Monday Oct 03, 2011

SPARC T4-4 Servers Set World Record on SPECjEnterprise2010, Beats IBM POWER7, Cisco x86

Oracle produced a world record SPECjEnterprise2010 benchmark result of 40,104.86 SPECjEnterprise2010 EjOPS using four of Oracle's SPARC T4-4 servers in the application tier and two more SPARC T4-4 servers for the database server.

  • The four SPARC T4-4 server configuration (sixteen SPARC T4 processors total, 3.0 GHz) demonstrated 2.4x better performance compared to the IBM Power 780 server (eight POWER7 processors, 3.86 THz) result of 16,646.34 SPECjEnterprise2010 EjOPS.

  • In the database tier, two SPARC T4-4 servers with a total of eight SPARC T4 processors at 3.0 GHz, processed 2.4x more transactions compared to the IBM result of 16,646.34 SPECjEnterprise2010 EjOPS which used four POWER7 processors at 3.55 GHz.

  • The four SPARC T4-4 server configuration demonstrated 1.5x better performance compared to the Cisco UCS B440 M2 Blade Server result of 26,118.67 SPECjEnterprise2010 EjOPS.

  • The four SPARC T4-4 server configuration demonstrated 2.3x better performance compared to the Cisco UCS B440 M1 Blade Server result of 17,301.86 SPECjEnterprise2010 EjOPS.

  • This result demonstrated less than 1 second average response times for all SPECjEnterprise2010 transactions and 90% of all transaction times took less than 1 second.

  • This result demonstrated a sustained Java EE 5 transaction load generated by approximately 320,000 users.

  • This result using 16 Oracle WebLogic 10.3.5 server instances demonstrated 4.8x better performance per application server instance when compared to the IBM result which used 32 WebSphere instances.

  • The SPARC T4-4 servers delivered a 6.7x price/performance advantage over the IBM Power 780 for the servers used in the application tier (see disclosure statement below for details). This price/performance advantage in the application tier was accomplished with a SPARC T4-4 server configuration with 2 TB of total memory compared to the IBM solution with 0.5 TB of memory.

  • The SPARC T4-4 servers had a 1.9x advantage over IBM in performance per space for the application tier (see disclosure statement below for details) even though the Oracle solution had four servers.

  • The four SPARC T4-4 servers used for the application tier used Oracle Solaris Containers to consolidate four Oracle WebLogic application server instances on each server to achieve this result.

  • The two SPARC T4-4 servers used for the database tier hosted Oracle Database 11g Release 2 and Oracle RAC cluster software using Oracle Automatic Storage Management (ASM).

  • Oracle Fusion Middleware provides a family of complete, integrated, hot pluggable and best-of-breed products known for enabling enterprise customers to create and run agile and intelligent business applications. Oracle WebLogic Server's on-going, record-setting Java application server performance demonstrates why so many customers rely on Oracle Fusion Middleware as their foundation for innovation.

Performance Landscape

Complete benchmark results are at the SPEC website, SPECjEnterprise2010 Results.

SPECjEnterprise2010 Performance Chart
as of 10/11/2011
Submitter EjOPS* Java EE Server DB Server
Oracle 40,104.86 4 x SPARC T4-4
4 chips, 32 cores, 3.0 GHz SPARC T4
Oracle WebLogic 11g (10.3.5)
2 x SPARC T4-4
4 chips, 32 cores, 3.0 GHz SPARC T4
Oracle 11g DB 11.2.0.2
Cisco 26,118.67 2 x Cisco UCS B440 M2
4 chips, 40 cores, 2.4 GHz Xeon E7-4870
Oracle WebLogic 11g (10.3.5)
1 x Cisco UCS C460 M2
4 chips, 40 cores, 2.4 GHz Xeon E7-4870
Oracle 11g DB 11.2.0.2
Cisco 17,301.86 2 x Cisco UCS B440 M1
4 chips, 32 cores, 2.26 GHz Xeon X7560
Oracle WebLogic 10.3.4
1 x Cisco UCS C460 M1
4 chips, 32 cores, 2.26 GHz Xeon X7560
Oracle 11g DB 11.2.0.2
IBM 16,646.34 1 x IBM Power 780
8 chips, 64 cores, 3.86 GHz POWER7
WebSphere Application Server V7.0
1 x IBM Power 750 Express
4 chips, 32 cores, 3.55 GHz POWER7
IBM DB2 Universal Database 9.7

* SPECjEnterprise2010 EjOPS (bigger is better)

Configuration Summary

Application Servers:

4 x SPARC T4-4 servers, each with
4 x 3.0 GHz SPARC T4 processors
512 GB memory
2 x 10GbE NIC
Oracle Solaris 10 8/11
Oracle WebLogic Server 11g Release 1 (10.3.5)
Java HotSpot(TM) 64-Bit Server VM on Solaris, version 1.6.0_26 (Java SE 6 Update 26)

Database Servers:

2 x SPARC T4-4 servers, each with
4 x 3.0 GHz SPARC T4 processors
1024 GB memory
2 x 10GbE NIC
4 x 8Gb FC HBA
Oracle Solaris 10 8/11
Oracle Database 11g Enterprise Edition Release 11.2.0.2
Oracle Real Application Clusters 11g Release 2

Storage Servers:

8 x Sun Fire X4270 M2 (12-Drive)
1 x 3.0 GHz Intel Xeon
8 GB memory
1 x 8Gb FC HBA
Oracle Solaris 11 Express 2010.11
8 x Sun Storage F5100 Flash Arrays

Switch Hardware:

2 x Sun Network 10GbE 72-port Top of Rack (ToR) Switch
1 x Brocade 5300 80-port Fiber Channel Switch

Benchmark Description

SPECjEnterprise2010 is the third generation of the SPEC organization's J2EE end-to-end industry standard benchmark application. The new SPECjEnterprise2010 benchmark has been re-designed and developed to cover the Java EE 5 specification's significantly expanded and simplified programming model, highlighting the major features used by developers in the industry today. This provides a real world workload driving the Application Server's implementation of the Java EE specification to its maximum potential and allowing maximum stressing of the underlying hardware and software systems,
  • The web container, servlets, and web services
  • The EJB container
  • JPA 1.0 Persistence Model
  • JMS and Message Driven Beans
  • Transaction management
  • Database connectivity
Moreover, SPECjEnterprise2010 also heavily exercises all parts of the underlying infrastructure that make up the application environment, including hardware, JVM software, database software, JDBC drivers, and the system network.

The primary metric of the SPECjEnterprise2010 benchmark is jEnterprise Operations Per Second (SPECjEnterprise2010 EjOPS). The primary metric for the SPECjEnterprise2010 benchmark is calculated by adding the metrics of the Dealership Management Application in the Dealer Domain and the Manufacturing Application in the Manufacturing Domain. There is NO price/performance metric in this benchmark.

Key Points and Best Practices

  • Four Oracle WebLogic server instances on each SPARC T4-4 server were hosted in 4 separate Oracle Solaris Containers to demonstrate consolidation of multiple application servers.
  • Each Oracle Solaris Container was bound to a separate processor set, each contained 7 cores (total 56 threads). This was done to improve performance by reducing memory access latency by using the physical memory closest to the processors. The default set was used for network and disk interrupt handling.
  • The Oracle WebLogic application servers were executed in the FX scheduling class to improve performance by reducing the frequency of context switches.
  • The Oracle database processes were run in 2 processor sets using psrset(1M) and executed in the FX scheduling class. This improved performance by reducing memory access latency and reducing context switches.
  • The Oracle log writer process was run in a separate processor set containing 2 threads and run in the RT scheduling class. This insured that the log writer had the most efficient use of CPU resources.

See Also

Disclosure Statement

SPEC and the benchmark name SPECjEnterprise are registered trademarks of the Standard Performance Evaluation Corporation. Results from www.spec.org as of 10/11/2011. SPARC T4-4, 40,104.86 SPECjEnterprise2010 EjOPS; Cisco UCS B440 M2, 26,118.67 SPECjEnterprise2010 EjOPS; Cisco UCS B440 M1, 17,301.86 SPECjEnterprise2010 EjOPS; IBM Power 780, 16,646.34 SPECjEnterprise2010 EjOPS.

SPECjEnterprise2010 models contemporary Java-based applications that run on large Java EE (Java Enterprise Edition) servers, backed by network infrastructure and database servers. Focusing on the critical Java EE server hardware & OS, the IBM result includes a Java EE server with a list price of $1.30 million. The Oracle Java EE servers have a list price of $0.47 million. The Java EE server price versus delivered EjOPS is $77.97/EjOPS for IBM versus $11.67/EjOPS for Oracle. Oracle's $/perf advantage is 6.7x better than IBM ($77.97/$11.67).

Pricing details for IBM, IBM p780 512GB based on public pricing at http://tpc.org/results/FDR/TPCH/TPC-H_1TB_IBM780_Sybase-FDR.pdf. Adjusted hardware costs to license all 64 cores. AIX pricing at: http://www-304.ibm.com/easyaccess3/fileserve?contentid=214347 and AIX Standard Edition V7.1 per processor (5765-G98-0017 64*2,600=$166,400). This gives application tier hardware & OS Price/perf: $77.97/EjOPS (1297956/16646.34)

Pricing details for Oracle, four SPARC T4-4 512 GB, HW acquisition price from Oracle's price list: $467,856 http://www.oracle.com. This gives application tier hardware & OS Price/perf: $11.67/EjOPS (467856/40104.86)

The Oracle application tier servers occupy 20U of space, 40,140.86/20=2005 EjOPS/U. The IBM application tier server occupies 16U of space, 16,646.34/16=1040 EjOPS/U. 2005/1040=1.9x

SPARC T4-4 Beats IBM POWER7 and HP Itanium on TPC-H @1000GB Benchmark

Oracle's SPARC T4-4 server configured with SPARC-T4 processors, Oracle's Sun Storage F5100 Flash Array storage, Oracle Solaris, and Oracle Database 11g Release 2 achieved a TPC-H benchmark performance result of 201,487 QphH@1000GB with price/performance of $4.60/QphH@1000GB.

  • The SPARC T4-4 server benchmark results demonstrate a complete solution of building Decision Support Systems including data loading, business questions and refreshing data. Each phase usually has a time constraint and the SPARC T4-4 server shows superior performance during each phase.

  • The SPARC T4-4 server is 22% faster than the 8-socket IBM POWER7 server with the same number of cores. The SPARC T4-4 server has over twice the performance per socket compared to the IBM POWER7 server.

  • The SPARC T4-4 server achieves 33% better price/performance than the IBM POWER7 server.

  • The SPARC T4-4 server is up to 4 times faster than the IBM POWER7 server for the Refresh Function.

  • The SPARC T4-4 server is 44% faster than the HP Superdome 2 server. The SPARC T4-4 server has 5.7x the performance per socket of the HP Superdome 2 server.

  • The SPARC T4-4 server is 62% better on price/performance than the HP Itanium server.

  • The SPARC T4-4 server is up to 3.7 times faster than the HP Itanium server for the Refresh Function.

  • The SPARC T4-4 server delivers nearly the same performance as Oracle's SPARC Enterprise M8000 server, but with 52% better price/performance on the TPC-H @1000GB benchmark.

  • Oracle used Storage Redundancy Level 3 as defined by the TPC-H 2.14.2 specification which is the strictest level.

  • This TPC-H result demonstrates that the SPARC T4-4 server can deliver the performance while running the increasingly larger databases required of DSS systems. The server measured more than 16 GB/sec of IO throughput through Oracle Database 11g Release 2 software while maintaining the high cpu load.

Performance Landscape

The table below lists published non-cluster results from comparable enterprise class systems from Oracle, IBM and HP. Each system was configured with 512 GB of memory.

TPC-H @1000GB

System
CPU type
Proc/Core/Thread
Composite
(QphH)
$/perf
($/QphH)
Power
(QppH)
Throughput
(QthH)
Database Available
SPARC Enterprise M8000
3 GHz SPARC64 VII+
16 / 64 / 128
209,533.6 $9.53 177,845.9 246,867.2 Oracle 11g 09/22/11
SPARC T4-4
3 GHz SPARC-T4
4 / 32 / 256
201,487.0 $4.60 181,760.6 223,354.2 Oracle 11g 10/30/11
IBM Power 780
4.14 GHz POWER7
8 / 32 / 128
164,747.2 $6.85 170,206.4 159,463.1 Sybase 03/31/11
HP Superdome 2
1.73 GHz Intel Itanium 9350
16 / 64 / 64
140,181.1 $12.15 139,181.0 141,188.3 Oracle 11g 10/20/10

QphH = the Composite Metric (bigger is better)
$/QphH = the Price/Performance metric (smaller is better)
QppH = the Power Numerical Quantity
QthH = the Throughput Numerical Quantity

Complete benchmark results found at the TPC benchmark website http://www.tpc.org.

Configuration Summary and Results

Hardware Configuration:

SPARC T4-4 server
4 x SPARC-T4 3.0 GHz processors (total of 32 cores, 128 threads)
512 GB memory
8 x internal SAS (8 x 300 GB) disk drives

External Storage:

4 x Sun Storage F5100 Flash Array storage, each with
80 x 24 GB Flash Modules

Software Configuration:

Oracle Solaris 10 8/11
Oracle Database 11g Release 2 Enterprise Edition

Audited Results:

Database Size: 1000 GB (Scale Factor 1000)
TPC-H Composite: 201,487 QphH@1000GB
Price/performance: $4.60/QphH@1000GB
Available: 10/30/2011
Total 3 Year Cost: $925,525
TPC-H Power: 181,760.6
TPC-H Throughput: 223,354.2
Database Load Time: 1:22:39

Benchmark Description

The TPC-H benchmark is a performance benchmark established by the Transaction Processing Council (TPC) to demonstrate Data Warehousing/Decision Support Systems (DSS). TPC-H measurements are produced for customers to evaluate the performance of various DSS systems. These queries and updates are executed against a standard database under controlled conditions. Performance projections and comparisons between different TPC-H Database sizes (100GB, 300GB, 1000GB, 3000GB and 10000GB) are not allowed by the TPC.

TPC-H is a data warehousing-oriented, non-industry-specific benchmark that consists of a large number of complex queries typical of decision support applications. It also includes some insert and delete activity that is intended to simulate loading and purging data from a warehouse. TPC-H measures the combined performance of a particular database manager on a specific computer system.

The main performance metric reported by TPC-H is called the TPC-H Composite Query-per-Hour Performance Metric (QphH@SF, where SF is the number of GB of raw data, referred to as the scale factor). QphH@SF is intended to summarize the ability of the system to process queries in both single and multi user modes. The benchmark requires reporting of price/performance, which is the ratio of QphH to total HW/SW cost plus 3 years maintenance.

Key Points and Best Practices

  • Four Sun Storage F5100 Flash Array devices were used for the benchmark. Each F5100 device contains 80 flash modules (FMODs). Twenty (20) FMODs from each F5100 device were connected to a single SAS 6 Gb HBA. A single F5100 device showed 4.16 GB/sec for sequential read and demonstrated linear scaling of 16.62 GB/sec with 4 x F5100 devices.

  • The IO rate from the Oracle database was over 16 GB/sec.

  • Oracle Solaris 10 8/11 required very little system tuning.

  • The SPARC T4-4 server and Oracle Solaris efficiently managed the system load of over one thousand Oracle parallel processes.

  • The Oracle database files for tables and indexes were managed by Oracle Automatic Storage Manager (ASM) with 4M stripe. Two F5100 devices were mirrored to another 2 F5100 devices under ASM. IO performance was high and balanced across all the FMODs.
  • The Oracle redo log files were mirrored across the F5100 devices using Oracle Solaris Volume Manager with 128K stripe.
  • Parallel degree on tables and indexes was set to 128. This setting worked the best for performance.
  • TPC-H Refresh Function simulates periodical Refresh portion of Data Warehouse by adding new sales and deleting old sales data. Parallel DML (parallel insert and delete in this case) and database log performance are a key for this function and the SPARC T4-4 server outperformed both HP Superdome 2 and IBM POWER7 servers.

See Also

Disclosure Statement

TPC-H, QphH, $/QphH are trademarks of Transaction Processing Performance Council (TPC). For more information, see www.tpc.org. SPARC T4-4 201,487 QphH@1000GB, $4.60/QphH@1000GB, avail 10/30/2011, 4 processors, 32 cores, 256 threads; SPARC Enterprise M8000 209,533.6 QphH@1000GB, $9.53/QphH@1000GB, avail 09/22/11, 16 processors, 64 cores, 128 threads; IBM Power 780 QphH@1000GB, 164,747.2 QphH@1000GB, $6.85/QphH@1000GB, avail 03/31/11, 8 processors, 32 cores, 128 threads; HP Integrity Superdome 2 140,181.1 QphH@1000GB, $12.15/QphH@1000GB avail 10/20/10, 16 processors, 64, cores, 64 threads.

SPARC T4-4 Produces World Record Oracle OLAP Capacity

Oracle's SPARC T4-4 server delivered world record capacity on the Oracle OLAP Perf workload.

  • The SPARC T4-4 server was able to operate on a cube with a 3 billion row fact table of sales data containing 4 dimensions which represents as many as 70 quintillion aggregate rows (70 followed by 18 zeros).

  • The SPARC T4-4 server supported 3,500 cube-queries/minute against the Oracle OLAP cube with an average response time of 1.5 seconds and the median response time of 0.15 seconds.

Performance Landscape

Oracle OLAP Perf Benchmark
System Fact Table
Num of Rows
Cube-Queries/
minute
Median Response
seconds
Average Response
seconds
SPARC T4-4 3 Billion 3,500 0.15 1.5

Configuration Summary and Results

Hardware Configuration:

SPARC T4-4 server with
4 x SPARC T4 processors, 3.0 GHz
1 TB main memory
2 x Sun Storage F5100 Flash Array

Software Configuration:

Oracle Solaris 10 8/11
Oracle Database 11g Enterprise Edition with Oracle OLAP option

Benchmark Description

OLAP Perf is a workload designed to demonstrate and stress the Oracle OLAP product's core functionalities of fast query, fast update, and rich calculations on a dimensional model to support Enhanced Data Warehousing. The workload uses a set of realistic business intelligence (BI) queries that run against an OLAP cube.

Key Points and Best Practices

  • The SPARC T4-4 server is estimated to support 2,400 interactive users with this fast response time assuming only 5 seconds between query requests.

See Also

Disclosure Statement

Copyright 2011, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 10/3/2011.

Wednesday Sep 28, 2011

SPARC T4 Servers Set World Record on Oracle E-Business Suite R12 X-Large Order to Cash

With Oracle's SPARC T4-2 server running the application and SPARC T4-4 server running the database, Oracle set a world record result for the Oracle E-Business Suite Standard X-Large Order to Cash (OLTP) benchmark.

  • The combination of a SPARC T4-2 server running the Oracle E-Business Suite R12.1.2 application and a SPARC T4-4 server running the Oracle Database 11g Release 2 database enabled 2400 Order to Cash users of the X-Large Benchmark to simultaneously execute a large volume of medium to heavy transactions with an average response time of 2.4 seconds.

  • The SPARC T4-2 server in the application tier and the SPARC T4-4 server in the database tier are only about half utilized providing significant headroom for additional Oracle E-Business Suite R12.1.2 processing modules and future growth.

Performance Landscape

This is the first published result for the X-large benchmark using Oracle E-Business Order Management module.

OLTP Workload: Order to Cash
X-Large Configuration
System Users Average
Response Time
90th Percentile
Response Time
SPARC T4-2 2400 2.413 sec. 3.114 sec.

Configuration Summary

Application Tier Configuration:

1 x SPARC T4-2 server
2 x SPARC T4 processors, 2.85 GHz
256 GB memory
Oracle Solaris 10 8/11
Oracle E-Business Suite 12.1.2

Database Tier Configuration:

1 x SPARC T4-4 server
4 x SPARC T4 processors, 3.0 GHz
256 GB memory
Oracle Solaris 10 8/11
Oracle Database 11g Release 2

Storage Configuration:

1 x Sun Storage F5100 Flash Array

Benchmark Description

The Oracle R12 E-Business Suite Standard Benchmark combines online transaction execution by simulated users with concurrent batch processing to model a typical scenario for a global enterprise. This benchmark ran one OLTP component, Order to Cash, in the Extra-Large size. The goal is to obtain reference response times.

Results can be published in four sizes and utilize different combination

  • X-large: Maximum online users running all business flows between 10,000 to 20,000; 750,000 order to cash lines per hour and 250,000 payroll checks per hour.
    • Order to Cash Online -- 2400 users
      • The percentage across the 5 transactions in Order Management module is:
        • Insert Manual Invoice -- 16.66%
        • Insert Order -- 32.33%
        • Order Pick Release -- 16.66%
        • Ship Confirm -- 16.66%
        • Order Summary Report -- 16.66%
    • HR Self-Service -- 4000 users
    • Customer Support Flow -- 8000 users
    • Procure to Pay -- 2000 users
  • Large: 10,000 online users; 100,000 order to cash lines per hour and 100,000 payroll checks per hour.
  • Medium: up to 3000 online users; 50,000 order to cash lines per hour and 10,000 payroll checks per hour.
  • Small: up to 1000 online users; 10,000 order to cash lines per hour and 5,000 payroll checks per hour.

See Also

Disclosure Statement

Oracle E-Business X-Large Order to Cash benchmark, SPARC T4-2, SPARC T4, 2.85 GHz, 2 chips, 16 cores, 128 threads, 256 GB memory, SPARC T4-4, SPARC T4, 3.0 GHz, 4 chips, 32 cores, 256 threads, 256 GB memory, average response time 2.413 sec, 90th percentile response time 3.114 sec, Oracle Solaris 10 8/11, Oracle E-Business Suite 12.1.2, Oracle Database 11g Release 2, Results as of 9/26/2011.

SPARC T4-2 Server Beats Intel (Westmere AES-NI) on Oracle Database Tablespace Encryption Queries

Oracle's SPARC T4 processor with Encryption Instruction Accelerators greatly improves performance over software implementations. This will greatly expand the use of TDE for many customers.

  • Oracle's SPARC T4-2 server is over 42% faster than Oracle's Sun Fire X4270 M2 (Intel AES-NI) when running DSS-style queries referencing an encrypted tablespace.

Oracle's Transparent Data Encryption (TDE) feature of the Oracle Database simplifies the encryption of data within datafiles preventing unauthorized access to it from the operating system. Tablespace encryption allows encryption of the entire contents of a tablespace.

TDE tablespace encryption has been certified with Siebel, PeopleSoft, and Oracle E-Business Suite applications

Performance Landscape

Total Query Time (time in seconds)
System GHz AES-128 AES-192 AES-256
SPARC T4-2 server 2.85 588 588 588
Sun Fire X4270 M2 (Intel X5690) 3.46 836 841 842
SPARC T4-2 Advantage
42% 43% 43%

Configuration Summary

SPARC Configuration:

SPARC T4-2 server
2 x SPARC T4 processors, 2.85 GHz
256 GB memory
2 x Sun Storage F5100 Flash Array
Oracle Solaris 11
Oracle Database 11g Release 2

Intel Configuration:

Sun Fire X4270 M2 server
2 x Intel Xeon X5690 processors, 3.46 GHz
48 GB memory
2 x Sun Storage F5100 Flash Array
Oracle Linux 5.7
Oracle Database 11g Release 2

Benchmark Description

To test the performance of TDE, a 1 TB database was created. To demonstrate secure transactions, four 25 GB tables emulating customer private data were created: clear text, encrypted AES-128, encrypted AES-192, and encrypted AES-256. Eight queries of varying complexity that join on the customer table were executed.

The time spent scanning the customer table during each query was measured and query plans analyzed to ensure a fair comparison, e.g. no broken queries. The total query time for all queries is reported.

Key Points and Best Practices

  • Oracle Database 11g Release 2 is required for SPARC T4 processor Encryption Instruction Accelerators support with TDE tablespaces.

  • TDE tablespaces support the SPARC T4 processor Encryption Instruction Accelerators for Advanced Encryption Standard (AES) only.

  • AES-CFB is the mode used in the Oracle database with TDE

  • Prior to using TDE tablespaces you must create a wallet and setup an encryption key. Here is one method to do that:

  • Create a wallet entry in $ORACLE_HOME/network/admin/sqlnet.ora.
    ENCRYPTION_WALLET_LOCATION=
    (SOURCE=(METHOD=FILE)(METHOD_DATA=
    (DIRECTORY=/oracle/app/oracle/product/11.2.0/dbhome_1/encryption_wallet)))
    
    Set an encryption key. This also opens the wallet.
    $ sqlplus / as sysdba
    SQL> ALTER SYSTEM SET ENCRYPTION KEY IDENTIFIED BY "tDeDem0";
    
    On subsequent instance startup open the wallet.
    $ sqlplus / as sysdba
    SQL> STARTUP;
    SQL> ALTER SYSTEM SET ENCRYPTION WALLET OPEN IDENTIFIED BY "tDeDem0";
    
  • TDE tablespace encryption and decryption occur on physical writes and reads of database blocks, respectively.

  • For parallel query using direct path reads decryption overhead varies inversely with the complexity of the query.

    For a simple full table scan query overhead can be reduced and performance improved by reducing the degree of parallelism (DOP) of the query.

See Also

Disclosure Statement

Copyright 2011, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 9/26/2011.

SPARC T4 Servers Set World Record on PeopleSoft HRMS 9.1

Oracle's SPARC T4-4 servers running Oracle's PeopleSoft HRMS Self-Service 9.1 benchmark and Oracle Database 11g Release 2 achieved World Record performance on Oracle Solaris 10.

  • Using two SPARC T4-4 servers to run the application and database tiers and one SPARC T4-2 server to run the webserver tier, Oracle demonstrated world record performance of 15,000 concurrent users running the PeopleSoft HRMS Self-Service 9.1 benchmark.

  • The combination of the SPARC T4 servers running the PeopleSoft HRMS 9.1 benchmark supports 3.8x more online users with faster response time compared to the best published result from IBM on the previous PeopleSoft HRMS 8.9 benchmark.

  • The average CPU utilization on the SPARC T4-4 server in the application tier handling 15,000 users was less than 50%, leaving significant room for application growth.

  • The SPARC T4-4 server on the application tier used Oracle Solaris Containers which provide a flexible, scalable and manageable virtualization environment.

Performance Landscape

PeopleSoft HRMS Self-Service 9.1 Benchmark
Systems Processors Users Ave Response -
Search (sec)
Ave Response -
Save (sec)
SPARC T4-2 (web)
SPARC T4-4 (app)
SPARC T4-4 (db)
2 x SPARC T4, 2.85 GHz
4 x SPARC T4, 3.0 GHz
4 x SPARC T4, 3.0 GHz
15,000 1.01 0.63
PeopleSoft HRMS Self-Service 8.9 Benchmark
IBM Power 570 (web/app)
IBM Power 570 (db)
12 x POWER5, 1.9 GHz
4 x POWER5, 1.9 GHz
4,000 1.74 1.25
IBM p690 (web)
IBM p690 (app)
IBM p690 (db)
4 x POWER4, 1.9 GHz
12 x POWER4, 1.9 GHz
6 x 4392 MPIS/Gen1
4,000 1.35 1.01

The main differences between version 9.1 and version 8.9 of the benchmark are:

  • the database expanded from 100K employees and 20K managers to 500K employees and 100K managers,
  • the manager data was expanded,
  • a new transaction, "Employee Add Profile," was added, the percent of users executing it is less then 2%, and the transaction has a heavier footprint,
  • version 9.1 has a different benchmark metric (Average Response search/save time for x number of users) versus single user search/save time,
  • newer versions of the PeopleSoft application and PeopleTools software are used.

Configuration Summary

Application Server:

1 x SPARC T4-4 server
4 x SPARC T4 processors 3.0 GHz
512 GB main memory
5 x 300 GB SAS internal disks,
2 x 100 GB internal SSDs
1 x 300 GB internal SSD
Oracle Solaris 10 8/11
PeopleSoft PeopleTools 8.51.02
PeopleSoft HCM 9.1
Oracle Tuxedo, Version 10.3.0.0, 64-bit, Patch Level 031
Java HotSpot(TM) 64-Bit Server VM on Solaris, version 1.6.0_20

Web Server:

1 x SPARC T4-2 server
2 x SPARC T4 processors 2.85 GHz
256 GB main memory
1 x 300 GB SAS internal disks
1 x 300 GB internal SSD
Oracle Solaris 10 8/11
PeopleSoft PeopleTools 8.51.02
Oracle WebLogic Server 11g (10.3.3)
Java HotSpot(TM) 64-Bit Server VM on Solaris, version 1.6.0_20

Database Server:

1 x SPARC T4-4 server
4 x SPARC T4 processors 3.0 GHz
256 GB main memory
3 x 300 GB SAS internal disks
1 x Sun Storage F5100 Flash Array (80 flash modules)
Oracle Solaris 10 8/11
Oracle Database 11g Release 2

Benchmark Description

The purpose of the PeopleSoft HRMS Self-Service 9.1 benchmark is to measure comparative online performance of the selected processes in PeopleSoft Enterprise HCM 9.1 with Oracle Database 11g. The benchmark kit is an Oracle standard benchmark kit run by all platform vendors to measure the performance. It's an OLTP benchmark with no dependency on remote COBOL calls, there is no batch workload, and DB SQLs are moderately complex. The results are certified by Oracle and a white paper is published.

PeopleSoft defines a business transaction as a series of HTML pages that guide a user through a particular scenario. Users are defined as corporate Employees, Managers and HR administrators. The benchmark consists of 14 scenarios which emulate users performing typical HCM transactions such as viewing paychecks, promoting and hiring employees, updating employee profiles and other typical HCM application transactions.

All these transactions are well-defined in the PeopleSoft HR Self-Service 9.1 benchmark kit. The benchmark metric is the Average Response Time for search and save for 15,000 users..

Key Points and Best Practices

  • The application tier was configured with two PeopleSoft application server instances on the SPARC T4-4 server hosted in two separate Oracle Solaris Containers to demonstrate consolidation of multiple application, ease of administration, and load balancing.

  • Each PeopleSoft Application Server instance running in an Oracle Solaris Container was configured to run 5 application server Domains with 30 application server instances to be able to effectively handle the 15,000 users workload with zero application server queuing and minimal use of resources.

  • The web tier was configured with 20 WebLogic instances and with 4 GB JVM heap size to load balance transactions across 10 PeopleSoft Domains. That enables equitable distribution of transactions and scaling to high number of users.

  • Internal SSDs were configured in the application tier to host PeopleSoft Application Servers object CACHE file systems and in the web tier for WebLogic servers' logging providing near zero millisecond service time and faster server response time.

See Also

Disclosure Statement

Oracle's PeopleSoft HRMS 9.1 benchmark, www.oracle.com/us/solutions/benchmark/apps-benchmark/peoplesoft-167486.html, results 9/26/2011.

Tuesday Sep 27, 2011

SPARC T4-2 Servers Set World Record on JD Edwards EnterpriseOne Day in the Life Benchmark with Batch, Outperforms IBM POWER7

Using Oracle's SPARC T4-2 server for the application tier and a SPARC T4-1 server for the database tier, a world record result was produced running the Oracle's JD Edwards EnterpriseOne application Day in the Life (DIL) benchmark concurrently with a batch workload.

  • The SPARC T4-2 server running online and batch with JD Edwards EnterpriseOne 9.0.2 is 1.7x faster and has better response time than the IBM Power 750 system which only ran the online component of JD Edwards EnterpriseOne 9.0 Day in the Life test.

  • The combination of SPARC T4 servers delivered a Day in the Life benchmark result of 10,000 online users with 0.35 seconds of average transaction response time running concurrently with 112 Universal Batch Engine (UBE) processes at 67 UBEs/minute.

  • This is the first JD Edwards EnterpriseOne benchmark for 10,000 users and payroll batch on a SPARC T4-2 server for the application tier and the database tier with Oracle Database 11g Release 2. All servers ran with the Oracle Solaris 10 operating system.

  • The single-thread performance of the SPARC T4 processor produced sub-second response for the online components and provided dramatic performance for the batch jobs.

  • The SPARC T4 servers, JD Edwards EnterpriseOne 9.0.2, and Oracle WebLogic Server 11g Release 1 support 17% more users per JAS (Java Application Server) than the SPARC T3-1 server for this benchmark.

  • The SPARC T4-2 server provided a 6.7x better batch processing rate than the previous SPARC T3-1 server record result and had 2.5x faster response time.

  • The SPARC T4-2 server used Oracle Solaris Containers, which provide flexible, scalable and manageable virtualization.

  • JD Edwards EnterpriseOne uses Oracle Fusion Middleware WebLogic Server 11g R1 and Oracle Fusion Middleware Cluster Web Tier Utilities 11g HTTP server.

  • The combination of the SPARC T4-2 server and Oracle JD Edwards EnterpriseOne in the application tier with a SPARC T4-1 server in the database tier measured low CPU utilization providing headroom for growth.

Performance Landscape

JD Edwards EnterpriseOne Day in the Life Benchmark
Online with Batch Workload

System Online
Users
Resp
Time (sec)
Batch
Concur
(# of UBEs)
Batch
Rate
(UBEs/m)
Version
2xSPARC T4-2 (app+web)
SPARC T4-1 (db)
10000 0.35 112 67 9.0.2
SPARC T3-1 (app+web)
SPARC Enterprise M3000 (db)
5000 0.88 19 10 9.0.1

Resp Time (sec) — Response time of online jobs reported in seconds
Batch Concur (# of UBEs) — Batch concurrency presented in the number of UBEs
Batch Rate (UBEs/m) — Batch transaction rate in UBEs per minute

Edwards EnterpriseOne Day in the Life Benchmark
Online Workload Only

System Online
Users
Response
Time (sec)
Version
SPARC T3-1, 1 x SPARC T3 (1.65 GHz), Solaris 10 (app)
M3000, 1 x SPARC64 VII (2.75 GHz), Solaris 10 (db)
5000 0.52 9.0.1
IBM Power 750, POWER7 (3.55 GHz) (app+db) 4000 0.61 9.0

IBM result from http://www-03.ibm.com/systems/i/advantages/oracle/, IBM used WebSphere

Configuration Summary

Application Tier Configuration:

1 x SPARC T4-2 server with
2 x 2.85 GHz SPARC T4 processors
128 GB main memory
6 x 300 GB 10K RPM SAS internal HDD
Oracle Solaris 10 9/10
JD Edwards EnterpriseOne 9.0.2 with Tools 8.98.3.3

Web Tier Configuration:

1 x SPARC T4-2 server with
2 x 2.85 GHz SPARC T4 processors
256 GB main memory
2 x 300 GB SSD
4 x 300 GB 10K RPM SAS internal HDD
Oracle Solaris 10 9/10
Oracle WebLogic Server 11g Release 1

Database Tier Configuration:

1 x SPARC T4-1 server with
1 x 2.85 GHz SPARC T4 processor
128 GB main memory
6 x 300 GB 10K RPM SAS internal HDD
2 x Sun Storage F5100 Flash Array
Oracle Solaris 10 9/10
Oracle Database 11g Release 2

Benchmark Description

JD Edwards EnterpriseOne is an integrated applications suite of Enterprise Resource Planning (ERP) software. Oracle offers 70 JD Edwards EnterpriseOne application modules to support a diverse set of business operations.

Oracle's Day in the Life (DIL) kit is a suite of scripts that exercises most common transactions of JD Edwards EnterpriseOne applications, including business processes such as payroll, sales order, purchase order, work order, and manufacturing processes, such as ship confirmation. These are labeled by industry acronyms such as SCM, CRM, HCM, SRM and FMS. The kit's scripts execute transactions typical of a mid-sized manufacturing company.

  • The workload consists of online transactions and the UBE – Universal Business Engine workload of 42 short, 8 medium and 4 long UBEs.

  • LoadRunner runs the DIL workload, collects the user’s transactions response times and reports the key metric of Combined Weighted Average Transaction Response time.

  • The UBE processes workload runs from the JD Enterprise Application server.

    • Oracle's UBE processes come as three flavors:
      • Short UBEs < 1 minute engage in Business Report and Summary Analysis,
      • Mid UBEs > 1 minute create a large report of Account, Balance, and Full Address,
      • Long UBEs > 2 minutes simulate Payroll, Sales Order, night only jobs.
    • The UBE workload generates large numbers of PDF files reports and log files.
    • The UBE Queues are categorized as the QBATCHD, a single threaded queue for large and medium UBEs, and the QPROCESS queue for short UBEs run concurrently.

Oracle’s UBE process performance metric is Number of Maximum Concurrent UBE processes at transaction rate, UBEs/minute.

Key Points and Best Practices

One JD Edwards EnterpriseOne Application Server and two Oracle WebLogic Servers 11g R1 coupled with two Oracle Fusion Middleware 11g Web Tier HTTP Server instances on the SPARC T4-2 servers were hosted in three separate Oracle Solaris Containers to demonstrate consolidation of multiple application and web servers.

  • Interrupt fencing was configured on all Oracle Solaris Containers to channel the interrupts to processors other than the processor sets used for the JD Edwards Application server and WebLogic servers.

  • Processor 0 was left alone for clock interrupts.

  • The applications were executed in the FX scheduling class to improve performance by reducing the frequency of context switches.

  • A WebLogic vertical cluster was configured on each WebServer Container with twelve managed instances each to load balance users' requests and to provide the infrastructure that enables scaling to high number of users with ease of deployment and high availability.

  • The database server was run in an Oracle Solaris Container hosted on the SPARC T4-2 server.

  • The database log writer was run in the real time RT class and bound to a processor set.

  • The database redo logs were configured on the raw disk partitions.

  • The private network between the SPARC T4-2 servers was configured with a 10 GbE interface.

  • The Oracle Solaris Container on the Enterprise Application server ran 42 Short UBEs, 8 Medium UBEs and 4 Long UBEs concurrently as the mixed size batch workload.

  • The mixed size UBEs ran concurrently from the application server with the 10000 online users driven by the LoadRunner.

See Also

Disclosure Statement

Copyright 2011, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 9/26/2011.

SPARC T4-4 Server Sets World Record on PeopleSoft Payroll (N.A.) 9.1, Outperforms IBM Mainframe, HP Itanium

Oracle's SPARC T4-4 server achieved world record performance on the Unicode version of Oracle's PeopleSoft Enterprise Payroll (N.A) 9.1 extra-large volume model benchmark using Oracle Database 11g Release 2 running on Oracle Solaris 10.

  • The SPARC T4-4 server was able to process 1,460,544 payments/hour using PeopleSoft Payroll N.A 9.1.

  • The SPARC T4-4 server UNICODE result of 30.84 minutes on Payroll 9.1 is 2.8x faster than IBM z10 EC 2097 Payroll 9.0 (UNICODE version) result of 87.4 minutes. The IBM mainframe is rated at 6,512 MIPS.

  • The SPARC T4-4 server UNICODE result of 30.84 minutes on Payroll 9.1 is 3.1x faster than HP rx7640 Itanium2 non-UNICODE result of 96.17 minutes, on Payroll 9.0.

  • The average CPU utilization on the SPARC T4-4 server was only 30%, leaving significant room for business growth.

  • The SPARC T4-4 server processed payroll for 500,000 employees, 750,000 payments, in 30.84 minutes compared to the earlier world record result of 46.76 minutes on Oracle's SPARC Enterprise M5000 server.

  • The SPARC Enterprise M5000 server configured with eight 2.66 GHz SPARC64 VII processors has a result of 46.76 minutes on Payroll 9.1. That is 7% better than the result of 50.11 minutes on the SPARC Enterprise M5000 server configured with eight 2.53 GHz SPARC64 VII processors on Payroll 9.0. The difference in clock speed between the two processors is ~5%. That is close to the difference in the two results, thereby showing that the impact of the Payroll 9.1 benchmark on the overall result is about the same as that of Payroll 9.0.

Performance Landscape

PeopleSoft Payroll (N.A.) 9.1 – 500K Employees (7 Million SQL PayCalc, Unicode)

System OS/Database Payroll Processing
Result (minutes)
Run 1
(minutes)
Num of
Streams
SPARC T4-4, 4 x 3.0 GHz SPARC T4 Solaris/Oracle 11g 30.84 43.76 96
SPARC M5000, 8 x 2.66 GHz SPARC64 VII+ Solaris/Oracle 11g 46.76 66.28 32

PeopleSoft Payroll (N.A.) 9.0 – 500K Employees (3 Million SQL PayCalc, Non-Unicode)

System OS/Database Time in Minutes Num of
Streams
Payroll
Processing
Result
Run 1 Run 2 Run 3
Sun M5000, 8 x 2.53 GHz SPARC64 VII Solaris/Oracle 11g 50.11 73.88 534.20 1267.06 32
IBM z10 EC 2097, 9 x 4.4 GHz Gen1 Z/OS /DB2 58.96 80.5 250.68 462.6 8
IBM z10 EC 2097, 9 x 4.4 GHz Gen1 Z/OS /DB2 87.4 ** 107.6 - - 8
HP rx7640, 8 x 1.6 GHz Itanium2 HP-UX/Oracle 11g 96.17 133.63 712.72 1665.01 32

** This result was run with Unicode. The IBM z10 EC 2097 UNICODE result of 87.4 minutes is 48% slower than IBM z10 EC 2097 non-UNICODE result of 58.96 minutes, both on Payroll 9.0, each configured with nine 4.4GHz Gen1 processors.

Payroll 9.1 Compared to Payroll 9.0

Please note that Payroll 9.1 is Unicode based and Payroll 9.0 had non-Unicode and Unicode versions of the workload. There are 7 million executions of an SQL statement for the PayCalc batch process in Payroll 9.1 and 3 million executions of the same SQL statement for the PayCalc batch process in Payroll 9.0. This gets reflected in the elapsed time (27.33 min for 9.1 and 23.78 min for 9.0). The elapsed times of all other batch processes is lower (better) on 9.1.

Configuration Summary

Hardware Configuration:

SPARC T4-4 server
4 x 3.0 GHz SPARC T4 processors
256 GB memory
Sun Storage F5100 Flash Array
80 x 24 GB FMODs

Software Configuration:

Oracle Solaris 10 8/11
PeopleSoft HRMS and Campus Solutions 9.10.303
PeopleSoft Enterprise (PeopleTools) 8.51.035
Oracle Database 11g Release 2 11.2.0.1 (64-bit)
Micro Focus COBOLServer Express 5.1 (64-bit)

Benchmark Description

The PeopleSoft 9.1 Payroll (North America) benchmark is a performance benchmark established by PeopleSoft to demonstrate system performance for a range of processing volumes in a specific configuration. This information may be used to determine the software, hardware, and network configurations necessary to support processing volumes. This workload represents large batch runs typical of OLTP workloads during a mass update.

To measure five application business process run times for a database representing a large organization. The five processes are:

  • Paysheet Creation: Generates payroll data worksheets consisting of standard payroll information for each employee for a given pay cycle.

  • Payroll Calculation: Looks at paysheets and calculates checks for those employees.

  • Payroll Confirmation: Takes information generated by Payroll Calculation and updates the employees' balances with the calculated amounts.

  • Print Advice forms: The process takes the information generated by Payroll Calculations and Confirmation and produces an Advice for each employee to report Earnings, Taxes, Deduction, etc.

  • Create Direct Deposit File: The process takes information generated by the above processes and produces an electronic transmittal file that is used to transfer payroll funds directly into an employee's bank account.

Key Points and Best Practices

  • The SPARC T4-4 server with the Sun Storage F5100 Flash Array device had an average read throughput of up to 103 MB/sec and an average write throughput of up to 124 MB/sec while consuming 30% CPU on average.

  • The Sun Storage F5100 Flash Array device is a solid-state device that provides a read latency of only 0.5 msec. That is about 10 times faster than the normal disk latencies of 5 msec measured on this benchmark.

See Also

  • Oracle PeopleSoft Benchmark White Papers
    oracle.com
  • PeopleSoft Enterprise Human Capital Management (Payroll)
    oracle.com

  • PeopleSoft Enterprise Payroll 9.1 Using Oracle for Solaris (Unicode) on an Oracle's SPARC T4-4 – White Paper
    oracle.com

  • SPARC T4-4 Server
    oracle.com
  • Oracle Solaris
    oracle.com
  • Oracle Database 11g Release 2 Enterprise Edition
    oracle.com
  • Sun Storage F5100 Flash Array
    oracle.com

Disclosure Statement

Oracle's PeopleSoft Payroll 9.1 benchmark, SPARC T4-4 30.84 min,
http://www.oracle.com/us/solutions/benchmark/apps-benchmark/peoplesoft-167486.html, results 9/26/2011.

Thursday Sep 15, 2011

Sun Fire X4800 M2 Servers (now known as Sun Server X2-8) Produce World Record on SAP SD-Parallel Benchmark

Oracle delivered an SAP enhancement package 4 for SAP ERP 6.0 (Unicode) Sales and Distribution - Parallel (SD Parallel) Benchmark world record result using eight of Oracle's Sun Fire X4800 M2 servers (now known as Sun Server X2-8), Oracle Solaris 10 and Oracle Database 11g Real Application Clusters (RAC) software that achieved 180,000 users as of 10/03/2011.

  • The eight Sun Fire X4800 M2 servers delivered a world record result of 180,000 users on the SAP SD Parallel Benchmark.

  • The eight Sun Fire X4800 M2 server SD Parallel result of 180,000 users delivered 43% more performance compared to the IBM Power 795 server SD two-tier result of 126,063 users.

Performance Landscape

Selected SAP Sales and Distribution (SD) benchmark results are presented in decreasing order of performance. All benchmarks were using SAP enhancement package 4 for SAP ERP 6.0 (Unicode).

System OS
Database
Users SAPS Type Cert #
Eight Sun Fire X4800 M2
8 x Intel Xeon E7-8870 @2.4 GHz
512 GB
Oracle Solaris 10
Oracle 11g RAC
180,000 1,016,380 Parallel 2011037
Six Sun Fire X4800 M2
8 x Intel Xeon E7-8870 @2.4 GHz
512 GB
Oracle Solaris 10
Oracle 11g RAC
137,904 765,470 Parallel 2011038
IBM Power 795
32 x POWER7 @4.0 GHz
4096 GB
AIX 7.1
DB2 9.7
126,063 688,630 Two-Tier 2010046
Four Sun Fire X4800 M2
8 x Intel Xeon E7-8870 @2.4 GHz
512 GB
Oracle Solaris 10
Oracle 11g RAC
94,736 546,050 Parallel 2011039
Two Sun Fire X4800 M2
8 x Intel Xeon E7-8870 @2.4 GHz
512 GB
Oracle Solaris 10
Oracle 11g RAC
49,860 274,080 Parallel 2011040
Four Sun Fire X4470
4 x Intel Xeon X7560 @2.26 GHz
256 GB
Solaris 10
Oracle 11g RAC
40,000 221,020 Parallel 2010039

Complete benchmark results and descriptions can be found at the SAP standard applications benchmark website.
For SD benchmark results website: Two-Tier or Three-Tier. For SD Parallel benchmark results website: SD Parallel.

Configuration and Results Summary

Hardware Configuration:

8 x Sun Fire X4800 M2 servers, each with
8 x Intel Xeon E7-8870 @ 2.4 GHz (8 processors, 80 cores, 160 threads)
512 GB memory

Software Configuration:

SAP enhancement package 4 for SAP ERP 6.0
Oracle Database 11g Real Application Clusters (RAC)
Oracle Solaris 10

Results Summary:

Number of SAP SD benchmark users:
180,000
Average dialog response time:
0.63 seconds
Throughput:

Fully processed order line items per hour:
20,327,670

Dialog steps/hour:
60,983,000

SAPS:
1,016,380
Average database request time (dialog/update):
0.010 sec / 0.055 sec
SAP Certification:
2011037

Benchmark Description

The SAP Standard Application Sales and Distribution - Parallel (SD Parallel) Benchmark is a two-tier ERP business test that is indicative of full business workloads of complete order processing and invoice processing and demonstrates the ability to run both the application and database software on a single system. The SAP Standard Application SD Benchmark represents the critical tasks performed in real-world ERP business environments.

The SD Parallel Benchmark consists of the same transactions and user interaction steps as the two-tier and three-tier SD Benchmark. This means that the SD Parallel Benchmark runs the same business processes as the SD Benchmark. The difference between the benchmarks is the technical data distribution. Additionally, the benchmark requires equal distribution of the benchmark users across all database nodes for the used benchmark clients (round-robin method). Following this rule, all database nodes work on data of all clients. This avoids unrealistic configurations such as having only one client per database node.

The SAP Benchmark Council agreed to give the parallel benchmark a different name so that the difference can be easily recognized by any interested parties - customers, prospects, and analysts. The naming convention is SD Parallel for Sales & Distribution - Parallel.

SAP is one of the premier world-wide ERP application providers, and maintains a suite of benchmark tests to demonstrate the performance of competitive systems on the various SAP products.

See Also

Disclosure Statement

SAP enhancement package 4 for SAP ERP 6.0 (Unicode) Sales and Distribution Benchmark, results as of 10/03/2011.

SD Parallel, 8 x Sun Fire X4800 M2 (each 8 processors, 80 cores, 160 threads) 180,000 SAP SD Users, Oracle Solaris 10, Oracle 11g Real Application Clusters (RAC), Certification Number 2011037.
SD Parallel, 6 x Sun Fire X4800 M2 (each 8 processors, 80 cores, 160 threads) 137,904 SAP SD Users, Oracle Solaris 10, Oracle 11g Real Application Clusters (RAC), Certification Number 2011038.
SD Parallel, 4 x Sun Fire X4470 (each 4 processors, 32 cores, 64 threads) 40,000 SAP SD Users, Oracle Solaris 10, Oracle 11g Real Application Clusters (RAC), Certification Number 2010039.
SD Two-Tier, IBM Power 795 (32 processors, 256 cores, 1024 threads) 126,063 SAP SD Users, AIX 7.1, DB2 9.7, Certification Number 2010046.

SAP, R/3 are registered trademarks of SAP AG in Germany and other countries. More information may be found at www.sap.com/benchmark.

Monday Sep 12, 2011

SPARC Enterprise M9000 Produces World Record SAP ATO Benchmark

Oracle delivered an SAP enhancement package 4 for SAP ERP 6.0 Assemble-to-Order (ATO) benchmark world record result using Oracle's SPARC Enterprise M9000 server running Oracle Solaris 10 and Oracle Database 11g along with SAP Enhancement Package 4 for SAP ERP 6.0 (Unicode). The SAP ATO benchmark integrates process chains across SAP Business Suite components, include Financials, Logistics, Human Resources, Basis and Cross Application.

  • The SPARC Enterprise M9000 server containing 64 SPARC64 VII+ 3.0 GHz processors, running Oracle Solaris 10 and Oracle Database 11g along with SAP Enhancement Package 4 for SAP ERP 6.0 (Unicode) delivered a world record 206,000 fully processed assembly orders per hour on the SAP enhancement package 4 for SAP ERP 6.0 ATO benchmark.

  • The SPARC Enterprise M9000 server result shows it can more than consolidate the work of the three-tier HP solution which used 80 different servers.

  • Oracle produced the first SAP ATO benchmark result using Unicode encoding.

  • The SAP ATO benchmark uses multiple components of the SAP Business Suite. See more detail at the SAP ATO benchmark webpage.

Performance Landscape

SAP ATO 2-Tier Performance Table (select results in decreasing performance order)

System OS
Database
Assembly Orders
per hour(*)
SAP
ERP/ECC
Release
Cert Num
SPARC Enterprise M9000
64 x SPARC64 VII+ @3.0 GHz
2048 GB
Oracle Solaris 10
Oracle 11g
206,360 SAP ERP6.0*
(Unicode)
2011033
Fujitsu Siemens Primepower 2000
128 x SPARC64 @560 MHz
128 GB
Solaris 8
Oracle 8.1.7
34,260 4.6B
(non-Unicode)
2001018
HP 9000 Superdome
64 x PA-RISC 8600 @552 MHz
128 GB
HP-UX 11.11
Oracle 8.16
18,870 4.6B
(non-Unicode)
2001014
Fujitsu Siemens Primepower 900
16 x SPARC64 V @1.35 GHz
64 GB
Solaris 8
Oracle 9i
12,170 4.6C
(non-Unicode)
2003012
HP rx5670
4 x Itanium II @1.0 GHz
24 GB
HP-UX 11i
Oracle 9i
3,090 4.6C
(non-Unicode)
2002069

(*) SAP enhancement package 4 for SAP ERP6.0 (Unicode)

SAP ATO 3-Tier Performance Table (top results in decreasing performance order)

System OS
Database
Assembly Orders
per hour(*)
SAP
ERP/ECC
Release
Cert Num
HP 9000 Superdome Enterprise Server
64 x PA-RISC 8700 @ 750MHz
128 GB
HP-UX 11i
Oracle 9i
144,090 4.6 C
(non-Unicode)
2002003
HP 9000 Superdome Enterprise Server
64 x PA-RISC 8700 @750 MHz
128 GB
HP-UX 11i
Oracle 9i
130,570 4.6 C
(non-Unicode)
2001047

(*) Assembly Order: Request to assemble pre-manufactured parts and assemblies to finished products according to an existing sales order.

Complete benchmark results may be found at the SAP benchmark website: http://www.sap.com/benchmark.

Configuration Summary and Results

Hardware Configuration:

SPARC Enterprise M9000
64 SPARC64 VII+ 3.0 GHz processor
2048 GB memory

Software Configuration:

Oracle Solaris 10
SAP enhancement package 4 for SAP ERP 6.0 (Unicode)
Oracle Database 11g

Certified Result:

Fully business processed Assembly Orders/hour:
206,360
SAP Certification Number:
2011033

Benchmark Description

The SAP ATO benchmark integrates process chains across SAP Business Suite components. The ATO scenario is characterized by high volume sales, short production times (from hours to one day), and individual assembly for such products as PCs, pumps, and cars. In general, each benchmark user has its own master data, such as material, vendor, or customer master data to avoid data locking situations. However, the ATO Benchmark has been designed to handle and overcome data locking situations - the ATO benchmark users access common master data, such as material, vendor, or customer master data. (source: http://www12.sap.com/solutions/benchmark/ato.epx).

SAP is one of the premier world-wide ERP application providers, and maintains a suite of benchmark tests to demonstrate the performance of competitive systems on the various SAP products.

See Also

Disclosure Statement

SAP, R/3 are registered trademarks of SAP AG in Germany and other countries. More information may be found at www.sap.com/benchmark

Two-tier SAP ATO standard SAP ERP 6.0 2005/EP4 (Unicode) application benchmarks as of 09/04/11:
Oracle's SPARC Enterprise M9000 (64 processors, 256 cores, 512 threads) 206,360 Assembly Orders/hour, 64 x 3.0 GHz SPARC VIII, 2048 GB memory, Oracle 11g, Oracle Solaris 10, Certification Number 2011033.

Two-tier SAP ATO standard 4.6 C application benchmarks as of 09/04/11:
Fujitsu Siemens Primepower 900 (16-way SMP) 12,170 Assembly Orders/hour, 16 x 1.35 GHz SPARC64 V, 64 GB memory, Oracle 9i, Solaris 8, Certification Number 2003012.
HP rx5670 (4 processors SMP) 3,090 Assembly Orders/hour, 4 x 1.0 GHz Itanium II, 24 GB memory, Oracle 9i, HP-UX 11i, Certification Number 2002069.

Two-tier SAP ATO standard 4.6 B application benchmarks as of 09/04/11:
HP 9000 Superdome (64-way SMP) 18,8770 Assembly Orders/hour, 64 x 552 MHz PA-RISC 8600, 128 GB memory, Oracle 8.1.6, HP-UX 11.11, Certification Number 2001014.
Fujitsu Siemens Primepower 2000 (128 processors SMP) 34,260 Assembly Orders/hour, 128 x 560 MHz SPARC64, 128 GB memory, Oracle 8.1.7, Solaris 8, Certification Number 2001018.

Three-tier SAP ATO standard 4.6 C application benchmarks as of 09/04/11:
HP 9000 Superdome Enterprise Server (64 processors SMP) 144,090 Assembly Orders/hour, 64 x 750 MHz PA-RISC 8700, 128 GB memory, Oracle 9i, HP-UX 11i, Certification Number 2002003
HP 9000 Superdome Enterprise Server (64 processors SMP) 130,570 Assembly Orders/hour, 64 x 750 MHz PA-RISC 8700, 128 GB memory, Oracle 9i, HP-UX 11i, Certification Number 2001047

Friday Aug 12, 2011

Sun Blade X6270 M2 with Oracle WebLogic World Record 2 Processor SPECjEnterprise 2010 Benchmark

Oracle produced a World Record single application server using 2 chips result for the SPECjEnterprise2010 benchmark of 5,427.42 SPECjEnterprise2010 EjOPS using one of Oracle's Sun Blade X6270 M2 server module for the application tier and one Sun Blade X6270 M2 server module for the database.

  • The Sun Blade X6270 M2 server module equipped with two Intel Xeon X5690 processors running at 3.46 GHz, demonstrated 47% better performance compared to the 2-chip IBM System HS22 server result of 3,694.35 SPECjEnterprise2010 EjOPS using the same model of Intel Xeon X5690 processor.

  • The Sun Blade X6270 M2 server module running the application tier demonstrated 33% better performance compared to the 2-chip IBM Power 730 Express server result of 4,062.38 SPECjEnterprise2010 EjOPS.

  • The Sun Blade X6270 M2 server modules used Oracle WebLogic Server 11g Release 1 (10.3.5) application, Java SE 6 Update 26, and Oracle Database 11g Release 2 to produce this result.

Performance Landscape

Complete benchmark results are at the SPEC website, SPECjEnterprise2010 Results.

SPECjEnterprise2010 Performance Chart
as of 8/11/2011
Submitter EjOPS* Application Server Database Server
Oracle 5,427.42 1x Sun Blade X6270 M2
2x 3.46 GHz Intel Xeon X5690
Oracle WebLogic 11g (10.3.5)
1x Sun Blade X6270 M2
2x 3.46 GHz Intel Xeon X5690
Oracle 11g DB 11.2.0.2
IBM 4,062.38 1x IBM Power 730 Express
2x 3.5 GHz POWER 7
WebSphere Application Server V7
1x IBM BladeCenter PS701
1x 3.0 GHz POWER 7
IBM DB2 9.7 Workgroup Server Edition FP3a
IBM 3,694.35 1x IBM HS22
2x 3.46 GHz Intel Xeon X5690
WebSphere Application Server V8
1x IBM x3850 X5
2x 2.4 GHz Intel Xeon E7-4870
IBM DB2 9.7 FP3a

* SPECjEnterprise2010 EjOPS, bigger is better.

Configuration Summary

Application Server:
    1 x Sun Blade X6270 M2
      2 x 3.46 GHz Intel Xeon X5690
      48 GB memory
      4 x 10 GbE NIC
      Oracle Linux 5 Update 6
      Oracle WebLogic Server 11g Release 1 (10.3.5)
      Java HotSpot(TM) 64-Bit Server VM on Linux, version 1.6.0_26 (Java SE 6 Update 26)

Database Server:

    1 x Sun Blade X6270 M2
      2 x 3.46 GHz Intel Xeon X5690
      144 GB memory
      2 x 10 GbE NIC
      2 x Sun Storage 6180
      Oracle Linux 5 Update 6
      Oracle Database 11g Enterprise Edition Release 11.2.0.2

Benchmark Description

SPECjEnterprise2010 is the third generation of the SPEC organization's J2EE end-to-end industry standard benchmark application. The SPECjEnterprise2010 benchmark has been designed and developed to cover the Java EE 5.0 specification's significantly expanded and simplified programming model, highlighting the major features used by developers in the industry today. This provides a real world workload driving the Application Server's implementation of the Java EE specification to its maximum potential and allowing maximum stressing of the underlying hardware and software systems.

The workload consists of an end to end web based order processing domain, an RMI and Web Services driven manufacturing domain and a supply chain model utilizing document based Web Services. The application is a collection of Java classes, Java Servlets, Java Server Pages , Enterprise Java Beans, Java Persistence Entities (pojo's) and Message Driven Beans.

The SPECjEnterprise2010 benchmark heavily exercises all parts of the underlying infrastructure that make up the application environment, including hardware, JVM software, database software, JDBC drivers, and the system network.

The primary metric of the SPECjEnterprise2010 benchmark is jEnterprise Operations Per Second ("SPECjEnterprise2010 EjOPS"). The primary metric for the SPECjEnterprise2010 benchmark is calculated by adding the metrics of the Dealership Management Application in the Dealer Domain and the Manufacturing Application in the Manufacturing Domain. There is no price/performance metric in this benchmark.

Key Points and Best Practices

  • Two Oracle WebLogic server instances were started using numactl binding 1 instance per chip.
  • Two Oracle database listener processes were started and each was bound to a separate chip.
  • Additional tuning information is in the report at http://spec.org.

See Also

Disclosure Statement

SPEC and the benchmark name SPECjEnterprise are registered trademarks of the Standard Performance Evaluation Corporation. Sun Blade X6270 M2, 5,427.42 SPECjEnterprise2010 EjOPS; IBM Power 730 Express, 4,062.38 SPECjEnterprise2010 EjOPS; IBM System HS22, 3,694.35 SPECjEnterprise2010 EjOPS. Results from www.spec.org as of 8/11/2011.

Friday Jul 01, 2011

SPARC T3-1 Record Results Running JD Edwards EnterpriseOne Day in the Life Benchmark with Added Batch Component

Using Oracle's SPARC T3-1 server for the application tier and Oracle's SPARC Enterprise M3000 server for the database tier, a world record result was produced running the Oracle's JD Edwards EnterpriseOne applications Day in the Life benchmark run concurrently with a batch workload.

  • The SPARC T3-1 server based result has 25% better performance than the IBM Power 750 POWER7 server even though the IBM result did not include running a batch component.

  • The SPARC T3-1 server based result has 25% better space/performance than the IBM Power 750 POWER7 server as measured by the online component.

  • The SPARC T3-1 server based result is 5x faster than the x86-based IBM x3650 M2 server system when executing the online component of the JD Edwards EnterpriseOne 9.0.1 Day in the Life benchmark. The IBM result did not include a batch component.

  • The SPARC T3-1 server based result has 2.5x better space/performance than the x86-based IBM x3650 M2 server as measured by the online component.

  • The combination of SPARC T3-1 and SPARC Enterprise M3000 servers delivered a Day in the Life benchmark result of 5000 online users with 0.875 seconds of average transaction response time running concurrently with 19 Universal Batch Engine (UBE) processes at 10 UBEs/minute. The solution exercises various JD Edwards EnterpriseOne applications while running Oracle WebLogic Server 11g Release 1 and Oracle Web Tier Utilities 11g HTTP server in Oracle Solaris Containers, together with the Oracle Database 11g Release 2.

  • The SPARC T3-1 server showed that it could handle the additional workload of batch processing while maintaining the same number of online users for the JD Edwards EnterpriseOne Day in the Life benchmark. This was accomplished with minimal loss in response time.

  • JD Edwards EnterpriseOne 9.0.1 takes advantage of the large number of compute threads available in the SPARC T3-1 server at the application tier and achieves excellent response times.

  • The SPARC T3-1 server consolidates the application/web tier of the JD Edwards EnterpriseOne 9.0.1 application using Oracle Solaris Containers. Containers provide flexibility, easier maintenance and better CPU utilization of the server leaving processing capacity for additional growth.

  • A number of Oracle advanced technology and features were used to obtain this result: Oracle Solaris 10, Oracle Solaris Containers, Oracle Java Hotspot Server VM, Oracle WebLogic Server 11g Release 1, Oracle Web Tier Utilities 11g, Oracle Database 11g Release 2, the SPARC T3 and SPARC64 VII+ based servers.

  • This is the first published result running both online and batch workload concurrently on the JD Enterprise Application server. No published results are available from IBM running the online component together with a batch workload.

  • The 9.0.1 version of the benchmark saw some minor performance improvements relative to 9.0. When comparing between 9.0.1 and 9.0 results, the reader should take this into account when the difference between results is small.

Performance Landscape

JD Edwards EnterpriseOne Day in the Life Benchmark
Online with Batch Workload

This is the first publication on the Day in the Life benchmark run concurrently with batch jobs. The batch workload was provided by Oracle's Universal Batch Engine.

System Rack
Units
Online
Users
Resp
Time (sec)
Batch
Concur
(# of UBEs)
Batch
Rate
(UBEs/m)
Version
SPARC T3-1, 1xSPARC T3 (1.65 GHz), Solaris 10
M3000, 1xSPARC64 VII+ (2.86 GHz), Solaris 10
4 5000 0.88 19 10 9.0.1

Resp Time (sec) — Response time of online jobs reported in seconds
Batch Concur (# of UBEs) — Batch concurrency presented in the number of UBEs
Batch Rate (UBEs/m) — Batch transaction rate in UBEs/minute.

JD Edwards EnterpriseOne Day in the Life Benchmark
Online Workload Only

These results are for the Day in the Life benchmark. They are run without any batch workload.

System Rack
Units
Online
Users
Response
Time (sec)
Version
SPARC T3-1, 1xSPARC T3 (1.65 GHz), Solaris 10
M3000, 1xSPARC64 VII (2.75 GHz), Solaris 10
4 5000 0.52 9.0.1
IBM Power 750, 1xPOWER7 (3.55 GHz), IBM i7.1 4 4000 0.61 9.0
IBM x3650M2, 2xIntel X5570 (2.93 GHz), OVM 2 1000 0.29 9.0

IBM result from http://www-03.ibm.com/systems/i/advantages/oracle/, IBM used WebSphere

Configuration Summary

Hardware Configuration:

1 x SPARC T3-1 server
1 x 1.65 GHz SPARC T3
128 GB memory
16 x 300 GB 10000 RPM SAS
1 x Sun Flash Accelerator F20 PCIe Card, 96 GB
1 x 10 GbE NIC
1 x SPARC Enterprise M3000 server
1 x 2.86 SPARC64 VII+
64 GB memory
1 x 10 GbE NIC
2 x StorageTek 2540 + 2501

Software Configuration:

JD Edwards EnterpriseOne 9.0.1 with Tools 8.98.3.3
Oracle Database 11g Release 2
Oracle 11g WebLogic server 11g Release 1 version 10.3.2
Oracle Web Tier Utilities 11g
Oracle Solaris 10 9/10
Mercury LoadRunner 9.10 with Oracle Day in the Life kit for JD Edwards EnterpriseOne 9.0.1
Oracle’s Universal Batch Engine - Short UBEs and Long UBEs

Benchmark Description

JD Edwards EnterpriseOne is an integrated applications suite of Enterprise Resource Planning (ERP) software. Oracle offers 70 JD Edwards EnterpriseOne application modules to support a diverse set of business operations.

Oracle's Day in the Life (DIL) kit is a suite of scripts that exercises most common transactions of JD Edwards EnterpriseOne applications, including business processes such as payroll, sales order, purchase order, work order, and other manufacturing processes, such as ship confirmation. These are labeled by industry acronyms such as SCM, CRM, HCM, SRM and FMS. The kit's scripts execute transactions typical of a mid-sized manufacturing company.

  • The workload consists of online transactions and the UBE workload of 15 short and 4 long UBEs.

  • LoadRunner runs the DIL workload, collects the user’s transactions response times and reports the key metric of Combined Weighted Average Transaction Response time.

  • The UBE processes workload runs from the JD Enterprise Application server.

    • Oracle's UBE processes come as three flavors:

      • Short UBEs < 1 minute engage in Business Report and Summary Analysis,
      • Mid UBEs > 1 minute create a large report of Account, Balance, and Full Address,
      • Long UBEs > 2 minutes simulate Payroll, Sales Order, night only jobs.
    • The UBE workload generates large numbers of PDF files reports and log files.

    • The UBE Queues are categorized as the QBATCHD, a single threaded queue for large UBEs, and the QPROCESS queue for short UBEs run concurrently.

  • One of the Oracle Solaris Containers ran 4 Long UBEs, while another Container ran 15 short UBEs concurrently.

  • The mixed size UBEs ran concurrently from the SPARC T3-1 server with the 5000 online users driven by the LoadRunner.

  • Oracle’s UBE process performance metric is Number of Maximum Concurrent UBE processes at transaction rate, UBEs/minute.

Key Points and Best Practices

Two JD Edwards EnterpriseOne Application Servers and two Oracle Fusion Middleware WebLogic Servers 11g R1 coupled with two Oracle Fusion Middleware 11g Web Tier HTTP Server instances on the SPARC T3-1 server were hosted in four separate Oracle Solaris Containers to demonstrate consolidation of multiple application and web servers.

See Also

Disclosure Statement

Copyright 2011, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 6/27/2011.

Friday Jun 10, 2011

SPARC Enterprise M5000 Delivers First PeopleSoft Payroll 9.1 Benchmark

Oracle's M-series server sets a world record on Oracle's PeopleSoft Enterprise Payroll (N.A) 9.1 with extra large volume model benchmark (Unicode). Oracle's SPARC Enterprise M5000 server was able to to run faster than the previous generation system result even though the PeopleSoft Payroll 9.1 benchmark is more computationally demanding.

Oracle's SPARC Enterprise M5000 server configured with eight 2.66 GHz SPARC64 VII+ processors together with Oracle's Sun Storage F5100 Flash Array storage achieved world record performance on the Unicode version of Oracle's PeopleSoft Enterprise Payroll (N.A) 9.1 with extra large volume model benchmark using Oracle Database 11g Release 2 running on Oracle Solaris 10.

  • The SPARC Enterprise M5000 server processed payroll payments for the 500K employees PeopleSoft Payroll 9.1 (Unicode) benchmark in 46.76 minutes compared to a previous result of 50.11 minutes for the PeopleSoft Payroll 9.0 (non-Unicode) benchmark configured with 2.53 GHz SPARC64 VII processors resulting in 7% better performance.

  • Note that the IBM z10 Gen1 mainframe running the PeopleSoft Payroll 9.0 (Unicode) benchmark was 48% slower than the 9.0 non-Unicode version. The IBM z10 mainframe with nine 4.4 GHz Gen1 processors has a list price over $6M and is rated at 6,512 MIPS.

  • The SPARC Enterprise M5000 server with the Sun Storage F5100 Flash Array system processed payroll for 500K employees completing the end-to-end run in 66.28 mins, 11% faster than earlier published result of 73.88 mins with Payroll 9.0 configured with 2.53 GHz SPARC64 VII processors.

  • The Sun Storage F5100 Flash Array device is a high performance, high-density solid-state flash array which provides a read latency of only 0.5 msec which is about 10 times faster than the normal disk latencies of 5 msec measured on this benchmark.

Performance Landscape

PeopleSoft Payroll (N.A.) 9.1 – 500K Employees (7 Million SQL PayCalc, Unicode)

System Processor OS/Database Payroll Processing
Result (minutes)
Run 1
(minutes)
Num of
Streams
SPARC M5000 8x 2.66GHz SPARC64 VII+ Solaris/Oracle 11g 46.76 66.28 32

PeopleSoft Payroll (N.A.) 9.0 – 500K Employees (3 Million SQL PayCalc, Non-Unicode)

System Processor OS/Database Time in Minutes Num of
Streams
Payroll
Processing
Result
Run 1 Run 2 Run 3
Sun M5000 8x 2.53GHz SPARC64 VII Solaris/Oracle 11g 50.11 73.88 534.20 1267.06 32
IBM z10 9x 4.4GHz Gen1 Z/OS /DB2 58.96 80.5 250.68 462.6 8
IBM z10 9x 4.4GHz Gen1 Z/OS /DB2 87.4 ** 107.6 - - 8
HP rx7640 8x 1.6GHz Itanium2 HP-UX/Oracle 11g 96.17 133.63 712.72 1665.01 32

** This result was run with Unicode

Payroll 9.1 Compared to Payroll 9.0

Please note that Payroll 9.1 is Unicode based and Payroll 9.0 is non-Unicode. There are 7 million executions of an SQL statement for the PayCalc batch process in Payroll 9.1 and 3 million executions of the same SQL statement for the PayCalc batch process in Payroll 9.0. This gets reflected in the elapsed time (27.33 min for 9.1 and 23.78 min for 9.0). The elapsed times of all other batch processes is lower (better) on 9.1.

Configuration Summary

Hardware Configuration:

SPARC Enterprise M5000 server
8 x 2.66 GHz SPARC64 VII+ processors
128 GB memory
2 x SAS HBA (SG-XPCIE8SAS-E-Z - PCIe HBA for Rack Servers)
Sun Storage F5100 Flash Array
40 x 24 GB FMODs
1 x StorageTek 2501 array with
12 x 146 GB SAS 15K RPM disks
1 x StorageTek 2540 array with
12 x 146 GB SAS 15K RPM disks

Software Configuration:

Oracle Solaris 10 09/10
PeopleSoft HRMS and Campus Solutions 9.10.303
PeopleSoft Enterprise (PeopleTools) 8.51.035
Oracle Database 11g Release 2 11.2.0.1 (64-bit)
Micro Focus COBOLServer Express 5.1 (64-bit)

Benchmark Description

The PeopleSoft 9.1 Payroll (North America) benchmark is a performance benchmark established by PeopleSoft to demonstrate system performance for a range of processing volumes in a specific configuration. This information may be used to determine the software, hardware, and network configurations necessary to support processing volumes. This workload represents large batch runs typical of OLTP workloads during a mass update.

To measure five application business process run times for a database representing a large organization. The five processes are:

  • Paysheet Creation: Generates payroll data worksheets consisting of standard payroll information for each employee for a given pay cycle.

  • Payroll Calculation: Looks at paysheets and calculates checks for those employees.

  • Payroll Confirmation: Takes information generated by Payroll Calculation and updates the employees' balances with the calculated amounts.

  • Print Advice forms: The process takes the information generated by Payroll Calculations and Confirmation and produces an Advice for each employee to report Earnings, Taxes, Deduction, etc.

  • Create Direct Deposit File: The process takes information generated by the above processes and produces an electronic transmittal file that is used to transfer payroll funds directly into an employee's bank account.

For the benchmark, we collected at least three data points with different numbers of job streams (parallel jobs). This batch benchmark allows a maximum of thirty-two job streams to be configured to run in parallel.

See Also

Disclosure Statement

Oracle's PeopleSoft Payroll 9.1 benchmark, SPARC Enterprise M5000 46.76 min, www.oracle.com/apps_benchmark/html/white-papers-peoplesoft.html, results 6/10/2011.

Wednesday Mar 23, 2011

SPARC T3-1B Doubles Performance on Oracle Fusion Middleware WebLogic Avitek Medical Records Sample Application

The Oracle WebLogic Server 11g software was used to demonstrate the performance of the Avitek Medical Records sample application. A configuration using SPARC T3-1B and SPARC Enterprise M5000 servers from Oracle was used and showed excellent scaling of different configurations as well as doubling previous generation SPARC blade performance.

  • A SPARC T3-1B server, running a typical real-world J2EE application on Oracle WebLogic Server 11g, together with a SPARC Enterprise M5000 server running the Oracle database, had 2.1x times the transactional throughput over the previous generation UltraSPARC T2 processor based Sun Blade T6320 server module.

  • The SPARC T3-1B server shows linear scaling as the number of cores in the SPARC T3 processor used in the SPARC T3-1B system module are doubled.

  • The Avitek Medical Records application instances were deployed in Oracle Solaris zones on the SPARC T3-1B server, allowing for flexible, scalable and lightweight architecture of the application tier.

Performance Landscape

Performance for the application tier is presented. Results are the maximum transactions per second (TPS).

Server Processor Memory Maximum TPS
SPARC T3-1B 1 x SPARC T3, 1.65 GHz, 16 cores 128 GB 28,156
SPARC T3-1B 1 x SPARC T3, 1.65 GHz, 8 cores 128 GB 14,030
Sun Blade T6320 1 x UltraSPARC T2, 1.4 GHz, 8 cores 64 GB 13,386

The same SPARC Enterprise M5000 server from Oracle was used in each case as the database server. Internal disk storage was used.

Configuration Summary

Hardware Configuration:

1 x SPARC T3-1B
1 x 1.65 GHz SPARC T3
128 GB memory

1 x Sun Blade T6320
1 x 1.4Ghz GHz SPARC T2
64 GB memory

1 x SPARC Enterprise M5000
8 x 2.53 SPARC64 VII
128 GB memory

Software Configuration:

Avitek Medical Records
Oracle Database 10g Release 2
Oracle WebLogic Server 11g R1 version 10.3.3 (Oracle Fusion Middleware)
Oracle Solaris 10 9/10
HP Mercury LoadRunner 9.5

Benchmark Description

Avitek Medical Records (or MedRec) is an Oracle WebLogic Server 11g sample application suite that demonstrates all aspects of the J2EE platform. MedRec showcases the use of each J2EE component, and illustrates best practice design patterns for component interaction and client development. Oracle WebLogic server 11g is a key component of Oracle Fusion Middleware 11g.

The MedRec application provides a framework for patients, doctors, and administrators to manage patient data using a variety of different clients. Patient data includes:

  • Patient profile information: A patient's name, address, social security number, and log-in information.

  • Patient medical records: Details about a patient's visit with a physician, such as the patient's vital signs and symptoms as well as the physician's diagnosis and prescriptions.

MedRec comprises of two main Java EE applications supporting different user scenarios:

medrecEar – Patients log in to the web application (patientWebApp) to register their profile or edit. Patients can also view medical records or their prior visits. Administrators use the web application (adminWebApp) to approve or deny new patient profile requests. medrecEar also provides all of the controller and business logic used by the MedRec application suite, as well as the Web Service used by different clients.

physicianEar – Physicians and nurses login to the web application (physicianWebApp) to search and access patient profiles, create and review medical records, and prescribe medicine to patients. The physician application is designed to communicate using the Web Service provided in the medrecEar.

The medrecEAR and physicianEar application are deployed to Oracle WebLogic Server 11g instance called MedRecServer. The physicianEAR application communicates with the controller components of medrecEAR using Web Services.

The workload injected into the MedRec applications measures the average transactions per second for the following sequence:

  1. A client opens page http://{host}:7011/Start.jsp (MedRec)
  2. Patient completes Registration process
  3. Administrator login, approves the patient profile, and logout
  4. Physician connect to the on-line system and logs in
  5. Physician performs search for a patient and looks up patient's visit information
  6. Physician logs out
  7. Patient logs in and reviews the profile
  8. Patient makes changes to the profile and updates the information
  9. Patient logs out

Each of the above steps constitutes a single transaction.

Key Points and Best Practices

Please see the Oracle documentation on the Oracle Technical Network for tuning your Oracle WebLogic Server 11g deployment.

See Also

Disclosure Statement

Copyright 2011, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 3/22/2011.

Thursday Feb 17, 2011

SPARC T3-1 takes JD Edwards "Day In the Life" benchmark lead, beats IBM Power7 by 25%

Oracle's SPARC T3-1 server, running the application, together with Oracle's SPARC Enterprise M3000 server running the database, have achieved a record result of 5000 users, with 0.523 seconds of average transaction response time, for the online component of the "Day in the Life" JD Edwards EnterpriseOne benchmark.

  • The "Day in the Life" benchmark tests the Oracle JD Edwards EnterpriseOne applications, running Oracle Fusion Middleware WebLogic Server 11g R1, Oracle Fusion Middleware Web Tier Utilities 11g HTTP server and JD Edwards EnterpriseOne 9.0.1 in Oracle Solaris Containers, together with the Oracle Database 11g Release 2.

  • The SPARC T3-1 server is 25% faster and has better response time than the IBM P750 POWER7 system, when executing the JD Edwards EnterpriseOne 9.0.1 Day in the Life test, online component.

  • The SPARC T3-1 server had 25% better space/performance than the IBM P750 POWER7 server.

  • The SPARC T3-1 server is 5x faster than the x86-based IBM x3650 M2 server system, when executing the JD Edwards EnterpriseOne 9.0.1 Day in the Life test, online component.

  • The SPARC T3-1 server had 2.5x better space/performance than the x86-based IBM x3650 M2 server.

  • The SPARC T3-1 server consolidated the application/web tier of the JD Edwards EnterpriseOne 9.0.1 application using Oracle Solaris Containers. Containers provide flexibility, easier maintenance and better CPU utilization of the server leaving processing capacity for additional growth.

  • The SPARC Enterprise M3000 server provides enterprise class RAS features for customers deploying the Oracle 11g Release 2 database software.

  • To obtain this leading result, a number of Oracle advanced technology and features were used: Oracle Solaris 10, Oracle Solaris Containers, Oracle Java Hotspot Server VM, Oracle Fusion Middleware WebLogic Server 11g R1, Oracle Fusion Middleware Web Tier Utilities 11g, Oracle Database 11g Release 2, the SPARC T3 and the SPARC64 VII based servers.

Performance Landscape

JD Edwards EnterpriseOne DIL Online Component Performance Chart

System Memory OS #user JD Edwards
Version
Rack
Units
Response
Time
(sec)
SPARC T3-1, 1x1.65 GHz SPARC T3 128 Solaris 10 5000 9.0.1 2U 0.523
\*IBM Power 750, 1x3.55 GHz POWER7 120 IBM i7.1 4000 9.0 4U 0.61
IBM Power 570, 4x4.2 GHz POWER6 128 IBM i6.1 2400 8.12 4U 1.129
IBM x3650M2, 2x2.93 GHz X5570 64 OVM 1000 9.0 2U 0.29

\* from http://www-03.ibm.com/systems/i/advantages/oracle/, IBM used Websphere

Configuration Summary

Hardware Configuration:

1 x SPARC T3-1 server
1 x 1.65 GHz SPARC T3
128 GB memory
16 x 300 GB 10000 RPM SAS
1 x 1 GbE NIC
1 x SPARC Enterprise M3000
1 x 2.75 SPARC 64 VII
64 GB memory
1 x 1 GbE NIC
2 x StorageTek 2540/2501

Software Configuration:

JD Edwards EnterpriseOne 9.0.1 with Tools 8.98.3.3
Oracle Database 11g Release 2
Oracle Fusion Middleware 11g WebLogic server 11g R1 version 10.3.2
Oracle Fusion Middleware Web Tier Utilities 11g
Oracle Solaris 10 9/10
Mercury LoadRunner 9.10 with Oracle DIL kit for JD Edwards EnterpriseOne 9.0 update 1

Benchmark Description

Oracle's JD Edwards EnterpriseOne is an integrated applications suite of Enterprise Resource Planning software.

  • Oracle offers 70 JD Edwards EnterpriseOne application modules to support a diverse set of business operations.
  • Oracle 's Day-In-Life (DIL) kit is a suite of scripts that exercises most common transactions of J.D. Edwards EnterpriseOne applications including business processes such as payroll, sales order, purchase order, work order, and other manufacturing processes, such as ship confirmation. These are labeled by industry acronyms such as SCM, CRM, HCM, SRM and FMS.
  • Oracle's DIL kit's scripts execute transactions typical of a mid-sized manufacturing company.
  • The workload consists of online transactions. It does not include the batch processing job components.
  • LoadRunner is used to run the workload and collect the users' transactions response times against increasing numbers of users from 500 to 5000.
  • Key metric used to evaluate performance is the transaction response time which is reported by LoadRunner.

Key Points and Best Practices

Two JD Edwards EnterpriseOne and two Oracle Fusion Middleware WebLogic Servers 11g R1 coupled with two Fusion Middleware 11g Web Tier HTTP Servers instances on the SPARC T3-1 server were hosted in four separate Oracle Solaris Containers to demonstrate consolidation of multiple application and web servers.

  • Each Oracle Solaris container was bound to a separate processor set with 40 virtual processors allocated to each EnterpriseOne Server, 16 virtual processors allocated to each WebServer container and 16 to the default set. This was done to improve performance by using the physical memory closest to the processors, thereby, reducing memory access latency and reducing processor cross calls. The default processor set was used for network and disk interrupt handling.

  • The applications were executed in the FX scheduling class to improve performance by reducing the frequency of context switches.

  • A WebLogic Vertical cluster was configured on each WebServer container with seven managed instances each to load balance users' requests and to provide the infrastructure that enables scaling to high number of users with ease of deployment and high availability.

  • The database server was run in an Oracle Solaris Container hosted on the Oracle's SPARC Enterprise M3000 server.

See Also

Disclosure Statement

Copyright 2011, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 2/16/2011.

Thursday Dec 02, 2010

World Record TPC-C Result on Oracle's SPARC Supercluster with T3-4 Servers

Oracle demonstrated the world's fastest database performance using 27 of Oracle's SPARC T3-4 servers, 138 Sun Storage F5100 Flash Array storage systems and Oracle Database 11g Release 2 Enterprise Edition with Real Application Clusters (RAC) and Partitioning delivered a world-record TPC-C benchmark result.

  • The SPARC T3-4 server cluster delivered a world record TPC-C benchmark result of 30,249,688 tpmC and $1.01 $/tpmC (USD) using Oracle Database 11g Release 2 on a configuration available 6/1/2011.

  • The SPARC T3-4 server cluster is 2.9x faster than the performance of the IBM Power 780 (POWER7 3.86 GHz) cluster with IBM DB2 9.7 database and has 27% better price/performance on the TPC-C benchmark. Almost identical price discount levels were applied by Oracle and IBM.

  • The Oracle solution has three times better performance than the IBM configuration and only used twice the power during the run of the TPC-C benchmark.  (Based upon IBM's own claims of energy usage from their August 17, 2010 press release.)

  • The Oracle solution delivered 2.9x the performance in only 71% of the space compared to the IBM TPC-C benchmark result.

  • The SPARC T3-4 server with Sun Storage F5100 Flash Array storage solution demonstrates 3.2x faster response time than IBM Power 780 (POWER7 3.86 GHz) result on the TPC-C benchmark.

  • Oracle used a single-image database, whereas IBM used 96 separate database partitions on their 3-node cluster. It is interesting to note that IBM used 32 database images instead of running each server as a simple SMP.

  • IBM did not use DB2 Enterprise Database, but instead IBM used "DB2 InfoSphere Warehouse 9.7" which is a data warehouse and data management product and not their flagship OLTP product.

  • The multi-node SPARC T3-4 server cluster is 7.4x faster than the HP Superdome (1.6 GHz Itanium2) solution and has 66% better price/performance on the TPC-C benchmark.

  • The Oracle solution utilized Oracle's Sun FlashFire technology to deliver this result. The Sun Storage F5100 Flash Array storage system was used for database storage.

  • Oracle Database 11g Enterprise Edition Release 2 with Real Application Clusters and Partitioning scales and effectively uses all of the nodes in this configuration to produce the world record TPC-C benchmark performance.

  • This result showed Oracle's integrated hardware and software stacks provide industry leading performance.

Performance Landscape

TPC-C results (sorted by tpmC, bigger is better)

System tpmC Price/tpmC Avail Database Cluster Racks
27 x SPARC T3-4 30,249,688 1.01 USD 6/1/2011 Oracle 11g RAC Y 15
3 x IBM Power 780 10,366,254 1.38 USD 10/13/10 DB2 9.7 Y 10
HP Integrity Superdome 4,092,799 2.93 USD 08/06/07 Oracle 10g R2 N 46

Avail - Availability date
Racks - Clients, servers, storage, infrastructure

Oracle and IBM TPC-C Response times

System tpmC Response Time (sec)
New Order 90th%
Response Time (sec)
New Order Average
27 x SPARC T3-4 30,249,688 0.750 0.352
3 x IBM Power 780 10,366,254 2.1 1.137
Response Time Ratio - Oracle Better 2.9x 2.8x 3.2x

Oracle uses Average New Order Response time for comparison between Oracle and IBM.

Graphs of Oracle's and IBM's response times for New-Order can be found in the full disclosure reports on TPC's website TPC-C Official Result Page.

Configuration Summary and Results

Hardware Configuration:

15 racks used to hold

Servers
27 x SPARC T3-4 servers, each with
4 x 1.65 GHz SPARC T3 processors
512 GB memory
3 x 300 GB 10K RPM 2.5" SAS disks

Data Storage
69 x Sun Fire X4270 M2 servers configured as COMSTAR heads, each with
1 x 2.93 GHz Intel Xeon X5670 processor
8 GB memory
9 x 2 TB 7.2K RPM 3.5" SAS disks
2 x Sun Storage F5100 Flash Array storage (1.92 TB each)
1 x Brocade DCX switch

Redo Storage
28 x Sun Fire X4270 M2 servers configured as COMSTAR heads, each with
1 x 2.93 GHz Intel Xeon X5670 processor
8 GB memory
11 x 2 TB 7.2K RPM 3.5" SAS disks
2 x Brocade 5300 switches

Clients
81 x Sun Fire X4170 M2 servers, each with
2 x 2.93 GHz Intel X5670 processors
48 GB memory
2 x 146 GB 10K RMP 2.5" SAS disks

Software Configuration:

Oracle Solaris 10 9/10 (for SPARC T3-4 and Sun Fire X4170 M2)
Oracle Solaris 11 Express (COMSTAR for Sun Fire X4270 M2)
Oracle Database 11g Release 2 Enterprise Edition with Real Application Clusters and Partitioning
Oracle iPlanet Web Server 7.0 U5
Tuxedo CFS-R Tier 1

Results:

System 27 x SPARC T3-4
tpmC 30,249,688
Price/tpmC 1.01 USD
Avail 6/1/2011
Database Oracle Database 11g RAC
Cluster yes
Racks 15
New Order Ave Response 0.352 seconds

Benchmark Description

TPC-C is an OLTP system benchmark. It simulates a complete environment where a population of terminal operators executes transactions against a database. The benchmark is centered around the principal activities (transactions) of an order-entry environment. These transactions include entering and delivering orders, recording payments, checking the status of orders, and monitoring the level of stock at the warehouses.

Key Points and Best Practices

  • Oracle Database 11g Release 2 Enterprise Edition with Real Application Clusters and Partitioning scales easily to this high level of performance.

  • Sun Storage F5100 Flash Array storage provides high performance, very low latency, and very high storage density.

  • COMSTAR (Common Multiprotocol SCSI Target), new in Oracle Solaris 11 Express, is the software framework that enables a Solaris host to serve as a SCSI Target platform. COMSTAR uses a modular approach to break the huge task of handling all the different pieces in a SCSI target subsystem into independent functional modules which are glued together by the SCSI Target Mode Framework (STMF). The modules implementing functionality at SCSI level (disk, tape, medium changer etc.) are not required to know about the underlying transport. And the modules implementing the transport protocol (FC, iSCSI, etc.) are not aware of the SCSI-level functionality of the packets they are transporting. The framework hides the details of allocation providing execution context and cleanup of SCSI commands and associated resources and simplifies the task of writing the SCSI or transport modules.

  • Oracle iPlanet Web Server 7.0 U5 is used in the user tier of the benchmark with each of the web server instance supporting more than a quarter-million users, while satisfying the stringent response time requirement from the TPC-C benchmark.

See Also

Disclosure Statement

TPC Benchmark C, tpmC, and TPC-C are trademarks of the Transaction Processing Performance Council (TPC). 27-node SPARC T3-4 Cluster (4 x 1.65 GHz SPARC T3 processors) with Oracle Database 11g Release 2 Enterprise Edition with Real Application Clusters and Partitioning, 30,249,688 tpmC, $1.01/tpmC, Available 6/1/2011. IBM Power 780 Cluster (3 nodes using 3.86 GHz POWER7 processors) with IBM DB2 InfoSphere Warehouse Ent. Base Ed. 9.7, 10,366,254 tpmC, $1.38 USD/tpmC, available 10/13/2010. HP Integrity Superdome(1.6GHz Itanium2, 64 processors, 128 cores, 256 threads) with Oracle 10g Enterprise Edition, 4,092,799 tpmC, $2.93/tpmC, available 8/06/07. Energy claims based upon IBM calculations and internal measurements. Source: http://www.tpc.org/tpcc, results as of 11/22/2010

World Record Performance on PeopleSoft Enterprise Financials Benchmark run on Sun SPARC Enterprise M4000 and M5000

Oracle's Sun SPARC Enterprise M4000 and M5000 servers have combined to produce a world record result on Oracle's PeopleSoft Enterprise Financial Management 9.0 benchmark.

  • The Sun SPARC Enterprise M4000 and M5000 servers configured with SPARC64 VII+ processors along with Oracle's Sun Storage F5100 Flash Array system achieved a world record result using PeopleSoft Enterprise Financial Management and Oracle Database 11g Release 2 software running on the Oracle Solaris 10 operating system.

  • The PeopleSoft Enterprise Financial Management solution processed online business transactions to support 1000 concurrent users using 32 application server threads with compliant response times while simultaneously completing complex batch jobs in record time.

  • The Sun Storage F5100 Flash Array system is a high performance, high-density solid-state flash array which provides a read latency of only 0.5 msec which is about 10 times faster than the normal disk latencies of 5 msec measured on this benchmark.

  • The Sun SPARC Enterprise M4000 and M5000 servers were able to process online users and concurrent batch jobs simultaneously in 34.72 minutes on this benchmark that reflects complex, multi-tier environment and utilizes a large back-end database of nearly 1 TB.

  • The combination of Oracle's PeopleSoft Enterprise Financial Management 9.00.00.331, PeopleSoft PeopleTools 8.49.23 and Oracle WebLogic server was run on the Sun SPARC Enterprise M4000 server and Oracle database 11g Release 2 was run on the Sun SPARC Enterprise M5000 server for this benchmark.

Performance Landscape

The following table discloses the current and the single previously disclosed result for this benchmark. Results are elapsed times therefore the smaller number is better.

Servers CPU Tier Batch (mins) Batch
w/Online (mins)
Sun SPARC Enterprise M4000 2.66 GHz SPARC64 VII+ Web/App
33.09
34.72
Sun SPARC Enterprise M5000 2.66 GHz SPARC64 VII+ DB

SPARC T3-1 1.65 GHz SPARC T3 Web/App 35.82 37.01
Sun SPARC Enterprise M5000 2.5 GHz SPARC64 VII DB

Configuration Summary

Web/Application Tier Configuration:

1 x Sun SPARC Enterprise M4000
4 x 2.66 GHz SPARC64 VII+ processors
128 GB of memory

Database Tier Configuration:

1 x Sun SPARC Enterprise M5000
8 x 2.66 GHz SPARC64 VII+ processors
128 GB of memory
1 x Sun Storage F5100 Flash Array (74 x 24 GB FMODs)
2 x StorageTek 2540 (12 x 146 GB SAS 15K RPM)
1 x StorageTek 2501 (12 x 146 GB SAS 15K RPM)
1 x Dual-Port SAS Fibre Channel Host Bus Adapters (HBA)

Software Configurations:

Oracle Solaris 10 10/09
PeopleSoft Enterprise Financial Management/SCM 9.00.00.311 64-bit
PeopleSoft Enterprise (PeopleTools) 8.49.23 64-bit
Oracle Database 11g Release 2 11.1.0.6 64-bit
Oracle Tuxedo 9.1 RP36 with Jolt 9.1
Micro Focus COBOL Server Express 4.0 SP4 64-bit

Benchmark Description

This Day-in-the-Life benchmark measured the concurrent batch and online performance for a large database model. This scenario more accurately represents a production environment where users and scheduled batch jobs must run concurrently. This benchmark measured performance results during a Close-the-Books process.

The PeopleSoft Enterprise Financials 9 batch processes included in this benchmark are as follows:

  • Journal Generator: (AE) This process creates journals from accounting entries (AE) generated from various data sources, including non-PeopleSoft systems as well as PeopleSoft applications. In the benchmark, the Journal Generator (FS_JGEN) process is set up to create accounting entries from Oracle's PeopleSoft applications in the same database, such as PeopleSoft Enterprise Payables, Receivables, Asset Management, Expenses, Cash Management. The process is run with the option of Edit and Post turned on to edit and post the journals created by Journal generator. Journal Edit is an AE program and Post is a COBOL program.

  • Allocation: (AE) This process allocates balances held or accumulated in one or more entities to more than one business unit, department or other entities based on user-defined rules.

  • Journal Edit & Post: (AE & COBOL) Journal Edit validates journal transactions before posting them to the ledger. This validation ensures that journals are valid, for example: valid ChartFields values and combinations, debits and credits equal, and inter/intra-unit balanced, Journal Post process posts only valid, edited journals, ensures each journal line posts to the appropriate target detail ledgers, and then changes the journal's status to posted. In this benchmark, the Journal Edit & Post is also set up to edit and post Oracle's PeopleSoft applications from another database, such as PeopleSoft Enterprise Payroll data.

  • Summary Ledger: (AE) Summary Ledger processing summarizes detail ledger data across selected GL BUs. Summary Ledgers can be generated for reporting purposes or used in consolidations.

  • Consolidations: (COBOL) Consolidation processing summarizes ledger balances and generates elimination journal entries across business units based on user-defined rules.

  • SQR & nVision Reporting: Reporting will consist of nVision and SQR reports. A balance sheet, an income statement, and a trial balance will be generated for each GL BU by SQR processes GLS7002 and GLS7012. The consolidated results of the nVision reports are run by 10 nVision users using 4 standard delivered report request definitions such as BALANCE, INCOME, CONSBAL, and DEPTINC. Each of the nVision users will have ownership over 10 Business Units and each of the nVision users will submit multiple runs that are being executed in parallel to generate a total of 40 nVision reports.

Batch processes are run concurrently with more than 1000 emulated users executing 30 pre-defined online applications. Response times for the online applications are collected and must conform to a maximum time.

Key Points and Best Practices

The Sun SPARC Enterprise M4000 and M5000 servers were able process online users and concurrent batch jobs simultaneously in 34.72 minutes.

The Sun Storage F5100 Flash Array system, which is highly tuned for IOPS, contributed to the result through reduced IO latency.

The family of Sun SPARC Enterprise M-series servers, with Sun Storage F5100 Flash Array systems, form an ideal environment for hosting complex multi-tier applications. This is the second public disclosure of any system running this benchmark.

The Sun SPARC Enterprise M4000 server hosted the web and application server tiers providing good response time to emulated user requests. The benchmark specification allows 1000 users, but there is headroom for increased load.

The Sun SPARC Enterprise M5000 server was used for the database server along with a Sun Storage F5100 Flash Array system. The speed of the M-series server with the low latency of the Flash Array provided the overall low latency for user requests, even while completing complex batch jobs.

Despite the systems being lightly loaded, the increased frequency of the SPARC64 VII+ processors yielded lower latencies and faster elapsed times than previously disclosed results.

The low latency of the Sun Storage F5100 Flash Array storage contributed to the excellent response times of emulated users by making data quickly available to the database back-end. The array was configured as several RAID 0 volumes and data was distributed across the volumes, maximizing storage bandwidth.

The transaction processing capacity of the Sun SPARC Enterprise M5000 server enabled very fast batch processing times while supporting over 1000 online users.

While running the maximum workload specified by the benchmark, the systems were lightly loaded, providing headroom to grow.

Please see the white paper for information on PeopleSoft payroll best practices using flash.

See Also

Disclosure Statement

Oracle's PeopleSoft Financials 9.0 benchmark, Oracle's Sun SPARC Enterprise M4000 (4 2.66 SPARC64 VII+), Oracle's Sun SPARC Enterprise M5000 (8 2.66 SPARC64 VII+), 34.72 min. Results as of 12/02/2010, see www.oracle.com/apps_benchmark/html/white-papers-peoplesoft.html for more about PeopleSoft.

Thursday Sep 30, 2010

Consolidation of 30 x86 Servers onto One SPARC T3-2

One of Oracle's SPARC T3-2 servers was able to consolidate the database workloads off of thirty older x86 servers in a secure virtualized environment.

  • The thirty x86 servers required 6.7 times more power than the consolidated workload on the SPARC T3-2 server.

  • The x86 configuration used 10 times the rack space than the consolidated workload did on the SPARC T3-2 server.

  • In addition to power & space considerations, there are also administrative cost savings resulting from having to manage just one server, as opposed to thirty servers.

  • Gartner says, "They need to realize that removing a single x86 server from a data center will result in savings of more than $400 a year in energy costs alone".

  • The total transaction throughput for the SPARC T3 server (132,000) was almost the same as the aggregate throughput achieved by the thirty x86 servers (138,000), where each x86 running at 10% utilization.

  • The average transaction response time on the SPARC T3-2 server (24 ms) was just a little higher than the average transaction response time on the Intel servers (19.5 ms).

Performance Landscape

System Oracle
Instances
Average
System
Utilization
Transactions/
min/system
Average
Response
time (ms)
watts/
system
OS
Sun Fire X4250
2x 3.0GHz Xeon
1 10% 4,600 19.5 320 Linux
SPARC T3-2
1x 1.65GHz SPARC T3
30 80% 132,000 24.0 1400\* Solaris

\* power consumption includes storage and periperal devices

Notes:
total throughput for 30 Intel systems = 30 \* 4600 = 138,000
total watts for 30 Intel systems = 30 \* 320 = 9600

Results and Configuration Summary

x86 Server Configuration:

30 x Sun Fire X4250 servers, each with
2 X Intel 3.0 GHz E5450 processors
16 GB memory
6 x internal 146 GB 15K SAS disks
RedHat Linux 5.3
Oracle Database 11g Release 2

SPARC T3 Server Configuration:

1 x SPARC T3-2 server
2 x 1.65 GHz SPARC T3 processors
256 GB memory
2 X 10K 300 GB internal SAS disks
1 x Sun Storage F5100 Flash Array storage
1 x Sun Fires X4270 server as COMSTAR target
Oracle Solaris 10 9/10
Oracle Database 11g Release 2

Benchmark Description

This demonstration was designed to show the benefits of virtualization when upgrading from older X86 systems to one of Oracle's T-series servers. A 30:1 consolidation was shown moving from thirty X86 Linux servers to a single T-Series server running Oracle Solaris in a secure virtualized environment. After the consolidation, there was still 20% headroom in the SPARC T3-2 server for additional growth in the workload.

The 200 scale iGen OLTP workload was used to test the consolidation. The x86 system was loaded with iGen clients up to a level of 10% cpu utilization. This load level for x86 systems is typically found in many data centers.

Thirty Oracle Solaris zones (containers) were created on the SPARC T3-2 server, with each zone configured identically as the Oracle configuration on the x86 server. The throughput on each zone was ramped up to the same level as on the Intel base server.

The overall CPU utilization on the SPARC T3-2 server, together with the average iGen transaction response times were then measured along with the power consumption.

Key Points and Best Practices

  • Each Oracle Solaris container was assigned to a processor set consisting of eight virtual CPUs. This use of processor sets was critical to obtaining the reported performance number. Without processor set, the performance was reduced to about one-half the reported performance number.

  • Once the first container was completely configured (with Oracle 11g and iGen installed), the remaining containers were created by a simple cloning procedure, which took no more than a few minutes for each container.

  • Setting up a standalone x86 server with Linux, Oracle and iGen is a far more time consuming task than setting up additional containers once the first container has been created.

See Also

Disclosure Statement

Copyright 2010, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 9/20/2010.

Thursday Sep 23, 2010

SPARC T3-1 Performance on PeopleSoft Enterprise Financials 9.0 Benchmark

Oracle's SPARC T3-1 and Sun SPARC Enterprise M5000 servers combined with Oracle's Sun Storage F5100 Flash Array storage has produced the first world-wide disclosure and World Record performance on the PeopleSoft Enterprise Financials 9.0 benchmark.

  • Using SPARC T3-1 and Sun SPARC Enterprise M5000 servers along with a Sun Storage F5100 Flash Array system, the Oracle solution processed online business transactions to support 1000 concurrent users using 32 application server threads with compliant response times while simultaneously completing complex batch jobs. This is the first publication of this benchmark by any vendor world-wide.

  • The Sun Storage F5100 Flash Array system is a high performance, high-density solid-state flash array which provides a read latency of only 0.5 msec which is about 10 times faster than the normal disk latencies of 5 msec measured on this benchmark.

  • The SPARC T3-1 and Sun SPARC Enterprise M5000 servers were able process online users and concurrent batch jobs simultaneously in 38.66 minutes on this benchmark that reflects complex, multi-tier environment and utilizes a large back-end database of nearly 1 TB.

  • Both the SPARC T3-1 and Sun SPARC Enterprise M5000 servers used the Oracle Solaris 10 operating system.

  • The combination of Oracle's PeopleSoft Enterprise Financials/SCM 9.00.00.331, PeopleSoft Enterprise (PeopleTools) 8.49.23 and Oracle WebLogic server running on the SPARC T3-1 server and the Oracle database 11g Release 1 was run on the Sun SPARC Enterprise M5000 server for this benchmark.

Performance Landscape

As the first world-wide disclosure of this benchmark, no competitive results exist with which the current result may be compared.

Batch Processing Times
Batch Process Elapsed Time in Minutes
Batch Alone\* Batch with
1000 Online Users\*
JGEN Subsystem 7.30 7.78
JEDIT1 2.52 3.77
ALLOCATION 6.05 10.15
ALLOC EDIT/POST 2.32 2.23
SUM LEDGER 1.00 1.18
CONSOLIDATION 1.50 1.55
Total Main Batch Stream 20.69 26.66
SQR/GL_LEDGER 8.92 9.12
SQR/GL_TBAL 3.33 3.35
SQR 11.83 12.00
nVisions 8.78 8.83
nVision 11.83 12.00
Max SQR and nVision Stream 11.83 12.00
Total Batch (sum of Main Batch and Max SQR) 32.52 38.66

\* PeopleSoft Enterprise Financials batch processing and post-processing elapsed times.

Results and Configuration Summary

Hardware Configuration:

1 x SPARC T3-1 (1 x T3 at 1.65 GHz with 128 GB of memory)
1 x Sun SPARC Enterprise M5000 (8 x SPARC64 at 2.53 GHz with 64 GB of memory)
1 x Sun Storage F5100 Flash Array (74 x 24 GB FMODs)
2 x StorageTek 2540 (12 x 146 GB SAS 15K RPM)
1 x StorageTek 2501 (12 x 146 GB SAS 15K RPM)
1 x Dual-Port SAS Fibre Channel Host Bus Adapters (HBA)

Software Configuration:

Oracle Solaris 10 10/09
Oracle's PeopleSoft Enterprise Financials/SCM 9.00.00.311 64-bit
Oracle's PeopleSoft Enterprise (PeopleTools) 8.49.23 64-bit
Oracle 11g R2 11.1.0.6 64-bit
Oracle Tuxedo 9.1 RP36 with Jolt 9.1
Micro Focus COBOL Server Express 4.0 SP4 64-bit

Benchmark Description

The PeopleSoft Enterprise Financials batch processes included in this benchmark are as follows:

  • Journal Generator: (AE) This process creates journals from accounting entries (AE) generated from various data sources, including non-PeopleSoft systems as well as PeopleSoft applications. In the benchmark, the Journal Generator (FS_JGEN) process is set up to create accounting entries from Oracle's PeopleSoft applications in the same database, such as PeopleSoft Enterprise Payables, Receivables, Asset Management, Expenses, Cash Management. The process is run with the option of Edit and Post turned on to edit and post the journals created by Journal generator. Journal Edit is an AE program and Post is a COBOL program.

  • Allocation: (AE) This process allocates balances held or accumulated in one or more entities to more than one business unit, department or other entities based on user-defined rules.

  • Journal Edit & Post: (AE & COBOL) Journal Edit validates journal transactions before posting them to the ledger. This validation ensures that journals are valid, for example: valid ChartFields values and combinations, debits and credits equal, and inter/intra-unit balanced, Journal Post process posts only valid, edited journals, ensures each journal line posts to the appropriate target detail ledgers, and then changes the journal's status to posted. In this benchmark, the Journal Edit & Post is also set up to edit and post Oracle's PeopleSoft applications from another database, such as PeopleSoft Enterprise Payroll data.

  • Summary Ledger: (AE) Summary Ledger processing summarizes detail ledger data across selected GL BUs. Summary Ledgers can be generated for reporting purposes or used in consolidations.

  • Consolidations: (COBOL) Consolidation processing summarizes ledger balances and generates elimination journal entries across business units based on user-defined rules.

  • SQR & nVision Reporting: Reporting will consist of nVision and SQR reports. A balance sheet, and income statement, and a trial balance will be generated for each GL BU by SQR processes GLS7002 and GLS7012. The consolidated results of the nVision reports are run by 10 nVision users using 4 standard delivered report request definitions such as BALANCE, INCOME, CONSBAL, and DEPTINC. Each of the nVision users will have ownership over 10 Business Units and each of the nVision users will submit multiple runs that are being executed in parallel to generate a total of 40 nVision reports.

Batch processes are run concurrently with more than 1000 emulated users executing 30 pre-defined online applications. Response times for the online applications are collected and must conform to a maximum time.

Key Points and Best Practices

Oracle's SPARC T3-1 and Oracle's Sun SPARC Enterprise M5000 servers published the first result for Oracle's PeopleSoft Enterprise Financials 9.0 benchmark for concurrent batch and 1000 online users using the large database model on Oracle 11g running Oracle Solaris 10.

The SPARC T3-1 and Sun SPARC Enterprise M5000 servers were able process online users and concurrent batch jobs simultaneously in 38.66 minutes.

The Sun Storage F5100 Flash Array system, which is highly tuned for IOPS, contributed to the result through reduced IO latency.

The combination of the SPARC T3-1 and Sun SPARC Enterprise M5000 servers, with a Sun Storage F5100 Flash Array system, form an ideal environment for hosting complex multi-tier applications. This is the first public disclosure of any system running this benchmark.

The SPARC T3-1 server hosted the web and application server tiers, providing good response time to emulated user requests. The benchmark specification allows 1000 users, but there is headroom for increased load.

The Sun SPARC Enterprise M5000 server was used for the database server along with a Sun Storage F5100 Flash Array system. The speed of the M-series server with the low latency of the Flash Array provided the overall low latency for user requests, even while completing complex batch jobs.

The parallelism of the SPARC T3-1 server, when used as an application and web server tier, is best taken advantage of by configuring sufficient server processes. With sufficient server processes distributed across the hardware cores, acceptable user response times are achieved.

The low latency of the Sun Storage F5100 Flash Array storage contributed to the excellent response times of emulated users by making data quickly available to the database back-end. The array was configured as several RAID 0 volumes and data was distributed across the volumes, maximizing storage bandwidth.

The transaction processing capacity of the Sun SPARC Enterprise M5000 server enabled very fast batch processing times while supporting over 1000 online users.

While running the maximum workload specified by the benchmark, the systems were lightly loaded, providing headroom to grow.

Please see the white paper for information on PeopleSoft payroll best practices using flash.

See Also

Disclosure Statement

Oracle's PeopleSoft Financials 9.0 benchmark, Oracle's SPARC T3-1 (1 1.65GHz SPARC-T3), Oracle's SPARC Enterprise M5000 (8 2.53GHz SPARC64), 38.66 min. www.oracle.com/apps_benchmark/html/white-papers-peoplesoft.html Results 09/20/2010.

Wednesday Sep 22, 2010

Oracle Solaris 10 9/10 ZFS OLTP Performance Improvements

Oracle Solaris ZFS has seen significant performance improvements in the Oracle Solaris 10 9/10 release compared to the previous release, Oracle Solaris 10 10/09.
  • A 28% reduction in response time comparing holding the load constant in an OLTP workload test comparing Solaris 10 9/10 release to Oracle Solaris 10 10/09.
  • A 19% increase in IOPS throughput holding the response time of 28 msec constant in an OLTP workload test comparing Solaris 10 9/10 release to Oracle Solaris 10 10/09.
  • OLTP workload throughput rates of at least 800 IOPS using Oracle's Sun SPARC Enterprise T5420 server and Oracle's StorageTek 2540 array were used in calculating the above improvement percentages.

Performance Landscape

8K Block Random Read/Write OLTP-Style Test
IOPS Response Time (msec)
Oracle Solaris 10 9/10 Oracle Solaris 10 10/09
100 5.1 8.3
500 11.7 24.6
800 20.1 28.1
900 23.9 32.0
950 28.8 34.4

Results and Configuration Summary

Storage Configuration:

1 x StorageTek 2540 Array
12 x 73 GB 15K RPM HDDs
2 RAID5 5+1 volumes
1 RAID0 host stripe across the volumes

Server Configuration:

1 x Sun SPARC Enterprise T5240 server with
8 GB memory
2 x 1.6 GHz UltraSPARC T2 Plus processors

Software Configuration:

Oracle Solaris 10 10/09
Oracle Solaris 10 9/10
ZFS
SVM

Benchmark Description

IOPs test consisting of a mixture of random 8K block reads and writes accessing a significant portion of the available storage. As such the workload is not very "cache friendly" and, hence, illustrates the capability of the system to more fully utilize the processing capability of the back end storage.

See Also

Disclosure Statement

Copyright 2010, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 9/20/2010.

Tuesday Sep 21, 2010

SPARC T3 Servers Deliver Top Performance on Oracle Communications Order and Service Management

A combination of Oracle's SPARC T3-1 and SPARC T3-2 servers running the Oracle Communications Order and Service Management application delivered world record performance with spare capacity for growth.

  • The Oracle Communications Order and Service Management application achieves a 2.4x performance boost using the combination of the SPARC T3-1 server running the WebLogic 11g application and the SPARC T3-2 server running Oracle database 11g Release 2 compared to a solution using three Dell servers (two Dell PowerEdge R610 and one Dell PowerEdge 2950).

  • Using Oracle's T-series based system solution for the application and database tiers reduces the space requirements by half compared to the equivalent Dell solution.

Performance Landscape

Configuration

Tasks per second
(tps)
App tier: 1 x SPARC T3-1 (1 x SPARC T3, 1.65 GHz), WebLogic Server 10.3.1
DB tier: 1 x SPARC T3-2 (2 x SPARC T3, 1.65 GHz), Oracle 11gR2 (11.2.0.1.0)
1392
App tier: 1 x Sun T5440 (4 x UltraSPARC T2 Plus, 1.6 GHz), WebLogic Server 10.3.1
DB tier: 1 x Sun T5440 (4 x UltraSPARC T2 Plus, 1.6 GHz), Oracle 11gR2 (11.2.0.1.0)
1200
App tier: 2 x Dell PowerEdge R610 (2 x E5530, 2.4 GHz), WebLogic 10.3.1.0
DB tier: 1 x Dell PowerEdge 2950 (2 x X5460, 3.16 GHz), Oracle DB 11gR1 (11.1.0.7.0)
572

Results and Configuration Summary

Application Tier:

1 x SPARC T3-1 server
1 x SPARC T3 processor (1.65GHz)
64 GB memory
Oracle Communications Order and Service Management 7.0.2
Oracle WebLogic 11g Middleware
Oracle Solaris 10 9/10

Database Tier:

1 x SPARC T3-2 server
2 x SPARC T3 processors (1.65GHz)
128 GB memory
1 x Sun Storage 6180 array
2 x CSM200 expansion trays
48 x 280 GB FC 15k rpm disk drivers
Oracle 11gR2 database
Oracle Solaris 10 9/10

Benchmark Description

Oracle Communications Order and Service Management is an application from the Oracle Communications Global Business Unit (CGBU) that allows Telco to handle service orders across network services and domains. It is a key component of the operations support system (OSS) suite and one suitable for T-Series servers. The key metric is tasks per second (tps) demonstrating the ability to handle a large number of orders.

The benchmark was developed by the Oracle Communications Order and Service Management (OSM) team. Results have not been shared externally and are mostly being used for sizing purposes. This particular workload, known as the "Classic" model, simulates local fulfillment of OSM orders. An order is a unit of work that separates out into a varying number of tasks. The amount of completed tasks per second forms the basis of the metric. In a typical deployment scenario, OSM takes its input from the CRM system (e.g. Siebel), breaks down the order into a set of tasks, and channels these tasks into the service activation system of a Telco operator.

The workload stresses the database backend with a lighter load on the application tier. As a guideline, a well-balanced design specifies 2-3x the compute power on the database tier over the application tier.

Key Points and Best Practices

  • The average server utilization for the database server (SPARC T3-2) was 70%. The average server utilization for the application server (SPARC T3-1) was 50%.

  • The SPARC T3-2 and SPARC T3-1 servers require a total of 5U rack space. The Dell solution required a total of 4U rack space. Including in the difference in performance, the Oracle T-series solution provides much better space/performance solution (much more performance in similar space).

See Also

Disclosure Statement

Copyright 2010, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 9/20/2010.

Monday Sep 20, 2010

Sun Fire X4470 4 Node Cluster Delivers World Record SAP SD-Parallel Benchmark Result

Oracle delivered an SAP enhancement package 4 for SAP ERP 6.0 Sales and Distribution – Parallel (SD-Parallel) Benchmark world record result using four of Oracle's Sun Fire X4470 servers, Oracle Solaris 10 and Oracle 11g Real Application Clusters (RAC) software.

  • The Sun Fire X4470 servers delivered 8% more performance compared to the IBM Power 780 server running the SAP enhancement package 4 for SAP ERP 6.0 Sales and Distribution benchmark.

  • The Sun Fire X4470 servers result of 40,000 users delivered 2.2 times the performance of the HP ProLiant DL980 G7 result of 18,180 users.

  • The Sun Fire X4470 servers result of 40,000 users delivered 2.5 times the performance of the Fujitsu PRIMEQUEST 1800E result of 16,000 users.

This result shows that a complete software and hardware solution from Oracle using Oracle RAC, Oracle Solaris and Sun servers provides a superior performing solution.

Performance Landscape

Selected SAP Sales and Distribution benchmark results are presented in decreasing order in performance. All benchmarks were using SAP enhancement package 4 for SAP ERP 6.0 (Unicode) except the result marked with an asterix (\*) which was achieved with SAP ERP 6.0.

System OS
Database
Users SAPS Type Date
Four Sun Fire X4470
4xIntel Xeon X7560 @2.26GHz
256 GB
Solaris 10
Oracle 11g Real Application Clusters
40,000 221,014 Parallel 20-Sep-10
Five IBM System p 570 (\*)
8xPOWER6 @4.7GHz
128 GB
AIX 5L Version 5.3
Oracle 10g Real Application Clusters
37,040 187,450 Parallel "non-Unicode" 25-Mar-08
IBM Power 780
8xPOWER7 @3.8GHz
1 TB
AIX 6.1
DB2 9.7
37,000 202,180 2-Tier 7-Apr-10
Two Sun Fire X4470
4xIntel Xeon X7560 @2.26GHz
256 GB
Solaris 10
Oracle 11g Real Application Clusters
21,000 115,300 Parallel 28-Jun-10
HP DL980 G7
8xIntel Xeon X7560 @2.26GHz
512 GB
Win Server 2008 R2 DE
SQL Server 2008
18,180 99,320 2-Tier 21-Jun-10
Fujitsu PRIMEQUEST 1800E
8xIntel Xeon X7560 @2.26GHz
512 GB
Win Server 2008 R2 DE
SQL Server 2008
16,000 87,550 2-Tier 30-Mar-10
Four Sun Blade X6270
2xIntel Xeon X5570 @2.93GHz
48 GB
Solaris 10
Oracle 10g Real Application Clusters
13,718 75,762 Parallel 12-Oct-09
HP DL580 G7
4xIntel Xeon X7560 @2.26GHz
256 GB
Win Server 2008 R2 DE
SQL Server 2008
10,445 57,020 2-Tier 21-Jun-10
Two Sun Blade X6270
2xIntel Xeon X5570 @2.93GHz
48 GB
Solaris 10
Oracle 10g Real Application Clusters
7,220 39,420 Parallel 12-Oct-09
One Sun Blade X6270
2xIntel Xeon X5570 @2.93GHz
48 GB
Solaris 10
Oracle 10g Real Application Clusters
3,800 20,750 Parallel 12-Oct-09

Complete benchmark results and a description can be found at the SAP benchmark website http://www.sap.com/solutions/benchmark/sd.epx.

Results and Configuration Summary

Hardware Configuration:

4 x Sun Fire X4470 servers, each with
4 x Intel Xeon X7560 2.26 GHz (4 chips, 32 cores, 64 threads)
256 GB memory

Software Configuration:

Oracle 11g Real Application Clusters (RAC)
Oracle Solaris 10

Results Summary:

Number of SAP SD benchmark users:
40,000
Average dialog response time:
0.86 seconds
Throughput:

Dialog steps/hour:
13,261,000

SAPS:
221,020
SAP Certification:
2010039

Benchmark Description

SAP is one of the premier world-wide ERP application providers and maintains a suite of benchmark tests to demonstrate the performance of competitive systems running the various SAP products.

The SAP Standard Application SD Benchmark represents the critical tasks performed in real-world ERP business environments. The SAP Standard Application Sales and Distribution - Parallel (SD-Parallel) Benchmark is a two-tier ERP business test that is indicative of full business workloads of complete order processing and invoice processing and demonstrates the ability to run both the application and database software on a single system.

The SD-Parallel Benchmark consists of the same transactions and user interaction steps as the SD Benchmark. This means that the SD-Parallel Benchmark runs the same business processes as the SD Benchmark. The difference between the benchmarks is the technical data distribution.

The additional rule for parallel and distributed databases is one must equally distribute the benchmark users across all database nodes for the used benchmark clients (round-robin method). Following this rule, all database nodes work on data of all clients. This avoids unrealistic configurations such as having only one client per database node.

The SAP Benchmark Council agreed to give the parallel benchmark a different name so that the difference can be easily recognized by any interested parties - customers, prospects, and analysts. The naming convention is SD-Parallel for Sales & Distribution - Parallel.

In January 2009, a new version of the SAP enhancement package 4 for SAP ERP 6.0 (Unicode) Sales and Distribution (SD) Benchmark was released. This new release has higher cpu requirements and so yields from 25-50% fewer users compared to the previous (non-unicode) Standard Sales and Distribution (SD) Benchmark. Between 10-30% of this greater load is due to the extra overhead from the processing of the larger character strings due to Unicode encoding.

Unicode is a computing standard that allows for the representation and manipulation of text expressed in most of the world's writing systems. Before the Unicode requirement, this benchmark used ASCII characters meaning each was just 1 byte. The new version of the benchmark requires Unicode characters and the Application layer (where ~90% of the cycles in this benchmark are spent) uses a new encoding, UTF-16, which uses 2 bytes to encode most characters (including all ASCII characters) and 4 bytes for some others. This requires computers to do more computation and use more bandwidth and storage for most character strings. Refer to the above SAP Note for more details.

See Also

Disclosure Statement

SAP enhancement package 4 for SAP ERP 6.0 (Unicode) Sales and Distribution Benchmark, results as of 9/19/2010. For more details, see http://www.sap.com/benchmark. SD-Parallel, Four Sun Fire X4470 (each 4 processors, 32 cores, 64 threads) 40,000 SAP SD Users, Cert# 2010039. SD-Parallel, Two Sun Fire X4470 (each 4 processors, 32 cores, 64 threads) 21,000 SAP SD Users, Cert# 2010029. SD 2-Tier, HP ProLiant DL980 G7 (8 processors, 64 cores, 128 threads) 18,180 SAP SD Users, Cert# 2010028. SD 2-Tier, Fujitsu PRIMEQUEST 1800E (8 processors, 64 cores, 128 threads) 16,000 SAP SD Users, Cert# 2010010. SD-Parallel, Four Sun Blade X6270 (each 2 processors, 8 cores, 16 threads) 13,718 SAP SD Users, Cert# 2009041. SD 2-Tier, HP ProLiant DL580 G7 (4 processors, 32 cores, 64 threads) 10,490 SAP SD Users, Cert# 2010032. SD 2-Tier, IBM System x3850 X5 (4 processors, 32 cores, 64 threads) 10,450 SAP SD Users, Cert# 2010012. SD 2-Tier, Fujitsu PRIMERGY RX600 S5 (4 processors, 32 cores, 64 threads) 9,560 SAP SD Users, Cert# 2010017. SD-Parallel, Two Sun Blade X6270 (each 2 processors, 8 cores, 16 threads) 7,220 SAP SD Users, Cert# 2009040. SD-Parallel, Sun Blade X6270 (2 processors, 8 cores, 16 threads) 3,800 SAP SD Users, Cert# 2009039. SD 2-Tier, Sun Fire X4270 (2 processors, 8 cores, 16 threads) 3,800 SAP SD Users, Cert# 2009033.

SAP ERP 6.0 (Unicode) Sales and Distribution Benchmark, results as of 9/19/2010. SD-Parallel, Five IBM System p 570 (each 8 processors, 16 cores, 32 threads) 37,040 SAP SD Users, Cert# 2008013.

SPARC T3-4 Sets World Record Single Server Result on SPECjEnterprise2010 Benchmark

World Record Single Application Server System Performance

Oracle produced a single application server world record SPECjEnterprise2010 benchmark result using Oracle's SPARC T3-4 server for the application server and Oracle's SPARC T3-2 server for the database server.
  • A SPARC T3-4 server paired with a SPARC T3-2 server delivered a result of 9456.28 SPECjEnterprise2010 EjOPS for the SPECjEnterprise benchmark.

  • The SPARC T3-4 server running at 1.65 GHz demonstrated 32% better performance compared to the IBM Power 750 system result of 7172.93 SPECjEnterprise2010 EjOPS which used four POWER7 chips running at 3.55 GHz.

  • The 4-socket SPARC T3-4 server was 32% faster than a 4-socket IBM Power 750 system proving that IBM's per-core performance is irrelevant when compared to system performance.

  • The SPARC T3-4 server has 5% better computational density than the IBM Power 750 system.

  • The SPARC T3-4 server running SPARC T3 processors at 1.65 GHz demonstrated 84% better performance compared to the IBM x3850 X5 system result of 5140.53 SPECjEnterprise2010 EjOPS using four Intel Xeon chips at 2.27 GHz.

  • The SPARC T3-4 server has 47% better computational density than the IBM x3850 X5 system.

  • This world record result was achieved using Oracle Weblogic 10.3.3 application server and Oracle Database 11g R2.

  • Oracle Fusion Middleware provides a family of complete, integrated, hot plugable and best-of-breed products known for enabling enterprise customers to create and run agile and intelligent business applications. The Oracle WebLogic Server's on-going, record-setting Java application server performance demonstrates why so many customers rely on Oracle Fusion Middleware as their foundation for innovation.

  • To obtain this leading result a number of Oracle technologies were used: Oracle Solaris 10, Oracle Solaris Containers, Oracle Java Hotspot VM, Oracle Weblogic, Oracle Database 11gR2, SPARC T3-4 server, and SPARC T3-2 server.

  • The SPARC T3-4 server demonstrated less than 1 second average response times for all SPECjEnterprise2010 transactions and 90% of all transaction times took less than 1 second.

  • The two T-series systems occupied a total of 16 RU of space. This is less than half of the 37 RU of space used in the IBM Power 750 system result of 7172.93 SPECjEnterprise2010 EjOPS.

  • The SPARC T3-4 server result only used 61% of floor space compared to the IBM x3850 X5 system result of 5140.53 SPECjEnterprise2010 EjOPS which requires 26 RU of space.

Performance Landscape

Complete benchmark results are at the SPEC website, SPECjEnterprise2010 Results.

SPECjEnterprise2010 Performance Chart
as of 9/20/2010
Submitter EjOPS\* Application Server Database Server
Oracle 9456.28 1 x Oracle SPARC T3-4
4 x SPARC 1.65 GHz SPARC T3
Oracle WebLogic 10.3.3
1 x Oracle SPARC T3-2
2 x 1.65 GHz SPARC T3
Oracle 11g DB 11.2.0.1
IBM 7172.93 1 x IBM Power 750 Express
4 x 3.55 GHz POWER7
WebSphere Application Server V7.0
1 x IBM BladeCenter PS702
2 x 3.0 GHz POWER7
IBM DB2 Universal Database 9.7
IBM 5140.53 1 x IBM x3850 X5
4 x 2.2 GHz Intel X7560
WebSphere Application Server V7.0
1 x IBM x3850 X5
4 x 2.2 GHz Intel X7560
IBM DB2 Universal Database 9.7

\* SPECjEnterprise2010 EjOPS, Bigger is better.

Results and Configuration Summary

Application Server:

1 x Oracle SPARC T3-4 server
4 x 1.65 GHz SPARC T3 processors
256 GB memory
4 x 10GbE NIC
Oracle Solaris 10 9/10
Oracle Solaris Containers
Oracle WebLogic 10.3.3 Application Server - Standard Edition
Oracle Fusion Middleware
Oracle Java SE, JDK 6 Update 21

Database Server:

1x Oracle SPARC T3-2
2 x 1.65 GHz SPARC T3 processors
256 GB memory
2 x 10GbE NIC
2 x Sun Storage 6180 Array
Oracle Solaris 10 9/10
Oracle Database Enterprise Edition Release 11.2.0.1

Benchmark Description

The SPECjEnterprise2010™ benchmark is a full system benchmark which allows performance measurement and characterization of Java EE 5.0 servers and supporting infrastructure such as JVM, Database, CPU, disk and servers.

The workload consists of an end-to-end web-based order processing domain, an RMI and Web Services driven manufacturing domain and a supply chain model utilizing document-based Web Services. The application is a collection of Java classes, Java Servlets, Java Server Pages , Enterprise Java Beans, Java Persistence Entities (pojo's) and Message Driven Beans.

SPECjEnterprise2010 is the third generation of the SPEC organization's J2EE end-to-end industry standard benchmark application. The new SPECjEnterprise2010 benchmark has been re-designed and developed to cover the JEE 5.0 specification's significantly expanded and simplified programming model, highlighting the major features used by developers in the industry today. This provides a real world workload driving the Application Server's implementation of the Java EE specification to its maximum potential and allowing maximum stressing of the underlying hardware and software systems.

SPEC has paid particular attention to making this benchmark as easy as possible to install and run. This has been achieved by utilizing simplification features of the Java EE 5.0 platform such as annotations and sensible defaulting and by the use of the opensource Faban facility for developing and running the benchmark driver.

SPECjEnterprise2010's new design spans Java EE 5.0 including the new EJB 3.0 and WSEE component architecture, Message Driven beans, and features level transactions.

Key Points and Best Practices

  • Eight Oracle WebLogic server instances on the SPARC T3-4 server were hosted in 8 separate Oracle Solaris Containers to demonstrate consolidation of multiple application servers.

  • Each Oracle Solaris container was bound to a separate processor set, each containing 7 cores. This was done to improve performance by using the physical memory closest to the processors, thereby, reducing memory access latency. The default processor set was used for network and disk interrupt handling.

  • The Oracle WebLogic application servers were executed in the FX scheduling class to improve performance by reducing the frequency of context switches.

  • The Oracle database processes were run in 2 processor sets using the Oracle Solaris psrset utility and executed in the FX scheduling class. These were done to improve performance by reducing memory access latency and by reducing context switches.

  • The Oracle Log Writer process was run in a separate processor set containing 1 core and run in the RT scheduling class. This was done to insure that the Log Writer had the most efficient use of CPU resources.

See Also

Disclosure Statement

SPEC is a registered trademark and SPECjEnterprise is a trademark of Standard Performance Evaluation Corporation. Results from www.spec.org as of 9/20/2010. SPARC T3-4 9456.28 SPECjEnterprise2010 EjOPS. IBM Power 750 Express 7,172.93 SPECjEnterprise2010 EjOPS. IBM System x3850 X5 5,140.53 SPECjEnterprise2010 EjOPS.

IBM Power 750 Express (4RU each).
IBM BladeCenter H Chassis (9RU each).
IBM System x3850 X5 (4RU each).
IBM DS4800 Disk System Model 82 (4RU each).
IBM DS4000 EXP810 (3RU each).

http://www-03.ibm.com/systems/power/hardware/750/index.html
http://www-03.ibm.com/systems/x/hardware/enterprise/x3850x5/index.html
http://www-03.ibm.com/systems/bladecenter/hardware/chassis/bladeh/index.html
http://www-900.ibm.com/storage/cn/disk/ds4000/ds4800/TSD01054USEN.pdf
http://www-947.ibm.com/support/entry/portal/docdisplay?lndocid=MIGR-59552&brandind=5000028
http://www-03.ibm.com/systems/storage/disk/ds4000/exp810/

Monday Jun 28, 2010

Sun Fire X4470 2-Node Configuration Sets World Record for SAP SD-Parallel Benchmark

Using two of Oracle's Sun Fire X4470 servers to run the SAP Enhancement Package 4 for SAP ERP 6.0 (Unicode) Sales and Distribution – Parallel (SD-Parallel) standard application benchmark, Oracle delivered a world record result. This was run using Oracle Solaris 10 and Oracle 11g Real Application Clusters (RAC) software.

  • The Sun Fire X4470 servers result of 21,000 users delivered more than twice the performance of the IBM System x3850 X5 system result of 10,450 users.

  • The Sun Fire X4470 servers result of 21,000 users beat the HP ProLiant DL980 G7 system result of 18,180 users. Both solutions used 8 Intel Xeon X7560 processors.

  • The Sun Fire X4470 servers result of 21,000 users beat the Fujitsu PRIMEQUEST 1800E system result of 16,000 users. Both solutions used 8 Intel Xeon X7560 processors.

  • This result shows how a compete software and hardware solution from Oracle, using Oracle RAC, Oracle Solaris and along with Oracle's Sun servers, can provide a superior performing solution when compared to the competition.

Performance Landscape

SAP Enhancement Package 4 for SAP ERP 6.0 (Unicode) Sales and Distribution Benchmark, select results presented in decreasing performance order. Both Parallel and 2-Tier solution results are listed in the table.

System OS
Database
Users SAPS Type Date
Two Sun Fire X4470
4xIntel Xeon X7560 @2.26GHz
256 GB
Solaris 10
Oracle 11g Real Application Clusters
21,000 115,300 Parallel 28-Jun-10
HP DL980 G7
8xIntel Xeon X7560 @2.26GHz
512 GB
Win Server 2008 R2 DE
SQL Server 2008
18,180 99,320 2-Tier 21-Jun-10
Fujitsu PRIMEQUEST 1800E
8xIntel Xeon X7560 @2.26GHz
512 GB
Win Server 2008 R2 DE
SQL Server 2008
16,000 87,550 2-Tier 30-Mar-10
Four Sun Blade X6270
2xIntel Xeon X5570 @2.93GHz
48 GB
Solaris 10
Oracle 10g Real Application Clusters
13,718 75,762 Parallel 12-Oct-09
IBM System x3850 X5
4xIntel Xeon X7560 @2.26GHz
256 GB
Win Server 2008 EE
DB2 9.7
10,450 57,120 2-Tier 30-Mar-10
HP DL580 G7
4xIntel Xeon X7560 @2.26GHz
256 GB
Win Server 2008 R2 DE
SQL Server 2008
10,445 57,020 2-Tier 21-Jun-10
Fujitsu PRIMERGY RX600 S5
4xIntel Xeon X7560 @2.26GHz
512 GB
Win Server 2008 R2 DE
SQL Server 2008
9,560 52,300 2-Tier 06-May-10
Two Sun Blade X6270
2xIntel Xeon X5570 @2.93GHz
48 GB
Solaris 10
Oracle 10g Real Application Clusters
7,220 39,420 Parallel 12-Oct-09
One Sun Blade X6270
2xIntel Xeon X5570 @2.93GHz
48 GB
Solaris 10
Oracle 10g Real Application Clusters
3,800 20,750 Parallel 12-Oct-09
Sun Fire X4270
2xIntel Xeon X5570 @2.93GHz
48 GB
Solaris 10
Oracle 10g
3,800 21,000 2-Tier 21-Aug-09

Complete benchmark results may be found at the SAP benchmark website http://www.sap.com/solutions/benchmark/sd.epx.

Results and Configuration Summary

Hardware Configuration:

2 x Sun Fire X4470 servers, each with
4 x Intel Xeon X7560 2.26 GHz (4 chips, 32 cores, 64 threads)
256 GB memory

Software Configuration:

Oracle 11g Real Application Clusters (RAC)
Oracle Solaris 10

Results Summary:

Number of SAP SD benchmark users:
21,000
Average dialog response time:
0.93 seconds
Throughput:

Dialog steps/hour:
6,918,000

SAPS:
115,300
SAP Certification:
2010029

Benchmark Description

The SAP Standard Application Sales and Distribution - Parallel (SD-Parallel) Benchmark is a two-tier ERP business test that is indicative of full business workloads of complete order processing and invoice processing, and demonstrates the ability to run both the application and database software on a single system. The SAP Standard Application SD Benchmark represents the critical tasks performed in real-world ERP business environments.

The SD-Parallel Benchmark consists of the same transactions and user interaction steps as the SD Benchmark. This means that the SD-Parallel Benchmark runs the same business processes as the SD Benchmark. The difference between the benchmarks is the technical data distribution.

An additional rule for parallel and distributed databases is one must equally distribute the benchmark users across all database nodes for the used benchmark clients (round-robin-method). Following this rule, all database nodes work on data of all clients. This avoids unrealistic configurations such as having only one client per database node.

The SAP Benchmark Council agreed to give the parallel benchmark a different name so that the difference can be easily recognized by any interested parties - customers, prospects, and analysts. The naming convention is SD-Parallel for Sales & Distribution - Parallel.

SAP is one of the premier world-wide ERP application providers, and maintains a suite of benchmark tests to demonstrate the performance of competitive systems on the various SAP products.

See Also

Disclosure Statement

SAP Enhancement Package 4 for SAP ERP 6.0 (Unicode) Sales and Distribution Benchmark, results as of 6/22/2010. For more details, see http://www.sap.com/benchmark. SD-Parallel, Two Sun Fire X4470 (each 4 processors, 32 cores, 64 threads) 21,000 SAP SD Users, Cert# 2010029. SD 2-Tier, HP ProLiant DL980 G7 (8 processors, 64 cores, 128 threads) 18,180 SAP SD Users, Cert# 2010028. SD 2-Tier, Fujitsu PRIMEQUEST 1800E (8 processors, 64 cores, 128 threads) 16,00o SAP SD Users, Cert# 2010010. SD-Parallel, Four Sun Blade X6270 (each 2 processors, 8 cores, 16 threads) 13,718 SAP SD Users, Cert# 2009041. SD 2-Tier, IBM System x3850 X5 (4 processors, 32 cores, 64 threads) 10,450 SAP SD Users, Cert# 2010012. SD 2-Tier, Fujitsu PRIMERGY RX600 S5 (4 processors, 32 cores, 64 threads) 9,560 SAP SD Users, Cert# 2010017. SD-Parallel, Two Sun Blade X6270 (each 2 processors, 8 cores, 16 threads) 7,220 SAP SD Users, Cert# 2009040. SD-Parallel, Sun Blade X6270 (2 processors, 8 cores, 16 threads) 3,800 SAP SD Users, Cert# 2009039. SD 2-Tier, Sun Fire X4270 (2 processors, 8 cores, 16 threads) 3,800 SAP SD Users, Cert# 2009033.

Thursday Jun 10, 2010

Hyperion Essbase ASO World Record on Sun SPARC Enterprise M5000

Oracle's Sun SPARC Enterprise M5000 server is an excellent platform for implementing Oracle Essbase as demonstrated by the Aggregate Storage Option (ASO) benchmark.

  • Oracle's Sun SPARC Enterprise M5000 server with Oracle Solaris 10 and using Oracle's Sun Storage F5100 Flash Array system has achieved world record performance running the Oracle Essbase Aggregate Storage Option benchmark using Oracle Hyperion Essbase 11.1.1.3 and the Oracle 11g database.

  • The workload used over 1 billion records in a 15 dimensional database with millions of members. Oracle Hyperion is a component of Oracle Fusion Middleware.

  • Sun Storage F5100 Flash Array system provides more than 20% improvement out of the box compared to a mid-size fiber channel disk array for default aggregation and user based aggregation.

  • The Sun SPARC Enterprise M5000 server with Sun Storage F5100 Flash Array system and Oracle Hyperion Essbase 11.1.1.3 running on Oracle Solaris 10 provides less than 1 second query response times for 20K users in a 15 dimensional database.

  • Sun Storage F5100 Flash Array system and Oracle Hyperion Essbase provides the best combination for large Essbase database leveraging ZFS and taking advantage of high bandwidth for faster load and aggregation.

  • Oracle Fusion Middleware provides a family of complete, integrated, hot pluggable and best-of-breed products known for enabling enterprise customers to create and run agile and intelligent business applications. Oracle Hyperion's performance demonstrates why so many customers rely on Oracle Fusion Middleware as their foundation for innovation.

Performance Landscape

System Data Base Size Data Load Def Agg User Aggregation
Sun M5000, 2.53 GHz SPARC64 VII 1000M 269 min 526 min 115 min
Sun M5000, 2.4 GHz SPARC64 VII 400M 120 min 448 min 18 min

less time means faster result.

Results and Configuration Summary

Hardware Configuration:

    Sun SPARC Enterprise M5000
      4 x SPARC64 VII, 2.53 GHz
      64 GB memory
    Sun Storage F5100 Flash Array
      40 x 24 GB Flash modules

Software Configuration:

    Oracle Solaris 10
    Oracle Solaris ZFS
    Installer V 11.1.1.3
    Oracle Hyperion Essbase Client v 11.1.1.3
    Oracle Hyperion Essbase v 11.1.1.3
    Oracle Hyperion Essbase Administration services 64-bit
    Oracle Weblogic 9.2MP3 -- 64 bit
    Oracle Fusion Middleware
    Oracle RDBMS 11.1.0.7 64-bit

Benchmark Description

The benchmark highlights how Oracle Essbase can support pervasive deployments in large enterprises. It simulates an organization that needs to support a large Essbase Aggregate Storage database with over one billion data items, large dimension with 14 million members and 20 thousand active concurrent users, each operating in mixed mode: ad-hoc reporting and report viewing. The application for this benchmark was designed to model a scaled out version of a financial business intelligence application.

The benchmarks simulates typical administrative and user operations in an OLAP application environment. Administrative operations include: dimension build, data load, and data aggregation. User testing modeled a total user base of 200,000 with 10 percent actively retrieving data from Essbase.

Key Points and Best Practices

  • Sun Storage F5100 Flash Array system has been used to accelerate the application performance.
  • Jumbo frames were enabled to faster data loading.

See Also

Disclosure Statement

Oracle Essbase, www.oracle.com/solutions/mid/oracle-hyperion-enterprise.html, results 5/20/2010.

Wednesday Jun 09, 2010

PeopleSoft Payroll 500K Employees on Sun SPARC Enterprise M5000 World Record

Oracle's Sun SPARC Enterprise M5000 server combined with Oracle's Sun Storage F5100 Flash Array system has produced World Record Performance on PeopleSoft Payroll 9.0 (North American) 500K employees benchmark.
  • The Sun SPARC Enterprise M5000 server and the Sun Storage F5100 Flash Array system processed payroll for 500K employees using 32 payroll threads 18% faster than the IBM z10 EC 2097-709 mainframe as measured for payroll processing tasks in the Peoplesoft Payroll 9.0 (North American) benchmark. This IBM mainframe is rated at 6,512 MIPS.

  • The IBM z10 mainframe with nine 4.4 GHz Gen1 processors has a list price over $6M.

  • The Sun SPARC Enterprise M5000 server together with the Sun Storage F5100 Flash Array system processed payroll for 500K employees using 32 payroll threads 92% faster than an HP rx7640 as measured for payroll processing tasks in the Peoplesoft Payroll 9.0 (North American) benchmark.

  • The Sun Storage F5100 Flash Array system is a high performance, high density solid state flash array which provides a read latency of only 0.5 msec which is about 10 times faster than the normal disk latencies 5 msec measured on this benchmark.

  • The Sun SPARC Enterprise M5000 server used the Oracle Solaris 10 operating system and ran with the Oracle 11gR1 database for this benchmark.

Performance Landscape

500K Employees

System Processor OS/Database Time in Minutes Num of
Streams
Payroll
Processing
Result
Run 1 Run 2 Run 3
Sun M5000 8x 2.53GHz SPARC64 VII Solaris/Oracle 11g 50.11 73.88 534.20 1267.06 32
IBM z10 9x 4.4GHz Gen1, 6,512 MIPS Z/OS /DB2 58.96 80.5 250.68 462.6 8
HP rx7640 8x 1.6GHz Itanium2 HP-UX/Oracle 11g 96.17 133.63 712.72 1665.01 32

Times under all Run columns above represent Payroll processing and Post-processing elapsed times and furthermore:

  • Run 1 = 32 parallel job streams & Single Check option = "No"
  • Run 2 = 32 sequential jobs for Pay Calculation process & 32 parallel job streams for the rest. Single Check option = "Yes"
  • Run 3 = One job stream & Single Check option = "Yes"

Times under Result column represents Payroll processing only.

Results and Configuration Summary

Hardware Configuration:

    1 x Sun SPARC Enterprise M5000 (8 x 2.53 GHz/64 GB)
    1 x Sun Storage F5100 Flash Array (40 x 24 GB FMODs)
    1 x StorageTek 2510 (4 x 136 GB SAS 15K RPM)
    4 x Dual-Port SAS Fibre Channel Host Bus Adapters (HBA)

Software Configuration:

    Oracle Solaris 10 10/09
    Oracle PeopleSoft HCM and Campus Solutions 9.00.00.311 64-bit
    Oracle PeopleSoft Enterprise (PeopleTools) 8.49.25 64-bit
    Oracle 11g R1 11.1.0.7 64-bit
    Micro Focus COBOL Server Express 4.0 SP4 64-bit

Benchmark Description

The PeopleSoft 9.0 Payroll (North America) benchmark is a performance benchmark established by PeopleSoft to demonstrate system performance for a range of processing volumes in a specific configuration. This information may be used to determine the software, hardware, and network configurations necessary to support processing volumes. This workload represents large batch runs typical of OLTP workloads during a mass update.

To measure five application business process run times for a database representing large organization. The five processes are:

  • Paysheet Creation: generates payroll data worksheet for employees, consisting of std payroll information for each employee for given pay cycle.

  • Payroll Calculation: Looks at Paysheets and calculates checks for those employees.

  • Payroll Confirmation: Takes information generated by Payroll Calculation and updates the employees' balances with the calculated amounts.

  • Print Advice forms: The process takes the information generated by payroll Calculations and Confirmation and produces an Advice for each employee to report Earnings, Taxes, Deduction, etc.

  • Create Direct Deposit File: The process takes information generated by above processes and produces an electronic transmittal file use to transfer payroll funds directly into an employee bank a/c.

For the benchmark, we collect at least three data points with different number of job streams (parallel jobs). This batch benchmark allows a maximum of thirty-two job streams to be configured to run in parallel.

Key Points and Best Practices

Please see the white paper for information on PeopleSoft payroll best practices using flash.

See Also

Disclosure Statement

Oracle PeopleSoft Payroll 9.0 benchmark, Sun SPARC Enterprise M5000 (8 2.53GHz SPARC64 VII) 50.11 min, IBM z10 (9 gen1) 58.96 min, HP rx7640 (8 1.6GHz Itanium2) 96.17 min, www.oracle.com/apps_benchmark/html/white-papers-peoplesoft.html, results 6/3/2010.

Thursday Jun 03, 2010

Sun SPARC Enterprise T5440 World Record SPECjAppServer2004

Using five of Oracle's Sun SPARC Enterprise T5440 systems for application serving along with one of Oracle's Sun SPARC Enterprise M9000 servers for the database server allowed Oracle to deliver a world record result of 28,648.74 SPECjAppServer2004 JOPS@Standard on the SPECjAppServer2004 benchmark.

This result was run using the Oracle WebLogic 10.3.3 Application Server, a component of Oracle Fusion Middleware, and Oracle Database 11g Enterprise Edition with the Oracle Solaris 10 operating system to obtain this world record result.

Oracle Performance Advantages
  • This Oracle result is 26% faster than the IBM result of 22,634.13 SPECjAppServer2004 JOPS@Standard. For the application tier of the benchmark, Oracle used five Sun SPARC Enterprise T5440 servers compared to the sixteen IBM BladeCenter HS blades used by IBM. For the database tier, Oracle used a Sun SPARC Enterprise M9000 server compared to a IBM system p5 595 used by IBM. 

  • The Oracle result is faster than the HP result of 28,463.03 SPECjAppServer2004 JOPS@Standard. For the application tier of the benchmark, Oracle used five Sun SPARC Enterprise T5440 servers compared to the seventeen HP BL870c blade servers used by HP. For the database tier, Oracle used a Sun SPARC Enterprise M9000 server compared to a HP Superdome used by HP. 

Oracle's Advantages in Reduced Space and Reduced Number of Servers
  • The five Sun SPARC Enterprise T5440 servers used a total of 20 RU of space to obtain this result which is 26% less than the 27 RU space used by the three blade chassis containing sixteen IBM BladeCenter HS blades.

  • IBM uses more than 3.4 times the number of application servers than Oracle.

  • The five Sun SPARC Enterprise T5440 servers occupied 40% of the 50 RU space used by the five blade chassis containing 17 HP BL870c blade servers to obtain this leading result. 

  • HP uses more than 3.2 times the number of application servers than Oracle.

Oracle's Storage Advantages:
  • The six Sun Storage F5100 Flash Array storage used in this result occupied 6U of rack space which is 13% of the 44U space used by the database storage in the IBM result. 

  • The database storage in the HP result used 4x EVA81000 Storage arrays consuming112U of space is more than 18 times the 6U space used for database storage in the Oracle result.

  • The application server storage in the HP result used an EVA6100 storage space which consumed 16U of space for JMS logs. The 5x T5440 each used internal SSDs for the same function - no additional external storage was used.

Oracle Technologies Utilized:
  • Six of Oracle's Sun Storage F5100 Flash Array storage were used with Oracle 11g Enterprise Edition on the Sun SPARC Enterprise M9000 server to show outstanding database performance in this benchmark. 

  • These results were obtained using Java Platform, Standard Edition JDK 6 Update 20 on the Sun SPARC Enterprise T5440 servers and running the Oracle Solaris 10 10/09 operating system.

  • The five Sun SPARC Enterprise T5440 servers used Oracle Solaris Containers to consolidate eight Oracle Weblogic application server instances on each server to achieve this result. 

  • Oracle Fusion Middleware provides a family of complete, integrated, hot pluggable and best-of-breed products known for enabling enterprise customers to create and run agile and intelligent business applications. Oracle WebLogic Servers on-going, record-setting Java application server performance demonstrates why so many customers rely on Oracle Fusion Middleware as their foundation for innovation.

Oracle has other benchmarks that show that Oracle's "Optimized System Performance" is more important than IBM's "Per-core Performance Focus".

Performance Landscape

SPECjAppServer2004 Performance Chart as of 6/2/2010. Complete benchmark results may be found at the SPEC benchmark website http://www.spec.org. SPECjAppServer2004 JOPS@Standard (bigger is better)

Submitter SPECjAppServer2004
JOPS@Standard
J2EE Server DB Server
Oracle 28,648.74 5x Sun SPARC Enterprise T5440
1.6 GHz US-T2 Plus
Oracle WebLogic 10.3.3
1x Sun SPARC Enterprise M9000
2.88 GHz SPARC64-VII
Oracle 11g DB 11.1.0.7
HP 28,463.03 17x HP BL870c Server Blade
1.6 Ghz Itanium
Oracle WebLogic 10.3
1x HP Superdome
1.6 GHz Itanium
Oracle 11g DB 11.1.0.7
IBM 22,634.13 16x IBM BladeCenter HS21
3.32 GHz Intel X5470
WebSphere Application Server V7.0.0.1
1x IBM System p5 595
2.1 GHz POWER5+
IBM DB2 Universal Database 9.5 FP3

Results and Configuration Summary

Application Server:
    5x Sun SPARC Enterprise T5440
      4 x 1.6 GHz UltraSPARC T2 Plus
      256 GB memory
      2 x 10GbE NIC
      2 x 32GB SATA SSD
      Oracle Solaris 10 10/09
      Oracle Solaris Containers
      Oracle WebLogic 10.3.3 Application Server - Standard Edition
      Oracle Fusion Middleware
      Java Platform, Standard Edition JDK 6 Update 20

Database Server:

    Sun SPARC Enterprise M9000
      64x 2.88 GHz SPARC64-VII
      2048 GB memory
      6 x Sun Storage F5100 Flash Array
      Oracle Solaris 10 10/09
      Oracle Database Enterprise Edition Release 11.1.0.7

Benchmark Description

SPECjAppServer2004 (Java Application Server) is a multi-tier benchmark for measuring the performance of Java 2 Enterprise Edition (J2EE) technology-based application servers. SPECjAppServer2004 is an end-to-end application which exercises all major J2EE technologies implemented by compliant application servers as follows:
  • The web container, including servlets and JSPs
  • The EJB container
  • EJB2.0 Container Managed Persistence
  • JMS and Message Driven Beans
  • Transaction management
  • Database connectivity
Moreover, SPECjAppServer2004 also heavily exercises all parts of the underlying infrastructure that make up the application environment, including hardware, JVM software, database software, JDBC drivers, and the system network. The primary metric of the SPECjAppServer2004 benchmark is jAppServer Operations Per Second (JOPS) which is calculated by adding the metrics of the Dealership Management Application in the Dealer Domain and the Manufacturing Application in the Manufacturing Domain. There is NO price/performance metric in this benchmark.

Key Points and Best Practices

  • 8x Oracle WebLogic server instances on each Sun SPARC Enterprise T5440 server were hosted in 4x separate Solaris Containers to demonstrate consolidation of multiple application servers.
  • The Oracle WebLogic application servers were executed in the FX scheduling class to improve performance by reducing the frequency of context switches.
  • Enhancements in Java to the JVM had a major impact on performance.
  • Each Sun SPARC Enterprise T5440 used 2x 10GbE NICs for network traffic from the driver systems.

See Also

Disclosure Statement

SPECjAppServer2004, 5x Sun SPARC Enterprise T5440 (4 chips, 32 cores) 28648.74 SPECjAppServer2004 JOPS@Standard; 17x HP BL870c (4 chips, 8 cores) 28463.03 SPECjAppServer2004 JOPS@Standard; 16x IBM HS21 (2 chips, 8 cores) 22634.13 SPECjAppServer2004 JOPS@Standard; SPEC, SPECjAppServer reg tm of Standard Performance Evaluation Corporation. Results from www.spec.org as of 6/2/2010.

HP C7000 Blade Chassis (10 RU each). 5x Blade Chassis total 50 RU.
HP EVA8100 2C6D Storage Array(112 disks): 2x HSV210-B controllers (2U each) and 8x M5314C Disk Enclosures (3U each) total 28 RU. 4x EVA8100 2C6D total 112 RU.
HP EVA6100 2C4D Storage Array: 2x HSV200-B controllers (2U each) and 4x M5314C Disk Enclosures (3U each) total 16 RU.
http://h20000.www2.hp.com/bc/docs/support/SupportManual/c00816246/c00816246.pdf
http://h18004.www1.hp.com/products/quickspecs/12745_div/12745_div.pdf

IBM BladeCenter H Chassis (9 RU each). 3x Chassis Total 27 RU.
IBM DS4800 Disk System Model 82 (4U each). 6x IBM DS4000 EXP810 (3U each) total 22 RU. 2x Total STorage DS4800 total 44 RU.
http://www-03.ibm.com/systems/xbc/cog/bc_h_8852/bc_h_8852aag.html
ftp://ftp.software.ibm.com/systems/support/system_x_pdf/59y7294.pdf
ftp://ftp.software.ibm.com/systems/support/bladecenter/gc26779809.pdf

Thursday Jan 21, 2010

SPARC Enterprise M4000 PeopleSoft NA Payroll 240K Employees Performance (16 Streams)

The Sun SPARC Enterprise M4000 server combined with Sun FlashFire technology, the Sun Storage F5100 flash array, has produced World Record Performance on PeopleSoft Payroll 9.0 (North American) 240K employees benchmark.

  • The Sun SPARC Enterprise M4000 server with four 2.53 GHz SPARC64 VII processors and the Sun Storage F5100 flash array using 16 job streams (payroll threads) is 55% faster than the HP rx6600 (4 x 1.6GHz Itanium2 processors) as measured for payroll processing tasks in the PeopleSoft Payroll 9.0 (North American) benchmark. The Sun result used the Oracle 11gR1 database running on Solaris 10.

  • The Sun SPARC Enterprise M4000 server with four 2.53GHz SPARC64 VII processors and the Sun Storage F5100 flash array is 2.1x faster than the 2027 MIPs IBM Z990 (6 Z990 Gen1 processors) as measured for payroll processing tasks in the PeopleSoft Payroll 9.0 (North American) benchmark. The Sun result use the Oracle 11gR1 database running on Solaris 10 while the IBM result was run with 8 payroll threads and used IBM DB2 for Z/OS 8.1 for the database.

  • The Sun SPARC Enterprise M4000 server with four 2.53GHz SPARC64 VII processors and a Sun Storage F5100 flash array processed payroll for 240K employees using PeopleSoft Payroll 9.0 (North American) and Oracle 11gR1 running on Solaris 10 with different execution strategies with resulted in a maximum CPU utilization of 45% compared to HP's reported CPU utilization of 89%.

  • The Sun SPARC Enterprise M4000 server combined with Sun FlashFire technology processed 16 Sequential Jobs and single run control with a total time of 534 minutes, an improvement of 19% compared to HP's time of 633 minutes.

  • Sun's FlashFire technology dramatically improves IO performance for the Peoplesoft Payroll 9.0 (North American) benchmark with significant performance boost over best optimized FC disks (60+).

  • The Sun Storage F5100 Flash Array is a high performance high density solid state flash array which provides a read latency of only 0.5 msec which is about 10 times faster than the normal disk latencies 5 msec measured on this benchmark.

  • Sun estimates that the MIPS rating for a Sun SPARC Enterprise M4000 server is over 3000 MIPS.

Performance Landscape

240K Employees

System Processor OS/Database Time in Minutes Num of
Streams
Ver
Payroll
Processing
Result
Run 1 Run 2 Run 3
Sun M4000 4x 2.53GHz SPARC64 VII Solaris/Oracle 11gR1 43.78 51.26 286.11 534.35 16 9.0
HP rx6600 4x 1.6GHz Itanium2 HP-UX/Oracle 11g 68.07 81.17 350.16 633.25 16 9.0
IBM Z990 6x Gen1 2027 MIPS Z/OS /DB2 91.70 107.34 328.66 544.80 8 9.0

Note: IBM benchmark documents show that 6 Gen1 procs is 2027 mips. 13 Gen1 processors were in this config but only 6 were available for testing.

Results and Configuration Summary

Hardware Configuration:

    1 x Sun SPARC Enterprise M4000 (4 x 2.53 GHz/32GB)
    1 x Sun Storage F5100 Flash Array (40 x 24GB FMODs)
    1 x Sun Storage J4200 (12 x 450GB SAS 15K RPM)

Software Configuration:

    Solaris 10 5/09
    Oracle PeopleSoft HCM 9.0 64-bit
    Oracle PeopleSoft Enterprise (PeopleTools) 8.49.08 64-bit
    Micro Focus Server Express 4.0 SP4 64-bit
    Oracle RDBMS 11.1.0.7 64-bit
    HP's Mercury Interactive QuickTest Professional 9.0

Benchmark Description

The PeopleSoft 9.0 Payroll (North America) benchmark is a performance benchmark established by PeopleSoft to demonstrate system performance for a range of processing volumes in a specific configuration. This information may be used to determine the software, hardware, and network configurations necessary to support processing volumes. This workload represents large batch runs typical of OLTP workloads during a mass update.

To measure five application business process run times for a database representing large organization. The five processes are:

  • Paysheet Creation: generates payroll data worksheet for employees, consisting of std payroll information for each employee for given pay cycle.

  • Payroll Calculation: Looks at Paysheets and calculates checks for those employees.

  • Payroll Confirmation: Takes information generated by Payroll Calculation and updates the employees' balances with the calculated amounts.

  • Print Advice forms: The process takes the information generated by payroll Calculations and Confirmation and produces an Advice for each employee to report Earnings, Taxes, Deduction, etc.

  • Create Direct Deposit File: The process takes information generated by above processes and produces an electronic transmittal file use to transfer payroll funds directly into an employee bank a/c.

For the benchmark, we collect at least three data points with different number of job streams (parallel jobs). This batch benchmark allows a maximum of sixteen job streams to be configured to run in parallel.

Key Points and Best Practices

Please see the white paper for information on PeopleSoft payroll best practices using flash.

See Also

Disclosure Statement

Oracle PeopleSoft Payroll 9.0 benchmark, Sun M4000 (4 2.53GHz SPARC64) 43.78 min, IBM Z990 (6 gen1) 91.70 min, HP rx6600 (4 1.6GHz Itanium2) 68.07 min, www.oracle.com/apps_benchmark/html/white-papers-peoplesoft.html, results 1/21/2010.

Tuesday Nov 24, 2009

Sun M9000 Fastest SAP 2-tier SD Benchmark on current SAP EP4 for SAP ERP 6.0 (Unicode)

The Sun SPARC Enterprise M9000 server (64 processors, 256 cores, 512 threads) set a World Record on the SAP Enhancement Package 4 for SAP ERP 6.0 (Unicode) Standard Sales and Distribution (SD) Benchmark.
  • The Sun SPARC Enterprise M9000 server with 2.88 GHz SPARC64 VII processors achieved 32,000 users on the two-tier SAP Sales and Distribution (SD) standard SAP enhancement package 4 for SAP ERP 6.0 (Unicode) application benchmark.

  • The Sun SPARC Enterprise M9000 server result is 8.6x faster than the only IBM 5GHz POWER6 unicode result, which was published on the IBM p550 using the new SAP Enhancement Package 4 for SAP ERP 6.0 (Unicode) Standard Sales and Distribution (SD) Benchmark.

  • IBM has not submitted any IBM 595 results on the current SAP enhancement package 4 for SAP ERP 6.0 (unicode) Standard Sales and Distribution (SD) Benchmark. This benchmark has been current for almost a year. IBM p595 systems only have 8x more cores than the system than IBM system 550.

  • HP has not submitted any Itanium2 results on the new SAP Enhancement Package 4 for SAP ERP 6.0 (Unicode) Standard Sales and Distribution (SD) Benchmark.

  • This new result is 1.84x times greater than the previous record result delivered on the Sun SPARC Enterprise M9000 server which used 32 processors.

  • In January 2009, a new version, the Two-tier SAP ERP 6.0 Enhancement Pack 4 (Unicode) Standard Sales and Distribution (SD) Benchmark, was released. This new release has higher cpu requirements and so yields from 25-50% fewer users compared to the previous Two-tier SAP ERP 6.0 (non-unicode) Standard Sales and Distribution (SD) Benchmark. 10-30% of this is due to the extra overhead from the processing of the larger character strings due to Unicode encoding. See this SAP Note 1139642 for more details.

  • Unicode is a computing standard that allows for the representation and manipulation of text expressed in most of the world's writing systems. Before the Unicode requirement, this benchmark used ASCII characters meaning each was just 1 byte. The new version of the benchmark requires Unicode characters and the Application layer (where ~90% of the cycles in this benchmark are spent) uses a new encoding, UTF-16, which uses 2 bytes to encode most characters (including all ASCII characters) and 4 bytes for some others. This requires computers to do more computation and use more bandwidth and storage for most character strings. Refer to the above SAP Note for more details.

Performance Landscape SAP enhancement package 4 for SAP ERP 6.0 (Unicode) Results (in decreasing performance)

(ERP 6.0 EP is the current version of the benchmark as of January 2009)

System OS
Database
Users SAP
ERP/ECC
Release
SAPS Date
Sun SPARC Enterprise M9000
64xSPARC 64 VII @2.88GHz
1152 GB
Solaris 10
Oracle10g
32,000 2009
6.0 EP4
(Unicode)
175,600 18-Nov-09
Sun SPARC Enterprise M9000
32xSPARC 64 VII @2.88GHz
1024 GB
Solaris 10
Oracle10g
17,430 2009
6.0 EP4
(Unicode)
95,480 12-Oct-09
IBM System 550
4xPower6@5GHz
64 GB
AIX 6.1
DB2 9.5
3,752 2009
6.0 EP4
(Unicode)
20,520 16-Jun-09

Complete benchmark results may be found at the SAP benchmark website http://www.sap.com/benchmark.

Benchmark Description

The SAP Standard Application SD (Sales and Distribution) Benchmark is a two-tier ERP business test that is indicative of full business workloads of complete order processing and invoice processing, and demonstrates the ability to run both the application and database software on a single system. The SAP Standard Application SD Benchmark represents the critical tasks performed in real-world ERP business environments.

SAP is one of the premier world-wide ERP application providers, and maintains a suite of benchmark tests to demonstrate the performance of competitive systems on the various SAP products.

Results and Configuration Summary

Certified Result:

    Number of SAP SD benchmark users:
    32,000
    Average dialog response time:
    0.93 seconds
    Throughput:

    Fully processed order line items/hour:
    3,512,000

    Dialog steps/hour:
    10,536,000

    SAPS:
    175,600
    SAP Certification:
    2009046

Hardware Configuration:

    Sun SPARC Enterprise M9000
      64 x 2.88GHz SPARC64 VII, 1152 GB memory

Software Configuration:

    Solaris 10
    SAP enhancement package 4 for SAP ERP 6.0 (unicode)
    Oracle10g

Disclosure Statement

Two-tier SAP Sales and Distribution (SD) standard SAP enhancement package 4 for SAP ERP 6.0 (Unicode) application benchmarks as of 11/18/09: Sun SPARC Enterprise M9000 (64 processors, 256 cores, 512 threads) 32,000 SAP SD Users, 64 x 2.88 GHz SPARC VII, 1152 GB memory, Oracle10g, Solaris10, Cert# 2009046. Sun SPARC Enterprise M9000 (32 processors, 128 cores, 256 threads) 17,430 SAP SD Users, 32 x 2.88 GHz SPARC VII, 1024 GB memory, Oracle10g, Solaris10, Cert# 2009038. IBM System 550 (4 processors, 8 cores, 16 threads) 3,752 SAP SD Users, 4x 5 GHz Power6, 64 GB memory, DB2 9.5, AIX 6.1, Cert# 2009023. Sun SPARC Enterprise M9000 (64 processors, 256 cores, 512 threads) 64 x 2.52 GHz SPARC64 VII, 1024GB memory, 39,100 SD benchmark users, 1.93 sec. avg. response time, Cert#2008042, Oracle 10g, Solaris 10, SAP ECC Release 6.0.

SAP, R/3, reg TM of SAP AG in Germany and other countries. More info www.sap.com/benchmark

Wednesday Nov 04, 2009

New TPC-C World Record Sun/Oracle

TPC-C Sun SPARC Enterprise T5440 with Oracle RAC World Record Database Result

Sun and Oracle demonstrate the World's fastest database performance. Sun Microsystems using 12 Sun SPARC Enterprise T5440 servers, 60 Sun Storage F5100 Flash arrays and Oracle 11g Enterprise Edition with Real Application Clusters and Partitioning delivered a world-record TPC-C benchmark result.

  • The 12-node Sun SPARC Enterprise T5440 server cluster result delivered a world record TPC-C benchmark result of 7,646,486.7 tpmC and $2.36 $/tpmC (USD) using Oracle 11g R1 on a configuration available 3/19/10.

  • The 12-node Sun SPARC Enterprise T5440 server cluster beats the performance of the IBM Power 595 (5GHz) with IBM DB2 9.5 database by 26% and has 16% better price/performance on the TPC-C benchmark.

  • The complete Oracle/Sun solution used 10.7x better computational density than the IBM configuration (computational density = performance/rack).

  • The complete Oracle/Sun solution used 8 times fewer racks than the IBM configuration.

  • The complete Oracle/Sun solution has 5.9x better power/performance than the IBM configuration.

  • The 12-node Sun SPARC Enterprise T5440 server cluster beats the performance of the HP Superdome (1.6GHz Itanium2) by 87% and has 19% better price/performance on the TPC-C benchmark.

  • The Oracle/Sun solution utilized Sun FlashFire technology to deliver this result. The Sun Storage F5100 flash array was used for database storage.

  • Oracle 11g Enterprise Edition with Real Application Clusters and Partitioning scales and effectively uses all of the nodes in this configuration to produce the world record performance.

  • This result showed Sun and Oracle's integrated hardware and software stacks provide industry-leading performance.

More information on this benchmark will be posted in the next several days.

Performance Landscape

TPC-C results (sorted by tpmC, bigger is better)


System
tpmC Price/tpmC Avail Database Cluster Racks w/KtpmC
12 x Sun SPARC Enterprise T5440 7,646,487 2.36 USD 03/19/10 Oracle 11g RAC Y 9 9.6
IBM Power 595 6,085,166 2.81 USD 12/10/08 IBM DB2 9.5 N 76 56.4
HP Integrity Superdome 4,092,799 2.93 USD 08/06/07 Oracle 10g R2 N 46 to be added

Avail - Availability date
w/KtmpC - Watts per 1000 tpmC
Racks - clients, servers, storage, infrastructure

Sun and IBM TPC-C Response times


System
tpmC

Response Time

New Order 90th%

Response Time

New Order Average

12 x Sun SPARC Enterprise T5440 7,646,487 0.170 0.168
IBM Power 595 6,085,166 1.69
1.22
Response Time Ratio - Sun Better

9.9x 7.3x

Sun uses 7x comparison to highlight the differences in response times between Sun's solution and IBM.  Although notice that Sun is 10x faster on New Order transactions that finish in the 90% percentile.

It is also interesting to note that none of Sun's response times, avg or 90th percentile, for any transaction is over 0.25 seconds. While IBM does not have even one interactive transaction, not even the menu, below 0.50 seconds. Graphs of Sun's and IBM's response times for New-Order can be found in the full disclosure reports on TPC's website TPC-C Official Result Page.

Results and Configuration Summary

Hardware Configuration:

    9 racks used to hold

    Servers:
      12 x Sun SPARC Enterprise T5440
      4 x 1.6 GHz UltraSPARC T2 Plus
      512 GB memory
      10 GbE network for cluster
    Storage:
      60 x Sun Storage F5100 Flash Array
      61 x Sun Fire X4275, Comstar SAS target emulation
      24 x Sun StorageTek 6140 (16 x 300 GB SAS 15K RPM)
      6 x Sun Storage J4400
      3 x 80-port Brocade FC switches
    Clients:
      24 x Sun Fire X4170, each with
      2 x 2.53 GHz X5540
      48 GB memory

Software Configuration:

    Solaris 10 10/09
    OpenSolaris 6/09 (COMSTAR) for Sun Fire X4275
    Oracle 11g Enterprise Edition with Real Application Clusters and Partitioning
    Tuxedo CFS-R Tier 1
    Sun Web Server 7.0 Update 5

Benchmark Description

TPC-C is an OLTP system benchmark. It simulates a complete environment where a population of terminal operators executes transactions against a database. The benchmark is centered around the principal activities (transactions) of an order-entry environment. These transactions include entering and delivering orders, recording payments, checking the status of orders, and monitoring the level of stock at the warehouses.

See Also

Disclosure Statement

TPC Benchmark C, tpmC, and TPC-C are trademarks of the Transaction Performance Processing Council (TPC). 12-node Sun SPARC Enterprise T5440 Cluster (1.6GHz UltraSPARC T2 Plus, 4 processor) with Oracle 11g Enterprise Edition with Real Application Clusters and Partitioning, 7,646,486.7 tpmC, $2.36/tpmC. Available 3/19/10. IBM Power 595 (5GHz Power6, 32 chips, 64 cores, 128 threads) with IBM DB2 9.5, 6,085,166 tpmC, $2.81/tpmC, available 12/10/08. HP Integrity Superdome(1.6GHz Itanium2, 64 processors, 128 cores, 256 threads) with Oracle 10g Enterprise Edition, 4,092,799 tpmC, $2.93/tpmC. Available 8/06/07. Source: www.tpc.org, results as of 11/5/09.

About

BestPerf is the source of Oracle performance expertise. In this blog, Oracle's Strategic Applications Engineering group explores Oracle's performance results and shares best practices learned from working on Enterprise-wide Applications.

Index Pages
Search

Archives
« May 2016
SunMonTueWedThuFriSat
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
    
       
Today