
  • A total of 50 concurrent LDAP clients were used.
  • Each client updates a unique entry each time and a total of 50 Million entries are updated.
  • Test job was run for 60 minutes.
  • Value length was set to 11.
  • Attribute that is being modified is not indexed.

LDAP Mixed Load Test

The test scenario involved both the LDAP search and LDAP modify clients enumerated above.

  • The ratio involved 60% LDAP search clients, 30% LDAP bind and 10% LDAP modify clients.
  • A total of 1000 concurrent LDAP clients were used and were distributed on 2 client nodes.
  • Test job was run for 60 minutes.

LDAP Add Load Test

The test scenario involved concurrent clients adding new entries as follows.

  • Slamd standard add rate job is used.
  • A total of 500,000 entries were added.
  • A total of 16 concurrent LDAP clients were used.
  • Slamd add's inetorgperson objectclass entry with 21 attributes (includes operational attributes).

See Also

Disclosure Statement

Copyright 2013, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 26 March 2013.

Tuesday Oct 02, 2012

Performance of Oracle Business Intelligence Benchmark on SPARC T4-4

Oracle's SPARC T4-4 server configured with four SPARC T4 3.0 GHz processors delivered 25,000 concurrent users on Oracle Business Intelligence Enterprise Edition (BI EE) 11g benchmark using Oracle Database 11g Release 2 running on Oracle Solaris 10.

  • A SPARC T4-4 server running Oracle Business Intelligence Enterprise Edition 11g achieved 25,000 concurrent users with an average response time of 0.36 seconds with Oracle BI server cache set to ON.

  • The benchmark data clearly shows that the underlying hardware, SPARC T4 server, and the Oracle BI EE 11g (11.1.1.6.0 64-bit) platform scales within a single system supporting 25,000 concurrent users while executing 415 transactions/sec.

  • The benchmark demonstrated the scalability of Oracle Business Intelligence Enterprise Edition 11g 11.1.1.6.0, which was deployed in a vertical scale-out fashion on a single SPARC T4-4 server.

  • Oracle Internet Directory configured on SPARC T4 server provided authentication for the 25,000 Oracle BI EE users with sub-second response time.

  • A SPARC T4-4 with internal Solid State Drive (SSD) using the ZFS file system showed significant I/O performance improvement over traditional disk for the Web Catalog activity. In addition, ZFS helped get past the UFS limitation of 32767 sub-directories in a Web Catalog directory.

  • The multi-threaded 64-bit Oracle Business Intelligence Enterprise Edition 11g and SPARC T4-4 server proved to be a successful combination by providing sub-second response times for the end user transactions, consuming only half of the available CPU resources at 25,000 concurrent users, leaving plenty of head room for increased load.

  • The Oracle Business Intelligence on SPARC T4-4 server benchmark results demonstrate that comprehensive BI functionality built on a unified infrastructure with a unified business model yields best-in-class scalability, reliability and performance.

  • Oracle BI EE 11g is a newer version of Business Intelligence Suite with richer and superior functionality. Results produced with Oracle BI EE 11g benchmark are not comparable to results with Oracle BI EE 10g benchmark. Oracle BI EE 11g is a more difficult benchmark to run, exercising more features of Oracle BI.

Performance Landscape

Results for the Oracle BI EE 11g version of the benchmark. Results are not comparable to the Oracle BI EE 10g version of the benchmark.

Oracle BI EE 11g Benchmark
System Number of Users Response Time (sec)
1 x SPARC T4-4 (4 x SPARC T4 3.0 GHz) 25,000 0.36

Results for the Oracle BI EE 10g version of the benchmark. Results are not comparable to the Oracle BI EE 11g version of the benchmark.

Oracle BI EE 10g Benchmark
System Number of Users
2 x SPARC T5440 (4 x SPARC T2+ 1.6 GHz) 50,000
1 x SPARC T5440 (4 x SPARC T2+ 1.6 GHz) 28,000

Configuration Summary

Hardware Configuration:

SPARC T4-4 server
4 x SPARC T4-4 processors, 3.0 GHz
128 GB memory
4 x 300 GB internal SSD

Storage Configuration:

Sun ZFS Storage 7120
16 x 146 GB disks

Software Configuration:

Oracle Solaris 10 8/11
Oracle Solaris Studio 12.1
Oracle Business Intelligence Enterprise Edition 11g (11.1.1.6.0)
Oracle WebLogic Server 10.3.5
Oracle Internet Directory 11.1.1.6.0
Oracle Database 11g Release 2

Benchmark Description

Oracle Business Intelligence Enterprise Edition (Oracle BI EE) delivers a robust set of reporting, ad-hoc query and analysis, OLAP, dashboard, and scorecard functionality with a rich end-user experience that includes visualization, collaboration, and more.

The Oracle BI EE benchmark test used five different business user roles - Marketing Executive, Sales Representative, Sales Manager, Sales Vice-President, and Service Manager. These roles included a maximum of 5 different pre-built dashboards. Each dashboard page had an average of 5 reports in the form of a mix of charts, tables and pivot tables, returning anywhere from 50 rows to approximately 500 rows of aggregated data. The test scenario also included drill-down into multiple levels from a table or chart within a dashboard.

The benchmark test scenario uses a typical business user sequence of dashboard navigation, report viewing, and drill down. For example, a Service Manager logs into the system and navigates to his own set of dashboards using Service Manager. The BI user selects the Service Effectiveness dashboard, which shows him four distinct reports, Service Request Trend, First Time Fix Rate, Activity Problem Areas, and Cost Per Completed Service Call spanning 2002 to 2005. The user then proceeds to view the Customer Satisfaction dashboard, which also contains a set of 4 related reports, drills down on some of the reports to see the detail data. The BI user continues to view more dashboards – Customer Satisfaction and Service Request Overview, for example. After navigating through those dashboards, the user logs out of the application. The benchmark test is executed against a full production version of the Oracle Business Intelligence 11g Applications with a fully populated underlying database schema. The business processes in the test scenario closely represent a real world customer scenario.

See Also

Disclosure Statement

Copyright 2012, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 30 September 2012.

Tuesday Aug 28, 2012

SPARC T4-2 Produces World Record Oracle Essbase Aggregate Storage Benchmark Result

Significance of Results

Oracle's SPARC T4-2 server configured with a Sun Storage F5100 Flash Array and running Oracle Solaris 10 with Oracle Database 11g has achieved exceptional performance for the Oracle Essbase Aggregate Storage Option benchmark. The benchmark has upwards of 1 billion records, 15 dimensions and millions of members. Oracle Essbase is a multi-dimensional online analytical processing (OLAP) server and is well-suited to work well with SPARC T4 servers.

  • The SPARC T4-2 server (2 cpus) running Oracle Essbase 11.1.2.2.100 outperformed the previous published results on Oracle's SPARC Enterprise M5000 server (4 cpus) with Oracle Essbase 11.1.1.3 on Oracle Solaris 10 by 80%, 32% and 2x performance improvement on Data Loading, Default Aggregation and Usage Based Aggregation, respectively.

  • The SPARC T4-2 server with Sun Storage F5100 Flash Array and Oracle Essbase running on Oracle Solaris 10 achieves sub-second query response times for 20,000 users in a 15 dimension database.

  • The SPARC T4-2 server configured with Oracle Essbase was able to aggregate and store values in the database for a 15 dimension cube in 398 minutes with 16 threads and in 484 minutes with 8 threads.

  • The Sun Storage F5100 Flash Array provides more than a 20% improvement out-of-the-box compared to a mid-size fiber channel disk array for default aggregation and user-based aggregation.

  • The Sun Storage F5100 Flash Array with Oracle Essbase provides the best combination for large Oracle Essbase databases leveraging Oracle Solaris ZFS and taking advantage of high bandwidth for faster load and aggregation.

  • Oracle Fusion Middleware provides a family of complete, integrated, hot pluggable and best-of-breed products known for enabling enterprise customers to create and run agile and intelligent business applications. Oracle Essbase's performance demonstrates why so many customers rely on Oracle Fusion Middleware as their foundation for innovation.

Performance Landscape

System Data Size
(millions of items)
Database
Load
(minutes)
Default
Aggregation
(minutes)
Usage Based
Aggregation
(minutes)
SPARC T4-2, 2 x SPARC T4 2.85 GHz 1000 149 398* 55
Sun M5000, 4 x SPARC64 VII 2.53 GHz 1000 269 526 115
Sun M5000, 4 x SPARC64 VII 2.4 GHz 400 120 448 18

* – 398 mins with CALCPARALLEL set to 16; 484 mins with CALCPARALLEL threads set to 8

Configuration Summary

Hardware Configuration:

1 x SPARC T4-2
2 x 2.85 GHz SPARC T4 processors
128 GB memory
2 x 300 GB 10000 RPM SAS internal disks

Storage Configuration:

1 x Sun Storage F5100 Flash Array
40 x 24 GB flash modules
SAS HBA with 2 SAS channels
Data Storage Scheme Striped - RAID 0
Oracle Solaris ZFS

Software Configuration:

Oracle Solaris 10 8/11
Installer V 11.1.2.2.100
Oracle Essbase Client v 11.1.2.2.100
Oracle Essbase v 11.1.2.2.100
Oracle Essbase Administration services 64-bit
Oracle Database 11g Release 2 (11.2.0.3)
HP's Mercury Interactive QuickTest Professional 9.5.0

Benchmark Description

The objective of the Oracle Essbase Aggregate Storage Option benchmark is to showcase the ability of Oracle Essbase to scale in terms of user population and data volume for large enterprise deployments. Typical administrative and end-user operations for OLAP applications were simulated to produce benchmark results.

The benchmark test results include:

  • Database Load: Time elapsed to build a database including outline and data load.
  • Default Aggregation: Time elapsed to build aggregation.
  • User Based Aggregation: Time elapsed of the aggregate views proposed as a result of tracked retrieval queries.

Summary of the data used for this benchmark:

  • 40 flat files, each of size 1.2 GB, 49.4 GB in total
  • 10 million rows per file, 1 billion rows total
  • 28 columns of data per row
  • Database outline has 15 dimensions (five of them are attribute dimensions)
  • Customer dimension has 13.3 million members
  • 3 rule files

Key Points and Best Practices

  • The Sun Storage F5100 Flash Array has been used to accelerate the application performance.

  • Setting data load threads (DLTHREADSPREPARE) to 64 and Load Buffer to 6 improved dataloading by about 9%.

  • Factors influencing aggregation materialization performance are "Aggregate Storage Cache" and "Number of Threads" (CALCPARALLEL) for parallel view materialization. The optimal values for this workload on the SPARC T4-2 server were:

      Aggregate Storage Cache: 32 GB
      CALCPARALLEL: 16

     

See Also

Disclosure Statement

Copyright 2012, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 28 August 2012.

Friday Sep 30, 2011

SPARC T4 Processor Beats Intel (Westmere AES-NI) on AES Encryption Tests

The cryptography benchmark suite was internally developed by Oracle to measure the maximum throughput of in-memory, on-chip encryption operations that a system can perform. Multiple threads are used to achieve the maximum throughput.

  • Oracle's SPARC T4 processor running Oracle Solaris 11 is 1.5x faster on AES 256-bit key CFB mode encryption than the Intel Xeon X5690 processor running Oracle Linux 6.1 for in-memory encryption of 32 KB blocks.

  • The SPARC T4 processor running Oracle Solaris 11 is 1.7x faster on AES 256-bit key CBC mode encryption than the Intel Xeon X5690 processor running Oracle Linux 6.1 for in-memory encryption of 32 KB blocks.

  • The SPARC T4 processor running Oracle Solaris 11 is 3.6x faster on AES 256-bit key CCM mode encryption than the Intel Xeon X5690 processor running Oracle Linux 6.1 for in-memory encryption with authentication of 32 KB blocks.

  • The SPARC T4 processor running Oracle Solaris 11 is 1.4x faster on AES 256-bit key GCM mode encryption than the Intel Xeon X5690 processor running Oracle Linux 6.1 for in-memory encryption with authentication of 32 KB blocks.

  • The SPARC T4 processor running Oracle Solaris 11 is 9% faster on single-threaded AES 256-bit key CFB mode encryption than the Intel Xeon X5690 processor running Oracle Linux 6.1 for in-memory encryption of 32 KB blocks.

  • The SPARC T4 processor running Oracle Solaris 11 is 1.8x faster on AES 256-bit key CFB mode encryption than the SPARC T3 running Solaris 11 Express.

  • AES CFB mode is used by the Oracle Database 11g for Transparent Data Encryption (TDE) which provides security to database storage.

Performance Landscape

Encryption Performance – AES-CFB

Performance is presented for in-memory AES-CFB128 mode encryption. Multiple key sizes of 256-bit, 192-bit and 128-bit are presented. The encryption was performance on 32 KB of pseudo-random data (same data for each run).

AES-256-CFB
Microbenchmark Performance (MB/sec)
Processor GHz Th Performance Software Environment
SPARC T4 2.85 64 10,963 Oracle Solaris 11, libsoftcrypto
Intel X5690 3.47 12 7,526 Oracle Linux 6.1, IPP/AES-NI
SPARC T3 1.65 32 6,023 Oracle Solaris 11 Express, libpkcs11
Intel X5690 3.47 12 2,894 Oracle Solaris 11, libsoftcrypto
SPARC T4 2.85 1 712 Oracle Solaris 11, libsoftcrypto
Intel X5690 3.47 1 653 Oracle Linux 6.1, IPP/AES-NI
Intel X5690 3.47 1 425 Oracle Solaris 11, libsoftcrypto
SPARC T3 1.65 1 331 Oracle Solaris 11 Express, libpkcs11

AES-192-CFB
Microbenchmark Performance (MB/sec)
Processor GHz Th Performance Software Environment
SPARC T4 2.85 64 12,451 Oracle Solaris 11, libsoftcrypto
Intel X5690 3.47 12 8,677 Oracle Linux 6.1, IPP/AES-NI
SPARC T3 1.65 32 6,175 Oracle Solaris 11 Express, libpkcs11
Intel X5690 3.47 12 2,976 Oracle Solaris 11, libsoftcrypto
SPARC T4 2.85 1 816 Oracle Solaris 11, libsoftcrypto
Intel X5690 3.47 1 752 Oracle Linux 6.1, IPP/AES-NI
Intel X5690 3.47 1 461 Oracle Solaris 11, libsoftcrypto
SPARC T3 1.65 1 371 Oracle Solaris 11 Express, libpkcs11

AES-128-CFB
Microbenchmark Performance (MB/sec)
Processor GHz Th Performance Software Environment
SPARC T4 2.85 64 14,388 Oracle Solaris 11, libsoftcrypto
Intel X5690 3.47 12 10,214 Oracle Solaris 11, libsoftcrypto
SPARC T3 1.65 32 6,390 Oracle Solaris 11 Express, libpkcs11
Intel X5690 3.47 12 3,115 Oracle Linux 6.1, IPP/AES-NI
SPARC T4 2.85 1 953 Oracle Solaris 11, libsoftcrypto
Intel X5690 3.47 1 886 Oracle Linux 6.1, IPP/AES-NI
Intel X5690 3.47 1 509 Oracle Solaris 11, libsoftcrypto
SPARC T3 1.65 1 395 Oracle Solaris 11 Express, libpkcs11

Encryption Performance – AES-CBC

Performance is presented for in-memory AES-CBC mode encryption. Multiple key sizes of 256-bit, 192-bit and 128-bit are presented. The encryption was performance on 32 KB of pseudo-random data (same data for each run).

AES-256-CBC
Microbenchmark Performance (MB/sec)
Processor GHz Th Performance Software Environment
SPARC T4 2.85 64 11,588 Oracle Solaris 11, libsoftcrypto
Intel X5690 3.47 12 7,171 Oracle Solaris 11, libsoftcrypto
Intel X5690 3.47 12 6,704 Oracle Linux 6.1, IPP/AES-NI
SPARC T3 1.65 32 5,980 Oracle Solaris 11 Express, libpkcs11
SPARC T4 2.85 1 748 Oracle Solaris 11, libsoftcrypto
Intel X5690 3.47 1 592 Oracle Linux 6.1, IPP/AES-NI
Intel X5690 3.47 1 569 Oracle Solaris 11, libsoftcrypto
SPARC T3 1.65 1 336 Oracle Solaris 11 Express, libpkcs11

AES-192-CBC
Microbenchmark Performance (MB/sec)
Processor GHz Th Performance Software Environment
SPARC T4 2.85 64 13,216 Oracle Solaris 11, libsoftcrypto
Intel X5690 3.47 12 8,211 Oracle Solaris 11, libsoftcrypto
Intel X5690 3.47 12 7,588 Oracle Linux 6.1, IPP/AES-NI
SPARC T3 1.65 32 6,333 Oracle Solaris 11 Express, libpkcs11
SPARC T4 2.85 1 862 Oracle Solaris 11, libsoftcrypto
Intel X5690 3.47 1 672 Oracle Linux 6.1, IPP/AES-NI
Intel X5690 3.47 1 643 Oracle Solaris 11, libsoftcrypto
SPARC T3 1.65 1 358 Oracle Solaris 11 Express, libpkcs11

AES-128-CBC
Microbenchmark Performance (MB/sec)
Processor GHz Th Performance Software Environment
SPARC T4 2.85 64 15,323 Oracle Solaris 11, libsoftcrypto
Intel X5690 3.47 12 9,785 Oracle Solaris 11, libsoftcrypto
Intel X5690 3.47 12 8,746 Oracle Linux 6.1, IPP/AES-NI
SPARC T3 1.65 32 6,347 Oracle Solaris 11 Express, libpkcs11
SPARC T4 2.85 1 1,017 Oracle Solaris 11, libsoftcrypto
Intel X5690 3.47 1 781 Oracle Linux 6.1, IPP/AES-NI
Intel X5690 3.47 1 739 Oracle Solaris 11, libsoftcrypto
SPARC T3 1.65 1 434 Oracle Solaris 11 Express, libpkcs11

Encryption Performance – AES-CCM

Performance is presented for in-memory AES-CCM mode encryption with authentication. Multiple key sizes of 256-bit, 192-bit and 128-bit are presented. The encryption/authentication was performance on 32 KB of pseudo-random data (same data for each run).

AES-256-CCM
Microbenchmark Performance (MB/sec)
Processor GHz Th Performance Software Environment
SPARC T4 2.85 64 5,850 Oracle Solaris 11, libsoftcrypto
Intel X5690 3.47 12 1,860 Oracle Solaris 11, libsoftcrypto
Intel X5690 3.47 12 1,613 Oracle Linux 6.1, IPP/AES-NI
SPARC T4 2.85 1 480 Oracle Solaris 11, libsoftcrypto
Intel X5690 3.47 1 258 Oracle Solaris 11, libsoftcrypto
Intel X5690 3.47 1 190 Oracle Linux 6.1, IPP/AES-NI

AES-192-CCM
Microbenchmark Performance (MB/sec)
Processor GHz Th Performance Software Environment
SPARC T4 2.85 64 6,709 Oracle Solaris 11, libsoftcrypto
Intel X5690 3.47 12 1,930 Oracle Solaris 11, libsoftcrypto
Intel X5690 3.47 12 1,715 Oracle Linux 6.1, IPP/AES-NI
SPARC T4 2.85 1 565 Oracle Solaris 11, libsoftcrypto
Intel X5690 3.47 1 293 Oracle Solaris 11, libsoftcrypto
Intel X5690 3.47 1 206 Oracle Linux 6.1, IPP/AES-NI

AES-128-CCM
Microbenchmark Performance (MB/sec)
Processor GHz Th Performance Software Environment
SPARC T4 2.85 64 7,856 Oracle Solaris 11, libsoftcrypto
Intel X5690 3.47 12 2,031 Oracle Solaris 11, libsoftcrypto
Intel X5690 3.47 12 1,838 Oracle Linux 6.1, IPP/AES-NI
SPARC T4 2.85 1 664 Oracle Solaris 11, libsoftcrypto
Intel X5690 3.47 1 321 Oracle Solaris 11, libsoftcrypto
Intel X5690 3.47 1 225 Oracle Linux 6.1, IPP/AES-NI

Encryption Performance – AES-GCM

Performance is presented for in-memory AES-GCM mode encryption with authentication. Multiple key sizes of 256-bit, 192-bit and 128-bit are presented. The encryption/authentication was performance on 32 KB of pseudo-random data (same data for each run).

AES-256-GCM
Microbenchmark Performance (MB/sec)
Processor GHz Th Performance Software Environment
SPARC T4 2.85 64 6,871 Oracle Solaris 11, libsoftcrypto
Intel X5690 3.47 12 4,794 Oracle Linux 6.1, IPP/AES-NI
Intel X5690 3.47 12 1,685 Oracle Solaris 11, libsoftcrypto
Intel X5690 3.47 1 691 Oracle Linux 6.1, IPP/AES-NI
SPARC T4 2.85 1 571 Oracle Solaris 11, libsoftcrypto
Intel X5690 3.47 1 253 Oracle Solaris 11, libsoftcrypto

AES-192-GCM
Microbenchmark Performance (MB/sec)
Processor GHz Th Performance Software Environment
SPARC T4 2.85 64 7,450 Oracle Solaris 11, libsoftcrypto
Intel X5690 3.47 12 5,054 Oracle Linux 6.1, IPP/AES-NI
Intel X5690 3.47 12 1,724 Oracle Solaris 11, libsoftcrypto
Intel X5690 3.47 1 727 Oracle Linux 6.1, IPP/AES-NI
SPARC T4 2.85 1 618 Oracle Solaris 11, libsoftcrypto
Intel X5690 3.47 1 268 Oracle Solaris 11, libsoftcrypto

AES-128-GCM
Microbenchmark Performance (MB/sec)
Processor GHz Th Performance Software Environment
SPARC T4 2.85 64 7,987 Oracle Solaris 11, libsoftcrypto
Intel X5690 3.47 12 5,315 Oracle Linux 6.1, IPP/AES-NI
Intel X5690 3.47 12 1,781 Oracle Solaris 11, libsoftcrypto
Intel X5690 3.47 1 765 Oracle Linux 6.1, IPP/AES-NI
SPARC T4 2.85 1 655 Oracle Solaris 11, libsoftcrypto
Intel X5690 3.47 1 281 Oracle Solaris 11, libsoftcrypto

Configuration Summary

SPARC T4-1 server
1 x SPARC T4 processor, 2.85 GHz
128 GB memory
Oracle Solaris 11

SPARC T3-1 server
1 x SPARC T3 processor, 1.65 GHz
128 GB memory
Oracle Solaris 11 Express

Sun Fire X4270 M2 server
2 x Intel Xeon X5690, 3.47 GHz
Hyper-Threading enabled
Turbo Boost enabled
24 GB memory
Oracle Linux 6.1

Sun Fire X4270 M2 server
2 x Intel Xeon X5690, 3.47 GHz
Hyper-Threading enabled
Turbo Boost enabled
24 GB memory
Oracle Solaris 11 Express

Benchmark Description

The benchmark measures cryptographic capabilities in terms of general low-level encryption, in-memory and on-chip using various ciphers, including AES-128-CFB, AES-192-CFB, AES-256-CFB, AES-128-CBC, AES-192-CBC, AES-256-CBC, AES-128-CCM, AES-192-CCM, AES-256-CCM, AES-128-GCM, AES-192-GCM and AES-256-GCM.

The benchmark results were obtained using tests created by Oracle which use various application interfaces to perform the various ciphers. They were run using optimized libraries for each platform to obtain the best possible performance.

See Also

Disclosure Statement

Copyright 2012, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 1/13/2012.

Wednesday Jun 03, 2009

Welcome to BestPerf group blog!

Welcome to BestPerf group blog!  This blog will contain many different performance results and the best practices learned from doing a wide variety of performance work on the broad range of Sun's products.

Over the coming days, you will see many engineers in the Strategic Applications Engineering group posting a wide variety topics and providing useful information to the users of Sun's technologies. Some of the areas explored will be:

world-record, performance, $/Perf, watts, watt/perf, scalability, bandwidth, RAS, virtualization, security, cluster, latency, HPC, Web, Application, Database

About

BestPerf is the source of Oracle performance expertise. In this blog, Oracle's Strategic Applications Engineering group explores Oracle's performance results and shares best practices learned from working on Enterprise-wide Applications.

Index Pages
Search

Archives
« February 2016
SunMonTueWedThuFriSat
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
     
       
Today