Monday Nov 25, 2013

World Record Single System TPC-H @10000GB Benchmark on SPARC T5-4

Oracle's SPARC T5-4 server delivered world record single server performance of 377,594 QphH@10000GB with price/performance of $4.65/QphH@10000GB USD on the TPC-H @10000GB benchmark. This result shows that the 4-chip SPARC T5-4 server is significantly faster than the 8-chip server results from HP (Intel x86 based).

  • The SPARC T5-4 server with four SPARC T5 processors is 2.4 times faster than the HP ProLiant DL980 G7 server with eight x86 processors.

  • The SPARC T5-4 server delivered 4.8 times better performance per chip and 3.0 times better performance per core than the HP ProLiant DL980 G7 server.

  • The SPARC T5-4 server has 28% better price/performance than the HP ProLiant DL980 G7 server (for the price/QphH metric).

  • The SPARC T5-4 server with 2 TB memory is 2.4 times faster than the HP ProLiant DL980 G7 server with 4 TB memory (for the composite metric).

  • The SPARC T5-4 server took 9 hours, 37 minutes, 54 seconds for data loading while the HP ProLiant DL980 G7 server took 8.3 times longer.

  • The SPARC T5-4 server accomplished the refresh function in around a minute, the HP ProLiant DL980 G7 server took up to 7.1 times longer to do the same function.

This result demonstrates a complete data warehouse solution that shows the performance both of individual and concurrent query processing streams, faster loading, and refresh of the data during business operations. The SPARC T5-4 server delivers superior performance and cost efficiency when compared to the HP result.

Performance Landscape

The table lists the leading TPC-H @10000GB results for non-clustered systems.

TPC-H @10000GB, Non-Clustered Systems
System
Processor
P/C/T – Memory
Composite
(QphH)
$/perf
($/QphH)
Power
(QppH)
Throughput
(QthH)
Database Available
SPARC T5-4
3.6 GHz SPARC T5
4/64/512 – 2048 GB
377,594.3 $4.65 342,714.1 416,024.4 Oracle 11g R2 11/25/13
HP ProLiant DL980 G7
2.4 GHz Intel Xeon E7-4870
8/80/160 – 4096 GB
158,108.3 $6.49 185,473.6 134,780.5 SQL Server 2012 04/15/13

P/C/T = Processors, Cores, Threads
QphH = the Composite Metric (bigger is better)
$/QphH = the Price/Performance metric in USD (smaller is better)
QppH = the Power Numerical Quantity (bigger is better)
QthH = the Throughput Numerical Quantity (bigger is better)

The following table lists data load times and average refresh function times.

TPC-H @10000GB, Non-Clustered Systems
Database Load & Database Refresh
System
Processor
Data Loading
(h:m:s)
T5
Advan
RF1
(sec)
T5
Advan
RF2
(sec)
T5
Advan
SPARC T5-4
3.6 GHz SPARC T5
09:37:54 8.3x 58.8 7.1x 62.1 6.4x
HP ProLiant DL980 G7
2.4 GHz Intel Xeon E7-4870
79:28:23 1.0x 416.4 1.0x 394.9 1.0x

Data Loading = database load time
RF1 = throughput average first refresh transaction
RF2 = throughput average second refresh transaction
T5 Advan = the ratio of time to the SPARC T5-4 server time

Complete benchmark results found at the TPC benchmark website http://www.tpc.org.

Configuration Summary and Results

Server Under Test:

SPARC T5-4 server
4 x SPARC T5 processors (3.6 GHz total of 64 cores, 512 threads)
2 TB memory
2 x internal SAS (2 x 300 GB) disk drives
12 x 16 Gb FC HBA

External Storage:

24 x Sun Server X4-2L servers configured as COMSTAR nodes, each with
2 x 2.5 GHz Intel Xeon E5-2609 v2 processors
4 x Sun Flash Accelerator F80 PCIe Cards, 800 GB each
6 x 4 TB 7.2K RPM 3.5" SAS disks
1 x 8 Gb dual port HBA

2 x 48 port Brocade 6510 Fibre Channel Switches

Software Configuration:

Oracle Solaris 11.1
Oracle Database 11g Release 2 Enterprise Edition

Audited Results:

Database Size: 10000 GB (Scale Factor 10000)
TPC-H Composite: 377,594.3 QphH@10000GB
Price/performance: $4.65/QphH@10000GB USD
Available: 11/25/2013
Total 3 year Cost: $1,755,709 USD
TPC-H Power: 342,714.1
TPC-H Throughput: 416,024.4
Database Load Time: 9:37:54

Benchmark Description

The TPC-H benchmark is a performance benchmark established by the Transaction Processing Council (TPC) to demonstrate Data Warehousing/Decision Support Systems (DSS). TPC-H measurements are produced for customers to evaluate the performance of various DSS systems. These queries and updates are executed against a standard database under controlled conditions. Performance projections and comparisons between different TPC-H Database sizes (100GB, 300GB, 1000GB, 3000GB, 10000GB, 30000GB and 100000GB) are not allowed by the TPC.

TPC-H is a data warehousing-oriented, non-industry-specific benchmark that consists of a large number of complex queries typical of decision support applications. It also includes some insert and delete activity that is intended to simulate loading and purging data from a warehouse. TPC-H measures the combined performance of a particular database manager on a specific computer system.

The main performance metric reported by TPC-H is called the TPC-H Composite Query-per-Hour Performance Metric (QphH@SF, where SF is the number of GB of raw data, referred to as the scale factor). QphH@SF is intended to summarize the ability of the system to process queries in both single and multiple user modes. The benchmark requires reporting of price/performance, which is the ratio of the total HW/SW cost plus 3 years maintenance to the QphH. A secondary metric is the storage efficiency, which is the ratio of total configured disk space in GB to the scale factor.

Key Points and Best Practices

  • COMSTAR (Common Multiprotocol SCSI Target) is the software framework that enables an Oracle Solaris host to serve as a SCSI Target platform. COMSTAR uses a modular approach to break the huge task of handling all the different pieces in a SCSI target subsystem into independent functional modules which are glued together by the SCSI Target Mode Framework (STMF). The modules implementing functionality at SCSI level (disk, tape, medium changer etc.) are not required to know about the underlying transport. And the modules implementing the transport protocol (FC, iSCSI, etc.) are not aware of the SCSI-level functionality of the packets they are transporting. The framework hides the details of allocation providing execution context and cleanup of SCSI commands and associated resources and simplifies the task of writing the SCSI or transport modules.

  • The SPARC T5-4 server achieved a peak IO rate of 37 GB/sec from the Oracle database configured with this storage.

  • Twelve COMSTAR nodes were mirrored to another twelve COMSTAR nodes on which all of the Oracle database files were placed. IO performance was high and balanced across all the nodes.

  • Oracle Solaris 11.1 required very little system tuning.

  • Some vendors try to make the point that storage ratios are of customer concern. However, storage ratio size has more to do with disk layout and the increasing capacities of disks – so this is not an important metric when comparing systems.

  • The SPARC T5-4 server and Oracle Solaris efficiently managed the system load of nearly two thousand Oracle Database parallel processes.

See Also

Disclosure Statement

TPC Benchmark, TPC-H, QphH, QthH, QppH are trademarks of the Transaction Processing Performance Council (TPC). Results as of 11/25/13, prices are in USD. SPARC T5-4 www.tpc.org/3293; HP ProLiant DL980 G7 www.tpc.org/3285.

Wednesday Jun 12, 2013

SPARC T5-4 Produces World Record Single Server TPC-H @3000GB Benchmark Result

Oracle's SPARC T5-4 server delivered world record single server performance of 409,721 QphH@3000GB with price/performance of $3.94/QphH@3000GB on the TPC-H @3000GB benchmark. This result shows that the 4-chip SPARC T5-4 server is significantly faster than the 8-chip server results from IBM (POWER7 based) and HP (Intel x86 based).

This result demonstrates a complete data warehouse solution that shows the performance both of individual and concurrent query processing streams, faster loading, and refresh of the data during business operations. The SPARC T5-4 server delivers superior performance and cost efficiency when compared to the IBM POWER7 result.

  • The SPARC T5-4 server with four SPARC T5 processors is 2.1 times faster than the IBM Power 780 server with eight POWER7 processors and 2.5 times faster than the HP ProLiant DL980 G7 server with eight x86 processors on the TPC-H @3000GB benchmark. The SPARC T5-4 server also delivered better performance per core than these eight processor systems from IBM and HP.

  • The SPARC T5-4 server with four SPARC T5 processors is 2.1 times faster than the IBM Power 780 server with eight POWER7 processors on the TPC-H @3000GB benchmark.

  • The SPARC T5-4 server costs 38% less per $/QphH@3000GB compared to the IBM Power 780 server with the TPC-H @3000GB benchmark.

  • The SPARC T5-4 server took 2 hours, 6 minutes, 4 seconds for data loading while the IBM Power 780 server took 2.8 times longer.

  • The SPARC T5-4 server executed the first refresh function (RF1) in 19.4 seconds, the IBM Power 780 server took 7.6 times longer.

  • The SPARC T5-4 server with four SPARC T5 processors is 2.5 times faster than the HP ProLiant DL980 G7 server with the same number of cores on the TPC-H @3000GB benchmark.

  • The SPARC T5-4 server took 2 hours, 6 minutes, 4 seconds for data loading while the HP ProLiant DL980 G7 server took 4.1 times longer.

  • The SPARC T5-4 server executed the first refresh function (RF1) in 19.4 seconds, the HP ProLiant DL980 G7 server took 8.9 times longer.

  • The SPARC T5-4 server delivered 6% better performance than the SPARC Enterprise M9000-64 server and 2.1 times better than the SPARC Enterprise M9000-32 server on the TPC-H @3000GB benchmark.

Performance Landscape

The table lists the leading TPC-H @3000GB results for non-clustered systems.

TPC-H @3000GB, Non-Clustered Systems
System
Processor
P/C/T – Memory
Composite
(QphH)
$/perf
($/QphH)
Power
(QppH)
Throughput
(QthH)
Database Available
SPARC T5-4
3.6 GHz SPARC T5
4/64/512 – 2048 GB
409,721.8 $3.94 345,762.7 485,512.1 Oracle 11g R2 09/24/13
SPARC Enterprise M9000
3.0 GHz SPARC64 VII+
64/256/256 – 1024 GB
386,478.3 $18.19 316,835.8 471,428.6 Oracle 11g R2 09/22/11
SPARC T4-4
3.0 GHz SPARC T4
4/32/256 – 1024 GB
205,792.0 $4.10 190,325.1 222,515.9 Oracle 11g R2 05/31/12
SPARC Enterprise M9000
2.88 GHz SPARC64 VII
32/128/256 – 512 GB
198,907.5 $15.27 182,350.7 216,967.7 Oracle 11g R2 12/09/10
IBM Power 780
4.1 GHz POWER7
8/32/128 – 1024 GB
192,001.1 $6.37 210,368.4 175,237.4 Sybase 15.4 11/30/11
HP ProLiant DL980 G7
2.27 GHz Intel Xeon X7560
8/64/128 – 512 GB
162,601.7 $2.68 185,297.7 142,685.6 SQL Server 2008 10/13/10

P/C/T = Processors, Cores, Threads
QphH = the Composite Metric (bigger is better)
$/QphH = the Price/Performance metric in USD (smaller is better)
QppH = the Power Numerical Quantity
QthH = the Throughput Numerical Quantity

The following table lists data load times and refresh function times during the power run.

TPC-H @3000GB, Non-Clustered Systems
Database Load & Database Refresh
System
Processor
Data Loading
(h:m:s)
T5
Advan
RF1
(sec)
T5
Advan
RF2
(sec)
T5
Advan
SPARC T5-4
3.6 GHz SPARC T5
02:06:04 1.0x 19.4 1.0x 22.4 1.0x
IBM Power 780
4.1 GHz POWER7
05:51:50 2.8x 147.3 7.6x 133.2 5.9x
HP ProLiant DL980 G7
2.27 GHz Intel Xeon X7560
08:35:17 4.1x 173.0 8.9x 126.3 5.6x

Data Loading = database load time
RF1 = power test first refresh transaction
RF2 = power test second refresh transaction
T5 Advan = the ratio of time to T5 time

Complete benchmark results found at the TPC benchmark website http://www.tpc.org.

Configuration Summary and Results

Hardware Configuration:

SPARC T5-4 server
4 x SPARC T5 processors (3.6 GHz total of 64 cores, 512 threads)
2 TB memory
2 x internal SAS (2 x 300 GB) disk drives

External Storage:

12 x Sun Storage 2540-M2 array with Sun Storage 2501-M2 expansion trays, each with
24 x 15K RPM 300 GB drives, 2 controllers, 2 GB cache
2 x Brocade 6510 Fibre Channel Switches (48 x 16 Gbs port each)

Software Configuration:

Oracle Solaris 11.1
Oracle Database 11g Release 2 Enterprise Edition

Audited Results:

Database Size: 3000 GB (Scale Factor 3000)
TPC-H Composite: 409,721.8 QphH@3000GB
Price/performance: $3.94/QphH@3000GB
Available: 09/24/2013
Total 3 year Cost: $1,610,564
TPC-H Power: 345,762.7
TPC-H Throughput: 485,512.1
Database Load Time: 2:06:04

Benchmark Description

The TPC-H benchmark is a performance benchmark established by the Transaction Processing Council (TPC) to demonstrate Data Warehousing/Decision Support Systems (DSS). TPC-H measurements are produced for customers to evaluate the performance of various DSS systems. These queries and updates are executed against a standard database under controlled conditions. Performance projections and comparisons between different TPC-H Database sizes (100GB, 300GB, 1000GB, 3000GB, 10000GB, 30000GB and 100000GB) are not allowed by the TPC.

TPC-H is a data warehousing-oriented, non-industry-specific benchmark that consists of a large number of complex queries typical of decision support applications. It also includes some insert and delete activity that is intended to simulate loading and purging data from a warehouse. TPC-H measures the combined performance of a particular database manager on a specific computer system.

The main performance metric reported by TPC-H is called the TPC-H Composite Query-per-Hour Performance Metric (QphH@SF, where SF is the number of GB of raw data, referred to as the scale factor). QphH@SF is intended to summarize the ability of the system to process queries in both single and multiple user modes. The benchmark requires reporting of price/performance, which is the ratio of the total HW/SW cost plus 3 years maintenance to the QphH. A secondary metric is the storage efficiency, which is the ratio of total configured disk space in GB to the scale factor.

Key Points and Best Practices

  • Twelve of Oracle's Sun Storage 2540-M2 arrays with Sun Storage 2501-M2 expansion trays were used for the benchmark. Each contains 24 15K RPM drives and is connected to a single dual port 16Gb FC HBA using 2 ports through a Brocade 6510 Fibre Channel switch.

  • The SPARC T5-4 server achieved a peak IO rate of 33 GB/sec from the Oracle database configured with this storage.

  • Oracle Solaris 11.1 required very little system tuning.

  • Some vendors try to make the point that storage ratios are of customer concern. However, storage ratio size has more to do with disk layout and the increasing capacities of disks – so this is not an important metric when comparing systems.

  • The SPARC T5-4 server and Oracle Solaris efficiently managed the system load of two thousand Oracle Database parallel processes.

  • Six Sun Storage 2540-M2/2501-M2 arrays were mirrored to another six Sun Storage 2540-M2/25001-M2 arrays on which all of the Oracle database files were placed. IO performance was high and balanced across all the arrays.

  • The TPC-H Refresh Function (RF) simulates periodical refresh portion of Data Warehouse by adding new sales and deleting old sales data. Parallel DML (parallel insert and delete in this case) and database log performance are a key for this function and the SPARC T5-4 server outperformed both the IBM POWER7 server and HP ProLiant DL980 G7 server. (See the RF columns above.)

See Also

Disclosure Statement

TPC-H, QphH, $/QphH are trademarks of Transaction Processing Performance Council (TPC). For more information, see www.tpc.org, results as of 6/7/13. Prices are in USD. SPARC T5-4 www.tpc.org/3288; SPARC T4-4 www.tpc.org/3278; SPARC Enterprise M9000 www.tpc.org/3262; SPARC Enterprise M9000 www.tpc.org/3258; IBM Power 780 www.tpc.org/3277; HP ProLiant DL980 www.tpc.org/3285. 

Wednesday Nov 30, 2011

SPARC T4-4 Beats 8-CPU IBM POWER7 on TPC-H @3000GB Benchmark

Oracle's SPARC T4-4 server delivered a world record TPC-H @3000GB benchmark result for systems with four processors. This result beats eight processor results from IBM (POWER7) and HP (x86). The SPARC T4-4 server also delivered better performance per core than these eight processor systems from IBM and HP. Comparisons below are based upon system to system comparisons, highlighting Oracle's complete software and hardware solution.

This database world record result used Oracle's Sun Storage 2540-M2 arrays (rotating disk) connected to a SPARC T4-4 server running Oracle Solaris 11 and Oracle Database 11g Release 2 demonstrating the power of Oracle's integrated hardware and software solution.

  • The SPARC T4-4 server based configuration achieved a TPC-H scale factor 3000 world record for four processor systems of 205,792 QphH@3000GB with price/performance of $4.10/QphH@3000GB.

  • The SPARC T4-4 server with four SPARC T4 processors (total of 32 cores) is 7% faster than the IBM Power 780 server with eight POWER7 processors (total of 32 cores) on the TPC-H @3000GB benchmark.

  • The SPARC T4-4 server is 36% better in price performance compared to the IBM Power 780 server on the TPC-H @3000GB Benchmark.

  • The SPARC T4-4 server is 29% faster than the IBM Power 780 for data loading.

  • The SPARC T4-4 server is up to 3.4 times faster than the IBM Power 780 server for the Refresh Function.

  • The SPARC T4-4 server with four SPARC T4 processors is 27% faster than the HP ProLiant DL980 G7 server with eight x86 processors on the TPC-H @3000GB benchmark.

  • The SPARC T4-4 server is 52% faster than the HP ProLiant DL980 G7 server for data loading.

  • The SPARC T4-4 server is up to 3.2 times faster than the HP ProLiant DL980 G7 for the Refresh Function.

  • The SPARC T4-4 server achieved a peak IO rate from the Oracle database of 17 GB/sec. This rate was independent of the storage used, as demonstrated by the TPC-H @3000TB benchmark which used twelve Sun Storage 2540-M2 arrays (rotating disk) and the TPC-H @1000TB benchmark which used four Sun Storage F5100 Flash Array devices (flash storage). [*]

  • The SPARC T4-4 server showed linear scaling from TPC-H @1000GB to TPC-H @3000GB. This demonstrates that the SPARC T4-4 server can handle the increasingly larger databases required of DSS systems. [*]

  • The SPARC T4-4 server benchmark results demonstrate a complete solution of building Decision Support Systems including data loading, business questions and refreshing data. Each phase usually has a time constraint and the SPARC T4-4 server shows superior performance during each phase.

[*] The TPC believes that comparisons of results published with different scale factors are misleading and discourages such comparisons.

Performance Landscape

The table lists the leading TPC-H @3000GB results for non-clustered systems.

TPC-H @3000GB, Non-Clustered Systems
System
Processor
P/C/T – Memory
Composite
(QphH)
$/perf
($/QphH)
Power
(QppH)
Throughput
(QthH)
Database Available
SPARC Enterprise M9000
3.0 GHz SPARC64 VII+
64/256/256 – 1024 GB
386,478.3 $18.19 316,835.8 471,428.6 Oracle 11g R2 09/22/11
SPARC T4-4
3.0 GHz SPARC T4
4/32/256 – 1024 GB
205,792.0 $4.10 190,325.1 222,515.9 Oracle 11g R2 05/31/12
SPARC Enterprise M9000
2.88 GHz SPARC64 VII
32/128/256 – 512 GB
198,907.5 $15.27 182,350.7 216,967.7 Oracle 11g R2 12/09/10
IBM Power 780
4.1 GHz POWER7
8/32/128 – 1024 GB
192,001.1 $6.37 210,368.4 175,237.4 Sybase 15.4 11/30/11
HP ProLiant DL980 G7
2.27 GHz Intel Xeon X7560
8/64/128 – 512 GB
162,601.7 $2.68 185,297.7 142,685.6 SQL Server 2008 10/13/10

P/C/T = Processors, Cores, Threads
QphH = the Composite Metric (bigger is better)
$/QphH = the Price/Performance metric in USD (smaller is better)
QppH = the Power Numerical Quantity
QthH = the Throughput Numerical Quantity

The following table lists data load times and refresh function times during the power run.

TPC-H @3000GB, Non-Clustered Systems
Database Load & Database Refresh
System
Processor
Data Loading
(h:m:s)
T4
Advan
RF1
(sec)
T4
Advan
RF2
(sec)
T4
Advan
SPARC T4-4
3.0 GHz SPARC T4
04:08:29 1.0x 67.1 1.0x 39.5 1.0x
IBM Power 780
4.1 GHz POWER7
05:51:50 1.5x 147.3 2.2x 133.2 3.4x
HP ProLiant DL980 G7
2.27 GHz Intel Xeon X7560
08:35:17 2.1x 173.0 2.6x 126.3 3.2x

Data Loading = database load time
RF1 = power test first refresh transaction
RF2 = power test second refresh transaction
T4 Advan = the ratio of time to T4 time

Complete benchmark results found at the TPC benchmark website http://www.tpc.org.

Configuration Summary and Results

Hardware Configuration:

SPARC T4-4 server
4 x SPARC T4 3.0 GHz processors (total of 32 cores, 128 threads)
1024 GB memory
8 x internal SAS (8 x 300 GB) disk drives

External Storage:

12 x Sun Storage 2540-M2 array storage, each with
12 x 15K RPM 300 GB drives, 2 controllers, 2 GB cache

Software Configuration:

Oracle Solaris 11 11/11
Oracle Database 11g Release 2 Enterprise Edition

Audited Results:

Database Size: 3000 GB (Scale Factor 3000)
TPC-H Composite: 205,792.0 QphH@3000GB
Price/performance: $4.10/QphH@3000GB
Available: 05/31/2012
Total 3 year Cost: $843,656
TPC-H Power: 190,325.1
TPC-H Throughput: 222,515.9
Database Load Time: 4:08:29

Benchmark Description

The TPC-H benchmark is a performance benchmark established by the Transaction Processing Council (TPC) to demonstrate Data Warehousing/Decision Support Systems (DSS). TPC-H measurements are produced for customers to evaluate the performance of various DSS systems. These queries and updates are executed against a standard database under controlled conditions. Performance projections and comparisons between different TPC-H Database sizes (100GB, 300GB, 1000GB, 3000GB, 10000GB, 30000GB and 100000GB) are not allowed by the TPC.

TPC-H is a data warehousing-oriented, non-industry-specific benchmark that consists of a large number of complex queries typical of decision support applications. It also includes some insert and delete activity that is intended to simulate loading and purging data from a warehouse. TPC-H measures the combined performance of a particular database manager on a specific computer system.

The main performance metric reported by TPC-H is called the TPC-H Composite Query-per-Hour Performance Metric (QphH@SF, where SF is the number of GB of raw data, referred to as the scale factor). QphH@SF is intended to summarize the ability of the system to process queries in both single and multiple user modes. The benchmark requires reporting of price/performance, which is the ratio of the total HW/SW cost plus 3 years maintenance to the QphH. A secondary metric is the storage efficiency, which is the ratio of total configured disk space in GB to the scale factor.

Key Points and Best Practices

  • Twelve Sun Storage 2540-M2 arrays were used for the benchmark. Each Sun Storage 2540-M2 array contains 12 15K RPM drives and is connected to a single dual port 8Gb FC HBA using 2 ports. Each Sun Storage 2540-M2 array showed 1.5 GB/sec for sequential read operations and showed linear scaling, achieving 18 GB/sec with twelve Sun Storage 2540-M2 arrays. These were stand alone IO tests.

  • The peak IO rate measured from the Oracle database was 17 GB/sec.

  • Oracle Solaris 11 11/11 required very little system tuning.

  • Some vendors try to make the point that storage ratios are of customer concern. However, storage ratio size has more to do with disk layout and the increasing capacities of disks – so this is not an important metric in which to compare systems.

  • The SPARC T4-4 server and Oracle Solaris efficiently managed the system load of over one thousand Oracle Database parallel processes.

  • Six Sun Storage 2540-M2 arrays were mirrored to another six Sun Storage 2540-M2 arrays on which all of the Oracle database files were placed. IO performance was high and balanced across all the arrays.

  • The TPC-H Refresh Function (RF) simulates periodical refresh portion of Data Warehouse by adding new sales and deleting old sales data. Parallel DML (parallel insert and delete in this case) and database log performance are a key for this function and the SPARC T4-4 server outperformed both the IBM POWER7 server and HP ProLiant DL980 G7 server. (See the RF columns above.)

See Also

Disclosure Statement

TPC-H, QphH, $/QphH are trademarks of Transaction Processing Performance Council (TPC). For more information, see www.tpc.org. SPARC T4-4 205,792.0 QphH@3000GB, $4.10/QphH@3000GB, available 5/31/12, 4 processors, 32 cores, 256 threads; IBM Power 780 QphH@3000GB, 192,001.1 QphH@3000GB, $6.37/QphH@3000GB, available 11/30/11, 8 processors, 32 cores, 128 threads; HP ProLiant DL980 G7 162,601.7 QphH@3000GB, $2.68/QphH@3000GB available 10/13/10, 8 processors, 64 cores, 128 threads.

Monday Oct 03, 2011

SPARC T4-4 Beats IBM POWER7 and HP Itanium on TPC-H @1000GB Benchmark

Oracle's SPARC T4-4 server configured with SPARC-T4 processors, Oracle's Sun Storage F5100 Flash Array storage, Oracle Solaris, and Oracle Database 11g Release 2 achieved a TPC-H benchmark performance result of 201,487 QphH@1000GB with price/performance of $4.60/QphH@1000GB.

  • The SPARC T4-4 server benchmark results demonstrate a complete solution of building Decision Support Systems including data loading, business questions and refreshing data. Each phase usually has a time constraint and the SPARC T4-4 server shows superior performance during each phase.

  • The SPARC T4-4 server is 22% faster than the 8-socket IBM POWER7 server with the same number of cores. The SPARC T4-4 server has over twice the performance per socket compared to the IBM POWER7 server.

  • The SPARC T4-4 server achieves 33% better price/performance than the IBM POWER7 server.

  • The SPARC T4-4 server is up to 4 times faster than the IBM POWER7 server for the Refresh Function.

  • The SPARC T4-4 server is 44% faster than the HP Superdome 2 server. The SPARC T4-4 server has 5.7x the performance per socket of the HP Superdome 2 server.

  • The SPARC T4-4 server is 62% better on price/performance than the HP Itanium server.

  • The SPARC T4-4 server is up to 3.7 times faster than the HP Itanium server for the Refresh Function.

  • The SPARC T4-4 server delivers nearly the same performance as Oracle's SPARC Enterprise M8000 server, but with 52% better price/performance on the TPC-H @1000GB benchmark.

  • Oracle used Storage Redundancy Level 3 as defined by the TPC-H 2.14.2 specification which is the strictest level.

  • This TPC-H result demonstrates that the SPARC T4-4 server can deliver the performance while running the increasingly larger databases required of DSS systems. The server measured more than 16 GB/sec of IO throughput through Oracle Database 11g Release 2 software while maintaining the high cpu load.

Performance Landscape

The table below lists published non-cluster results from comparable enterprise class systems from Oracle, IBM and HP. Each system was configured with 512 GB of memory.

TPC-H @1000GB

System
CPU type
Proc/Core/Thread
Composite
(QphH)
$/perf
($/QphH)
Power
(QppH)
Throughput
(QthH)
Database Available
SPARC Enterprise M8000
3 GHz SPARC64 VII+
16 / 64 / 128
209,533.6 $9.53 177,845.9 246,867.2 Oracle 11g 09/22/11
SPARC T4-4
3 GHz SPARC-T4
4 / 32 / 256
201,487.0 $4.60 181,760.6 223,354.2 Oracle 11g 10/30/11
IBM Power 780
4.14 GHz POWER7
8 / 32 / 128
164,747.2 $6.85 170,206.4 159,463.1 Sybase 03/31/11
HP Superdome 2
1.73 GHz Intel Itanium 9350
16 / 64 / 64
140,181.1 $12.15 139,181.0 141,188.3 Oracle 11g 10/20/10

QphH = the Composite Metric (bigger is better)
$/QphH = the Price/Performance metric (smaller is better)
QppH = the Power Numerical Quantity
QthH = the Throughput Numerical Quantity

Complete benchmark results found at the TPC benchmark website http://www.tpc.org.

Configuration Summary and Results

Hardware Configuration:

SPARC T4-4 server
4 x SPARC-T4 3.0 GHz processors (total of 32 cores, 128 threads)
512 GB memory
8 x internal SAS (8 x 300 GB) disk drives

External Storage:

4 x Sun Storage F5100 Flash Array storage, each with
80 x 24 GB Flash Modules

Software Configuration:

Oracle Solaris 10 8/11
Oracle Database 11g Release 2 Enterprise Edition

Audited Results:

Database Size: 1000 GB (Scale Factor 1000)
TPC-H Composite: 201,487 QphH@1000GB
Price/performance: $4.60/QphH@1000GB
Available: 10/30/2011
Total 3 Year Cost: $925,525
TPC-H Power: 181,760.6
TPC-H Throughput: 223,354.2
Database Load Time: 1:22:39

Benchmark Description

The TPC-H benchmark is a performance benchmark established by the Transaction Processing Council (TPC) to demonstrate Data Warehousing/Decision Support Systems (DSS). TPC-H measurements are produced for customers to evaluate the performance of various DSS systems. These queries and updates are executed against a standard database under controlled conditions. Performance projections and comparisons between different TPC-H Database sizes (100GB, 300GB, 1000GB, 3000GB and 10000GB) are not allowed by the TPC.

TPC-H is a data warehousing-oriented, non-industry-specific benchmark that consists of a large number of complex queries typical of decision support applications. It also includes some insert and delete activity that is intended to simulate loading and purging data from a warehouse. TPC-H measures the combined performance of a particular database manager on a specific computer system.

The main performance metric reported by TPC-H is called the TPC-H Composite Query-per-Hour Performance Metric (QphH@SF, where SF is the number of GB of raw data, referred to as the scale factor). QphH@SF is intended to summarize the ability of the system to process queries in both single and multi user modes. The benchmark requires reporting of price/performance, which is the ratio of QphH to total HW/SW cost plus 3 years maintenance.

Key Points and Best Practices

  • Four Sun Storage F5100 Flash Array devices were used for the benchmark. Each F5100 device contains 80 flash modules (FMODs). Twenty (20) FMODs from each F5100 device were connected to a single SAS 6 Gb HBA. A single F5100 device showed 4.16 GB/sec for sequential read and demonstrated linear scaling of 16.62 GB/sec with 4 x F5100 devices.

  • The IO rate from the Oracle database was over 16 GB/sec.

  • Oracle Solaris 10 8/11 required very little system tuning.

  • The SPARC T4-4 server and Oracle Solaris efficiently managed the system load of over one thousand Oracle parallel processes.

  • The Oracle database files for tables and indexes were managed by Oracle Automatic Storage Manager (ASM) with 4M stripe. Two F5100 devices were mirrored to another 2 F5100 devices under ASM. IO performance was high and balanced across all the FMODs.
  • The Oracle redo log files were mirrored across the F5100 devices using Oracle Solaris Volume Manager with 128K stripe.
  • Parallel degree on tables and indexes was set to 128. This setting worked the best for performance.
  • TPC-H Refresh Function simulates periodical Refresh portion of Data Warehouse by adding new sales and deleting old sales data. Parallel DML (parallel insert and delete in this case) and database log performance are a key for this function and the SPARC T4-4 server outperformed both HP Superdome 2 and IBM POWER7 servers.

See Also

Disclosure Statement

TPC-H, QphH, $/QphH are trademarks of Transaction Processing Performance Council (TPC). For more information, see www.tpc.org. SPARC T4-4 201,487 QphH@1000GB, $4.60/QphH@1000GB, avail 10/30/2011, 4 processors, 32 cores, 256 threads; SPARC Enterprise M8000 209,533.6 QphH@1000GB, $9.53/QphH@1000GB, avail 09/22/11, 16 processors, 64 cores, 128 threads; IBM Power 780 QphH@1000GB, 164,747.2 QphH@1000GB, $6.85/QphH@1000GB, avail 03/31/11, 8 processors, 32 cores, 128 threads; HP Integrity Superdome 2 140,181.1 QphH@1000GB, $12.15/QphH@1000GB avail 10/20/10, 16 processors, 64, cores, 64 threads.

Tuesday Oct 20, 2009

Exadata V2 Information

An engineer in our group wrote this blog posting:
"Exadata V2... Oracle grid consolidation in a box"

Link:
http://blogs.sun.com/glennf/entry/exadata_v2_oracle_grid_consolidation

Thursday Oct 15, 2009

Oracle Flash Cache - SGA Caching on Sun Storage F5100

Overview and Significance of Results

Oracle and Sun's Flash Cache technology combines New features in Oracle with the Sun Storage F5100 to improve database performance. In Oracle databases, the System Global Area (SGA) is a group of shared memory areas that are dedicated to an Oracle “instance” (Oracle processes in execution sharing a database) . All Oracle processes use the SGA to hold information. The SGA is used to store incoming data (data and index buffers) and internal control information that is needed by the database. The size of the SGA is limited by the size of the available physical memory.

This benchmark tested and measured the performance of a new Oracle Database 11g (Release2) feature, which allows to extend the SGA size and caching beyond physical memory, to a large flash memory storage device as the Sun Storage F5100 flash array.

One particular benchmark test demonstrated a dramatic performance improvement (almost 5x) using the Oracle Extended SGA feature on flash storage by reaching SGA sizes in the hundreds of GB range, at a more reasonable cost than equivalently sized RAM and with much faster access times than disk I/O.

The workload consisted in a high volume of SQL select transactions accessing a very large table in a typical business oriented OLTP database. To obtain a baseline, throughput and response times were measured applying the workload against a traditional storage configuration and constrained by disk I/O demand (DB working set of about 3x the size of the data cache in the SGA). The workload was then executed with an added Sun Storage F5100 Flash Array configured to contain an Extended SGA of incremental size.

The tests have shown scaling throughput along with increasing Flash Cache size.

Table of Results

F5100 Extended SGA Size (GB) Query Txns / Min Avg Response Time (Secs) Speedup Ratio
No 76338 0.118 N/A
25 169396 0.053 2.2
50 224318 0.037 2.9
75 300568 0.031 3.9
100 357086 0.025 4.6




Configuration Summary

Server Configuration:

    Sun SPARC Enterprise M5000 Server
    8 x SPARC64 VII 2.4GHz Quad Core
    96 GB memory

Storage Configuration:

    8 x Sun Storage J4200 Arrays, 12x 146 GB 15K RPM disks each (96 disks total)
    1 x Sun Storage F5100 Flash Array

Software Configuration:

    Oracle 11gR2
    Solaris 10

Benchmark Description

The workload consisted in a high volume of SQL select transactions accessing a very large table in a typical business oriented OLTP database.

The database consisted of various tables: Products, Customers, Orders, Warehouse Inventory (Stock) data, etc. and the Stock table alone was 3x the size of the db cache size.

To obtain a baseline, throughput and response times were measured applying the workload against a traditional storage configuration and constrained by disk I/O demand. The workload was then executed with an added Sun Storage F5100 Flash Array configured to contain an Extended SGA of incremental size.

During all tests, the in memory SGA data cache was limited to 25 GB .

The Extended SGA was allocated on a “raw' Solaris Volume created with the Solaris Volume Manager (SVM) on a set of devices (Flash Modules) residing on the Sun Storage F5100 flash array.

Key Points and Best Practices

In order to verify the performance improvement brought by extended SGA, the feature had to be tested with a large enough database size and with a workload requiring significant disk I/O activity to access the data. For that purpose, the size of the database needed to be a multiple of the physical memory size, avoiding the case in which the accessed data could be entirely or almost entirely cached in physical memory.

The above represents a typical “use case” in which the Flash Cache Extension is able to show remarkable performance advantages.

If the DB dataset is already entirely cached, or the DB I/O demand is not significant or the application is already saturating the CPU for non database related processing, or large data caching is not productive (DSS type Queries), the Extended SGA may not improve performance.

It is also relevant to know that additional memory structures needed to manage the Extended SGA are allocated in the “in memory” SGA, therefore reducing its data caching capacity.

Increasing the Extended Cache beyond a specific threshold, dependent on various factors, may reduce the benefit of widening the Flash SGA and actually reduce the overall throughput.

This new cache is somewhat similar architecturally to the L2ARC on ZFS. Once written, flash cache buffers are read-only, and updates are only done into main memory SGA buffers. This feature is expected to primarily benefit read-only and read-mostly workloads.

A typical sizing of database flash cache is 2x to 10x the size of SGA memory buffers. Note that header information is stored in the SGA for each flash cache buffer (100 bytes per buffer in exclusive mode, 200 bytes per buffer in RAC mode), so the number of available SGA buffers is reduced as the flash cache size increases, and the SGA size should be increased accordingly.

Two new init.ora parameters have been introduced, illustrated below:

    db_flash_cache_file = /lfdata/lffile_raw
    db_flash_cache_size = 100G
The db_flash_cache_file parameter takes a single file name, which can be a file system file, a raw device, or an ASM volume. The db_flash_cache_size parameter specifies the size of the flash cache. Note that for raw devices, the partition being used should start at cylinder 1 rather than cylinder 0 (to avoid the disk's volume label).

See Also

Disclosure Statement

Results as of October 10, 2009 from Sun Microsystems.

About

BestPerf is the source of Oracle performance expertise. In this blog, Oracle's Strategic Applications Engineering group explores Oracle's performance results and shares best practices learned from working on Enterprise-wide Applications.

Index Pages
Search

Archives
« April 2014
SunMonTueWedThuFriSat
  
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
   
       
Today