Monday Oct 01, 2012

World Record Performance on PeopleSoft Enterprise Financials Benchmark on SPARC T4-2

Oracle's SPARC T4-2 server achieved World Record performance on Oracle's PeopleSoft Enterprise Financials 9.1 executing 20 Million Journals lines in 8.92 minutes on Oracle Database 11g Release 2 running on Oracle Solaris 11. This is the first result published on this version of the benchmark.

  • The SPARC T4-2 server was able to process 20 million general ledger journal edit and post batch jobs in 8.92 minutes on this benchmark that reflects a large customer environment that utilizes a back-end database of nearly 500 GB.

  • This benchmark demonstrates that the SPARC T4-2 server with PeopleSoft Financials 9.1 can easily process 100 million journal lines in less than 1 hour.

  • The SPARC T4-2 server delivered more than 146 MB/sec of IO throughput with Oracle Database 11g running on Oracle Solaris 11.

Performance Landscape

Results are presented for PeopleSoft Financials Benchmark 9.1. Results obtained with PeopleSoft Financials Benchmark 9.1 are not comparable to the the previous version of the benchmark, PeopleSoft Financials Benchmark 9.0, due to significant change in data model and supports only batch.

PeopleSoft Financials Benchmark, Version 9.1
Solution Under Test Batch (min)
SPARC T4-2 (2 x SPARC T4, 2.85 GHz) 8.92

Results from PeopleSoft Financials Benchmark 9.0.

PeopleSoft Financials Benchmark, Version 9.0
Solution Under Test Batch (min) Batch with Online (min)
SPARC Enterprise M4000 (Web/App)
SPARC Enterprise M5000 (DB)
33.09 34.72
SPARC T3-1 (Web/App)
SPARC Enterprise M5000 (DB)
35.82 37.01

Configuration Summary

Hardware Configuration:

1 x SPARC T4-2 server
2 x SPARC T4 processors, 2.85 GHz
128 GB memory

Storage Configuration:

1 x Sun Storage F5100 Flash Array (for database and redo logs)
2 x Sun Storage 2540-M2 arrays and 2 x Sun Storage 2501-M2 arrays (for backup)

Software Configuration:

Oracle Solaris 11 11/11 SRU 7.5
Oracle Database 11g Release 2 (11.2.0.3)
PeopleSoft Financials 9.1 Feature Pack 2
PeopleSoft Supply Chain Management 9.1 Feature Pack 2
PeopleSoft PeopleTools 8.52 latest patch - 8.52.03
Oracle WebLogic Server 10.3.5
Java Platform, Standard Edition Development Kit 6 Update 32

Benchmark Description

The PeopleSoft Enterprise Financials 9.1 benchmark emulates a large enterprise that processes and validates a large number of financial journal transactions before posting the journal entry to the ledger. The validation process certifies that the journal entries are accurate, ensuring that ChartFields values are valid, debits and credits equal out, and inter/intra-units are balanced. Once validated, the entries are processed, ensuring that each journal line posts to the correct target ledger, and then changes the journal status to posted. In this benchmark, the Journal Edit & Post is set up to edit and post both Inter-Unit and Regular multi-currency journals. The benchmark processes 20 million journal lines using AppEngine for edits and Cobol for post processes.

See Also

Disclosure Statement

Copyright 2012, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 1 October 2012.

Tuesday Aug 28, 2012

SPARC T4-2 Produces World Record Oracle Essbase Aggregate Storage Benchmark Result

Significance of Results

Oracle's SPARC T4-2 server configured with a Sun Storage F5100 Flash Array and running Oracle Solaris 10 with Oracle Database 11g has achieved exceptional performance for the Oracle Essbase Aggregate Storage Option benchmark. The benchmark has upwards of 1 billion records, 15 dimensions and millions of members. Oracle Essbase is a multi-dimensional online analytical processing (OLAP) server and is well-suited to work well with SPARC T4 servers.

  • The SPARC T4-2 server (2 cpus) running Oracle Essbase 11.1.2.2.100 outperformed the previous published results on Oracle's SPARC Enterprise M5000 server (4 cpus) with Oracle Essbase 11.1.1.3 on Oracle Solaris 10 by 80%, 32% and 2x performance improvement on Data Loading, Default Aggregation and Usage Based Aggregation, respectively.

  • The SPARC T4-2 server with Sun Storage F5100 Flash Array and Oracle Essbase running on Oracle Solaris 10 achieves sub-second query response times for 20,000 users in a 15 dimension database.

  • The SPARC T4-2 server configured with Oracle Essbase was able to aggregate and store values in the database for a 15 dimension cube in 398 minutes with 16 threads and in 484 minutes with 8 threads.

  • The Sun Storage F5100 Flash Array provides more than a 20% improvement out-of-the-box compared to a mid-size fiber channel disk array for default aggregation and user-based aggregation.

  • The Sun Storage F5100 Flash Array with Oracle Essbase provides the best combination for large Oracle Essbase databases leveraging Oracle Solaris ZFS and taking advantage of high bandwidth for faster load and aggregation.

  • Oracle Fusion Middleware provides a family of complete, integrated, hot pluggable and best-of-breed products known for enabling enterprise customers to create and run agile and intelligent business applications. Oracle Essbase's performance demonstrates why so many customers rely on Oracle Fusion Middleware as their foundation for innovation.

Performance Landscape

System Data Size
(millions of items)
Database
Load
(minutes)
Default
Aggregation
(minutes)
Usage Based
Aggregation
(minutes)
SPARC T4-2, 2 x SPARC T4 2.85 GHz 1000 149 398* 55
Sun M5000, 4 x SPARC64 VII 2.53 GHz 1000 269 526 115
Sun M5000, 4 x SPARC64 VII 2.4 GHz 400 120 448 18

* – 398 mins with CALCPARALLEL set to 16; 484 mins with CALCPARALLEL threads set to 8

Configuration Summary

Hardware Configuration:

1 x SPARC T4-2
2 x 2.85 GHz SPARC T4 processors
128 GB memory
2 x 300 GB 10000 RPM SAS internal disks

Storage Configuration:

1 x Sun Storage F5100 Flash Array
40 x 24 GB flash modules
SAS HBA with 2 SAS channels
Data Storage Scheme Striped - RAID 0
Oracle Solaris ZFS

Software Configuration:

Oracle Solaris 10 8/11
Installer V 11.1.2.2.100
Oracle Essbase Client v 11.1.2.2.100
Oracle Essbase v 11.1.2.2.100
Oracle Essbase Administration services 64-bit
Oracle Database 11g Release 2 (11.2.0.3)
HP's Mercury Interactive QuickTest Professional 9.5.0

Benchmark Description

The objective of the Oracle Essbase Aggregate Storage Option benchmark is to showcase the ability of Oracle Essbase to scale in terms of user population and data volume for large enterprise deployments. Typical administrative and end-user operations for OLAP applications were simulated to produce benchmark results.

The benchmark test results include:

  • Database Load: Time elapsed to build a database including outline and data load.
  • Default Aggregation: Time elapsed to build aggregation.
  • User Based Aggregation: Time elapsed of the aggregate views proposed as a result of tracked retrieval queries.

Summary of the data used for this benchmark:

  • 40 flat files, each of size 1.2 GB, 49.4 GB in total
  • 10 million rows per file, 1 billion rows total
  • 28 columns of data per row
  • Database outline has 15 dimensions (five of them are attribute dimensions)
  • Customer dimension has 13.3 million members
  • 3 rule files

Key Points and Best Practices

  • The Sun Storage F5100 Flash Array has been used to accelerate the application performance.

  • Setting data load threads (DLTHREADSPREPARE) to 64 and Load Buffer to 6 improved dataloading by about 9%.

  • Factors influencing aggregation materialization performance are "Aggregate Storage Cache" and "Number of Threads" (CALCPARALLEL) for parallel view materialization. The optimal values for this workload on the SPARC T4-2 server were:

      Aggregate Storage Cache: 32 GB
      CALCPARALLEL: 16

     

See Also

Disclosure Statement

Copyright 2012, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 28 August 2012.

Tuesday May 01, 2012

SPARC T4 Servers Running Oracle Solaris 11 and Oracle RAC Deliver World Record on PeopleSoft HRMS 9.1

Oracle's SPARC T4-4 server running Oracle's PeopleSoft HRMS Self-Service 9.1 benchmark achieved world record performance with 18,000 interactive users. This was accomplished using a high availability configuration using Oracle Real Application Clusters (RAC) 11g Release 2 software for the database tier running on Oracle Solaris 11. The benchmark configuration included the SPARC T4-4 server for the application tier, a SPARC T4-2 server for the web tier and two SPARC T4-2 servers for the database tier.

  • The combination of the SPARC T4 servers running PeopleSoft HRSS 9.1 benchmark supports 4.5x the number of users an IBM pSeries 570 running PeopleSoft HRSS 8.9, with an average response time 40 percent better than IBM.

  • This result was obtained with two SPARC T4-2 servers running the database service using Oracle Real Application Clusters 11g Release 2 software in a high availability configuration.

  • The two SPARC T4-2 servers in the database tier used Oracle Solaris 11, and Oracle RAC 11g Release 2 software with database shared disk storage managed by Oracle Automatic Storage Management (ASM).

  • The average CPU utilization on one SPARC T4-4 server in the application tier handling 18,000 users is 54 percent, showing significant headroom for growth.

  • The SPARC T4 server for the application tier used Oracle Solaris Containers on Oracle Solaris 10, which provides a flexible, scalable and manageable virtualized environment.

  • The Peoplesoft HRMS Self-Service benchmark demonstrates better performance on Oracle hardware and software, engineered to work together, than Oracle software on IBM.

Performance Landscape

PeopleSoft HRMS Self-Service 9.1 Benchmark
Systems Processors Users Ave Response -
Search (sec)
Ave Response -
Save (sec)
SPARC T4-2 (web)
SPARC T4-4 (app)
2 x SPARC T4-2 (db)
2 x SPARC T4, 2.85 GHz
4 x SPARC T4, 3.0 GHz
2 x (2 x SPARC T4, 2.85 GHz)
18,000 1.048 0.742
SPARC T4-2 (web)
SPARC T4-4 (app)
SPARC T4-4 (db)
2 x SPARC T4, 2.85 GHz
4 x SPARC T4, 3.0 GHz
4 x SPARC T4, 3.0 GHz
15,000 1.01 0.63
PeopleSoft HRMS Self-Service 8.9 Benchmark
IBM Power 570 (web/app)
IBM Power 570 (db)
12 x POWER5, 1.9 GHz
4 x POWER5, 1.9 GHz
4,000 1.74 1.25
IBM p690 (web)
IBM p690 (app)
IBM p690 (db)
4 x POWER4, 1.9 GHz
12 x POWER4, 1.9 GHz
6 x 4392 MIPS/Gen1
4,000 1.35 1.01

The main differences between version 9.1 and version 8.9 of the benchmark are:

  • the database expanded from 100K employees and 20K managers to 500K employees and 100K managers,
  • the manager data was expanded,
  • a new transaction, "Employee Add Profile," was added, the percent of users executing it is less then 2%, and the transaction has a heavier footprint,
  • version 9.1 has a different benchmark metric (Average Response Search/Save time for x number of users) versus single user search/save time,
  • newer versions of the PeopleSoft application and PeopleTools software are used.

Configuration Summary

Application Server:

1 x SPARC T4-4 server
4 x SPARC T4 processors 3.0 GHz
512 GB main memory
5 x 300 GB SAS internal disks,
2 x 100 GB internal SSDs
1 x 300 GB internal SSD
Oracle Solaris 10 8/11
PeopleSoft PeopleTools 8.51.02
PeopleSoft HCM 9.1
Oracle Tuxedo, Version 10.3.0.0, 64-bit, Patch Level 031
Java HotSpot(TM) 64-Bit Server VM on Solaris, version 1.6.0_20

Web Server:

1 x SPARC T4-2 server
2 x SPARC T4 processors 2.85 GHz
256 GB main memory
2 x 300 GB SAS internal disks
1 x 100 GB internal SSD
Oracle Solaris 10 8/11
PeopleSoft PeopleTools 8.51.02
Oracle WebLogic Server 11g (10.3.3)
Java HotSpot(TM) 64-Bit Server VM on Solaris, version 1.6.0_20

Database Server:

2 x SPARC T4-2 servers, each with
2 x SPARC T4 processors 2.85 GHz
128 GB main memory
3 x 300 GB SAS internal disks
Oracle Solaris 11 11/11
Oracle Database 11g Release 2
Oracle Real Application Clusters

Database Storage:

Data
1 x Sun Storage F5100 Flash Array (80 flash modules)
1 x COMSTAR Sun Fire X4470 M2 server
4 x Intel Xeon X7550 processors 2.0 GHz
128 GB main memory
Oracle Solaris 11 11/11
Redo
2 x COMSTAR Sun Fire X4275 servers, each with
1 x Intel Xeon E5540 processor 2.53 GHz
6 GB main memory)
12 x 2 TB SAS disks
Oracle Solaris 11 Express 2010.11

Connectivity:

1 x 8-port 10GbE switch
1 x 24-port 1GbE switch
1 x 32-port Brocade FC switch

Benchmark Description

The purpose of the PeopleSoft HRMS Self-Service 9.1 benchmark is to measure comparative online performance of the selected processes in PeopleSoft Enterprise HCM 9.1 with Oracle Database 11g. The benchmark kit is an Oracle standard benchmark kit run by all platform vendors to measure the performance. It is an OLTP benchmark with no dependency on remote COBOL calls, there is no batch workload, and DB SQLs are moderately complex. The results are certified by Oracle and a white paper is published.

PeopleSoft defines a business transaction as a series of HTML pages that guide a user through a particular scenario. Users are defined as corporate Employees, Managers and HR administrators. The benchmark consists of 14 scenarios which emulate users performing typical HCM transactions such as viewing paychecks, promoting and hiring employees, updating employee profiles and other typical HCM application transactions.

All of these transactions are well defined in the PeopleSoft HR Self-Service 9.1 benchmark kit. This benchmark metric is the Weighted Average Response search/save time for all users.

Key Points and Best Practices

  • The combined processing power of two SPARC T4-2 servers running the highly available Oracle RAC database can provide greater throughput and Oracle RAC scalability than is available from a single server.

  • All database data files/recovery files and Oracle Clusterware files were created with Oracle Automatic Storage Management (Oracle ASM) volume manager and file system which resulted in equivalent performance of conventional volume managers, file systems, and raw devices, but with the added benefit of the ease of management provided by Oracle ASM integrated storage management solution.

  • Five Oracle PeopleSoft Domains with 200 application servers (40 per each Domain) on the SPARC T4-4 server were hosted in two separate Oracle Solaris Containers for a total of 10 Domains/400 application servers processes to demonstrate consolidation of multiple application servers, ease of administration and load balancing.

  • Each Oracle Solaris Container was bound to a separate processor set, each containing 124 virtual processors. The default set (composed of 4 virtual processors from first and third processor socket, total of 8 virtual processors) was used for network and disk interrupt handling. This was done to improve performance by reducing memory access latency by using the physical memory closest to the processors and offload I/O interrupt handling to default set virtual processors, freeing up processing resources for application server virtual processors.

See Also

Disclosure Statement

Oracle's PeopleSoft HRMS 9.1 benchmark, www.oracle.com/us/solutions/benchmark/apps-benchmark/peoplesoft-167486.html, results 5/1/2012.

Thursday Apr 12, 2012

Sun Fire X4270 M3 SAP Enhancement Package 4 for SAP ERP 6.0 (Unicode) Two-Tier Standard Sales and Distribution (SD) Benchmark

Oracle's Sun Fire X4270 M3 server (now known as Sun Server X3-2L) achieved 8,320 SAP SD Benchmark users running SAP enhancement package 4 for SAP ERP 6.0 with unicode software using Oracle Database 11g and Oracle Solaris 10.

  • The Sun Fire X4270 M3 server using Oracle Database 11g and Oracle Solaris 10 beat both IBM Flex System x240 and IBM System x3650 M4 server running DB2 9.7 and Windows Server 2008 R2 Enterprise Edition.

  • The Sun Fire X4270 M3 server running Oracle Database 11g and Oracle Solaris 10 beat the HP ProLiant BL460c Gen8 server using SQL Server 2008 and Windows Server 2008 R2 Enterprise Edition by 6%.

  • The Sun Fire X4270 M3 server using Oracle Database 11g and Oracle Solaris 10 beat Cisco UCS C240 M3 server running SQL Server 2008 and Windows Server 2008 R2 Datacenter Edition by 9%.

  • The Sun Fire X4270 M3 server running Oracle Database 11g and Oracle Solaris 10 beat the Fujitsu PRIMERGY RX300 S7 server using SQL Server 2008 and Windows Server 2008 R2 Enterprise Edition by 10%.

Performance Landscape

SAP-SD 2-Tier Performance Table (in decreasing performance order).

SAP ERP 6.0 Enhancement Pack 4 (Unicode) Results
(benchmark version from January 2009 to April 2012)

System OS
Database
Users SAP
ERP/ECC
Release
SAPS SAPS/
Proc
Date
Sun Fire X4270 M3
2xIntel Xeon E5-2690 @2.90GHz
128 GB
Oracle Solaris 10
Oracle Database 11g
8,320 2009
6.0 EP4
(Unicode)
45,570 22,785 10-Apr-12
IBM Flex System x240
2xIntel Xeon E5-2690 @2.90GHz
128 GB
Windows Server 2008 R2 EE
DB2 9.7
7,960 2009
6.0 EP4
(Unicode)
43,520 21,760 11-Apr-12
HP ProLiant BL460c Gen8
2xIntel Xeon E5-2690 @2.90GHz
128 GB
Windows Server 2008 R2 EE
SQL Server 2008
7,865 2009
6.0 EP4
(Unicode)
42,920 21,460 29-Mar-12
IBM System x3650 M4
2xIntel Xeon E5-2690 @2.90GHz
128 GB
Windows Server 2008 R2 EE
DB2 9.7
7,855 2009
6.0 EP4
(Unicode)
42,880 21,440 06-Mar-12
Cisco UCS C240 M3
2xIntel Xeon E5-2690 @2.90GHz
128 GB
Windows Server 2008 R2 DE
SQL Server 2008
7,635 2009
6.0 EP4
(Unicode)
41,800 20,900 06-Mar-12
Fujitsu PRIMERGY RX300 S7
2xIntel Xeon E5-2690 @2.90GHz
128 GB
Windows Server 2008 R2 EE
SQL Server 2008
7,570 2009
6.0 EP4
(Unicode)
41,320 20,660 06-Mar-12

Complete benchmark results may be found at the SAP benchmark website http://www.sap.com/benchmark.

Configuration and Results Summary

Hardware Configuration:

Sun Fire X4270 M3
2 x 2.90 GHz Intel Xeon E5-2690 processors
128 GB memory
Sun StorageTek 6540 with 4 * 16 * 300GB 15Krpm 4Gb FC-AL

Software Configuration:

Oracle Solaris 10
Oracle Database 11g
SAP enhancement package 4 for SAP ERP 6.0 (Unicode)

Certified Results (published by SAP):

Number of benchmark users:
8,320
Average dialog response time:
0.95 seconds
Throughput:

Fully processed order line:
911,330

Dialog steps/hour:
2,734,000

SAPS:
45,570
SAP Certification:
2012014

Benchmark Description

The SAP Standard Application SD (Sales and Distribution) Benchmark is a two-tier ERP business test that is indicative of full business workloads of complete order processing and invoice processing, and demonstrates the ability to run both the application and database software on a single system. The SAP Standard Application SD Benchmark represents the critical tasks performed in real-world ERP business environments.

SAP is one of the premier world-wide ERP application providers, and maintains a suite of benchmark tests to demonstrate the performance of competitive systems on the various SAP products.

See Also

Disclosure Statement

Two-tier SAP Sales and Distribution (SD) standard SAP SD benchmark based on SAP enhancement package 4 for SAP ERP 6.0 (Unicode) application benchmark as of 04/11/12: Sun Fire X4270 M3 (2 processors, 16 cores, 32 threads) 8,320 SAP SD Users, 2 x 2.90 GHz Intel Xeon E5-2690, 128 GB memory, Oracle 11g, Solaris 10, Cert# 2012014. IBM Flex System x240 (2 processors, 16 cores, 32 threads) 7,960 SAP SD Users, 2 x 2.90 GHz Intel Xeon E5-2690, 128 GB memory, DB2 9.7, Windows Server 2008 R2 EE, Cert# 2012016. IBM System x3650 M4 (2 processors, 16 cores, 32 threads) 7,855 SAP SD Users, 2 x 2.90 GHz Intel Xeon E5-2690, 128 GB memory, DB2 9.7, Windows Server 2008 R2 EE, Cert# 2012010. Cisco UCS C240 M3 (2 processors, 16 cores, 32 threads) 7,635 SAP SD Users, 2 x 2.90 GHz Intel Xeon E5-2690, 128 GB memory, SQL Server 2008, Windows Server 2008 R2 DE, Cert# 2012011. Fujitsu PRIMERGY RX300 S7 (2 processors, 16 cores, 32 threads) 7,570 SAP SD Users, 2 x 2.90 GHz Intel Xeon E5-2690, 128 GB memory, SQL Server 2008, Windows Server 2008 R2 EE, Cert# 2012008. HP ProLiant DL380p Gen8 (2 processors, 16 cores, 32 threads) 7,865 SAP SD Users, 2 x 2.90 GHz Intel Xeon E5-2690, 128 GB memory, SQL Server 2008, Windows Server 2008 R2 EE, Cert# 2012012.

SAP, R/3, reg TM of SAP AG in Germany and other countries. More info www.sap.com/benchmark

Tuesday Apr 10, 2012

World Record Oracle E-Business Suite 12.1.3 Standard Extra-Large Payroll (Batch) Benchmark on Sun Server X3-2L

Oracle's Sun Server X3-2L (formerly Sun Fire X4270 M3) server set a world record running the Oracle E-Business Suite 12.1.3 Standard Extra-Large Payroll (Batch) benchmark.

  • This is the first published result using Oracle E-Business 12.1.3.

  • The Sun Server X3-2L result ran the Extra-Large Payroll workload in 19 minutes.

Performance Landscape

This is the first published result for the Payroll Extra-Large model using Oracle E-Business 12.1.3 benchmark.

Batch Workload: Payroll Extra-Large Model
System Employees/Hr Elapsed Time
Sun Server X3-2L 789,515 19 minutes

Configuration Summary

Hardware Configuration:

Sun Server X3-2L
2 x Intel Xeon E5-2690, 2.9 GHz
128 GB memory
8 x 100 GB SSD for data
1 x 300 GB SSD for log

Software Configuration:

Oracle Linux 5.7
Oracle E-Business Suite R12 (12.1.3)
Oracle Database 11g (11.2.0.3)

Benchmark Description

The Oracle E-Business Suite Standard R12 Benchmark combines online transaction execution by simulated users with concurrent batch processing to model a typical scenario for a global enterprise. This benchmark ran one Batch component, Payroll, in the Extra-Large size. The goal of the benchmark proposal is to execute and achieve best batch-payroll performance using X-Large configuragion.

Results can be published in four sizes and use one or more online/batch modules

  • X-large: Maximum online users running all business flows between 10,000 to 20,000; 750,000 order to cash lines per hour and 250,000 payroll checks per hour.
    • Order to Cash Online -- 2400 users
      • The percentage across the 5 transactions in Order Management module is:
        • Insert Manual Invoice -- 16.66%
        • Insert Order -- 32.33%
        • Order Pick Release -- 16.66%
        • Ship Confirm -- 16.66%
        • Order Summary Report -- 16.66%
    • HR Self-Service -- 4000 users
    • Customer Support Flow -- 8000 users
    • Procure to Pay -- 2000 users
  • Large: 10,000 online users; 100,000 order to cash lines per hour and 100,000 payroll checks per hour.
  • Medium: up to 3000 online users; 50,000 order to cash lines per hour and 10,000 payroll checks per hour.
  • Small: up to 1000 online users; 10,000 order to cash lines per hour and 5,000 payroll checks per hour.

See Also

Disclosure Statement

Oracle E-Business X-Large Batch-Payroll benchmark, Sun Server X3-2L, 2.90 GHz, 2 chips, 16 cores, 32 threads, 128 GB memory, elapsed time 19.0 minutes, 789,515 Employees/HR, Oracle Linux 5.7, Oracle E-Business Suite 12.1.3, Oracle Database 11g Release 2, Results as of 7/10/2012.

Thursday Mar 29, 2012

Sun Server X2-8 (formerly Sun Fire X4800 M2) Delivers World Record TPC-C for x86 Systems

Oracle's Sun Server X2-8 (formerly Sun Fire X4800 M2 server) equipped with eight 2.4 GHz Intel Xeon Processor E7-8870 chips obtained a result of 5,055,888 tpmC on the TPC-C benchmark. This result is a world record for x86 servers. Oracle demonstrated this world record database performance running Oracle Database 11g Release 2 Enterprise Edition with Partitioning.

  • The Sun Server X2-8 delivered a new x86 TPC-C world record of 5,055,888 tpmC with a price performance of $0.89/tpmC using Oracle Database 11g Release 2. This configuration is available 7/10/12.

  • The Sun Server X2-8 delivers 3.0x times better performance than the next 8-processor result, an IBM System p 570 equipped with POWER6 processors.

  • The Sun Server X2-8 has 3.1x times better price/performance than the 8-processor 4.7GHz POWER6 IBM System p 570.

  • The Sun Server X2-8 has 1.6x times better performance than the 4-processor IBM x3850 X5 system equipped with Intel Xeon processors.

  • This is the first TPC-C result on any system using eight Intel Xeon Processor E7-8800 Series chips.

  • The Sun Server X2-8 is the first x86 system to get over 5 million tpmC.

  • The Oracle solution utilized Oracle Linux operating system and Oracle Database 11g Enterprise Edition Release 2 with Partitioning to produce the x86 world record TPC-C benchmark performance.

Performance Landscape

Select TPC-C results (sorted by tpmC, bigger is better)

System p/c/t tpmC Price
/tpmC
Avail Database Memory
Size
Sun Server X2-8 8/80/160 5,055,888 0.89 USD 7/10/2012 Oracle 11g R2 4 TB
IBM x3850 X5 4/40/80 3,014,684 0.59 USD 7/11/2011 DB2 ESE 9.7 3 TB
IBM x3850 X5 4/32/64 2,308,099 0.60 USD 5/20/2011 DB2 ESE 9.7 1.5 TB
IBM System p 570 8/16/32 1,616,162 3.54 USD 11/21/2007 DB2 9.0 2 TB

p/c/t - processors, cores, threads
Avail - availability date

Oracle and IBM TPC-C Response times

System tpmC Response Time (sec)
New Order 90th%
Response Time (sec)
New Order Average

Sun Server X2-8 5,055,888 0.210 0.166
IBM x3850 X5 3,014,684 0.500 0.272
Ratios - Oracle Better 1.6x 1.4x 1.3x

Oracle uses average new order response time for comparison between Oracle and IBM.

Graphs of Oracle's and IBM's response times for New-Order can be found in the full disclosure reports on TPC's website TPC-C Official Result Page.

Configuration Summary and Results

Hardware Configuration:

Server
Sun Server X2-8
8 x 2.4 GHz Intel Xeon Processor E7-8870
4 TB memory
8 x 300 GB 10K RPM SAS internal disks
8 x Dual port 8 Gbs FC HBA

Data Storage
10 x Sun Fire X4270 M2 servers configured as COMSTAR heads, each with
1 x 3.06 GHz Intel Xeon X5675 processor
8 GB memory
10 x 2 TB 7.2K RPM 3.5" SAS disks
2 x Sun Storage F5100 Flash Array storage (1.92 TB each)
1 x Brocade 5300 switches

Redo Storage
2 x Sun Fire X4270 M2 servers configured as COMSTAR heads, each with
1 x 3.06 GHz Intel Xeon X5675 processor
8 GB memory
11 x 2 TB 7.2K RPM 3.5" SAS disks

Clients
8 x Sun Fire X4170 M2 servers, each with
2 x 3.06 GHz Intel Xeon X5675 processors
48 GB memory
2 x 300 GB 10K RPM SAS disks

Software Configuration:

Oracle Linux (Sun Fire 4800 M2)
Oracle Solaris 11 Express (COMSTAR for Sun Fire X4270 M2)
Oracle Solaris 10 9/10 (Sun Fire X4170 M2)
Oracle Database 11g Release 2 Enterprise Edition with Partitioning
Oracle iPlanet Web Server 7.0 U5
Tuxedo CFS-R Tier 1

Results:

System: Sun Server X2-8
tpmC: 5,055,888
Price/tpmC: 0.89 USD
Available: 7/10/2012
Database: Oracle Database 11g
Cluster: no
New Order Average Response: 0.166 seconds

Benchmark Description

TPC-C is an OLTP system benchmark. It simulates a complete environment where a population of terminal operators executes transactions against a database. The benchmark is centered around the principal activities (transactions) of an order-entry environment. These transactions include entering and delivering orders, recording payments, checking the status of orders, and monitoring the level of stock at the warehouses.

Key Points and Best Practices

  • Oracle Database 11g Release 2 Enterprise Edition with Partitioning scales easily to this high level of performance.

  • COMSTAR (Common Multiprotocol SCSI Target) is the software framework that enables an Oracle Solaris host to serve as a SCSI Target platform. COMSTAR uses a modular approach to break the huge task of handling all the different pieces in a SCSI target subsystem into independent functional modules which are glued together by the SCSI Target Mode Framework (STMF). The modules implementing functionality at SCSI level (disk, tape, medium changer etc.) are not required to know about the underlying transport. And the modules implementing the transport protocol (FC, iSCSI, etc.) are not aware of the SCSI-level functionality of the packets they are transporting. The framework hides the details of allocation providing execution context and cleanup of SCSI commands and associated resources and simplifies the task of writing the SCSI or transport modules.

  • Oracle iPlanet Web Server middleware is used for the client tier of the benchmark. Each web server instance supports more than a quarter-million users while satisfying the response time requirement from the TPC-C benchmark.

See Also

Disclosure Statement

TPC Benchmark C, tpmC, and TPC-C are trademarks of the Transaction Processing Performance Council (TPC). Sun Server X2-8 (8/80/160) with Oracle Database 11g Release 2 Enterprise Edition with Partitioning, 5,055,888 tpmC, $0.89 USD/tpmC, available 7/10/2012. IBM x3850 X5 (4/40/80) with DB2 ESE 9.7, 3,014,684 tpmC, $0.59 USD/tpmC, available 7/11/2011. IBM x3850 X5 (4/32/64) with DB2 ESE 9.7, 2,308,099 tpmC, $0.60 USD/tpmC, available 5/20/2011. IBM System p 570 (8/16/32) with DB2 9.0, 1,616,162 tpmC, $3.54 USD/tpmC, available 11/21/2007. Source: http://www.tpc.org/tpcc, results as of 7/15/2011.

Sun Server X2-8 (formerly Sun Fire X4800 M2) Posts World Record x86 SPECjEnterprise2010 Result

Oracle's Sun Server X2-8 (formerly Sun Fire X4800 M2) using the Intel Xeon E7-8870 processor and Sun Server X2-4 using the Intel Xeon E7-4870 processor, produced a world record single application server SPECjEnterprise2010 benchmark result of 27,150.05 SPECjEnterprise2010 EjOPS. The Sun Server X2-8 ran the application tier and the Sun Server X2-4 was used for the database tier.

  • The Sun Server X2-8 demonstrated 63% better performance compared to IBM P780 server result of 16,646.34 SPECjEnterprise2010 EjOPS.

  • The Sun Server X2-8 demonstrated 4% better performance than the Cisco UCS B440 M2 result, both results used the same number of processors.

  • This result used Oracle WebLogic Server 12c, Java HotSpot(TM) 64-Bit Server 1.7.0_02, and Oracle Database 11g.

  • This result was produced using Oracle Linux.

Performance Landscape

Complete benchmark results are at the SPEC website, SPECjEnterprise2010 Results. The table below compares against the best results from IBM and Cisco.

SPECjEnterprise2010 Performance Chart
as of 7/11/2012
Submitter EjOPS* Application Server Database Server
Oracle 27,150.05 1x Sun Server X2-8
8x 2.4 GHz Intel Xeon E7-8870
Oracle WebLogic 12c
1x Sun Server X2-4
4x 2.4 GHz Intel Xeon E7-4870
Oracle Database 11g (11.2.0.2)
Cisco 26,118.67 2x UCS B440 M2 Blade Server
4x 2.4 GHz Intel Xeon E7-4870
Oracle WebLogic 11g (10.3.5)
1x UCS C460 M2 Blade Server
4x 2.4 GHz Intel Xeon E7-4870
Oracle Database 11g (11.2.0.2)
IBM 16,646.34 1x IBM Power 780
8x 3.86 GHz POWER 7
WebSphere Application Server V7
1x IBM Power 750 Express
4x 3.55 GHz POWER 7
IBM DB2 9.7 Workgroup Server Edition FP3a

* SPECjEnterprise2010 EjOPS, bigger is better.

Configuration Summary

Application Server:

1 x Sun Server X2-8

8 x 2.4 GHz Intel Xeon processor E7-8870
256 GB memory
4 x 10 GbE NIC
2 x FC HBA
Oracle Linux 5 Update 6
Oracle WebLogic Server Standard Edition Release 12.1.1
Java HotSpot(TM) 64-Bit Server VM on Linux, version 1.7.0_02 (Java SE 7 Update 2)

Database Server:

1 x Sun Server X2-4
4 x 2.4 GHz Intel Xeon E7-4870
512 GB memory
4 x 10 GbE NIC
2 x FC HBA
2 x Sun StorageTek 2540 M2
4 x Sun Fire X4270 M2
4 x Sun Storage F5100 Flash Array
Oracle Linux 5 Update 6
Oracle Database 11g Enterprise Edition Release 11.2.0.2

Benchmark Description

SPECjEnterprise2010 is the third generation of the SPEC organization's J2EE end-to-end industry standard benchmark application. The SPECjEnterprise2010 benchmark has been designed and developed to cover the Java EE 5 specification's significantly expanded and simplified programming model, highlighting the major features used by developers in the industry today. This provides a real world workload driving the Application Server's implementation of the Java EE specification to its maximum potential and allowing maximum stressing of the underlying hardware and software systems.

The workload consists of an end to end web based order processing domain, an RMI and Web Services driven manufacturing domain and a supply chain model utilizing document based Web Services. The application is a collection of Java classes, Java Servlets, Java Server Pages, Enterprise Java Beans, Java Persistence Entities (pojo's) and Message Driven Beans.

The SPECjEnterprise2010 benchmark heavily exercises all parts of the underlying infrastructure that make up the application environment, including hardware, JVM software, database software, JDBC drivers, and the system network.

The primary metric of the SPECjEnterprise2010 benchmark is jEnterprise Operations Per Second ("SPECjEnterprise2010 EjOPS"). This metric is calculated by adding the metrics of the Dealership Management Application in the Dealer Domain and the Manufacturing Application in the Manufacturing Domain. There is no price/performance metric in this benchmark.

Key Points and Best Practices

  • Sixteen Oracle WebLogic server instances were started using numactl, binding 2 instances per chip.
  • Eight Oracle database listener processes were started, binding 2 instances per chip using taskset.
  • Additional tuning information is in the report at http://spec.org.

See Also

Disclosure Statement

SPEC and the benchmark name SPECjEnterprise are registered trademarks of the Standard Performance Evaluation Corporation. Sun Server X2-8, 27,150.05 SPECjEnterprise2010 EjOPS; IBM Power 780, 16,646.34 SPECjEnterprise2010 EjOPS; Cisco UCS B440 M2, 26,118.67 SPECjEnterprise2010 EjOPS. Results from www.spec.org as of 7/11/2012.

Wednesday Nov 30, 2011

SPARC T4-4 Beats 8-CPU IBM POWER7 on TPC-H @3000GB Benchmark

Oracle's SPARC T4-4 server delivered a world record TPC-H @3000GB benchmark result for systems with four processors. This result beats eight processor results from IBM (POWER7) and HP (x86). The SPARC T4-4 server also delivered better performance per core than these eight processor systems from IBM and HP. Comparisons below are based upon system to system comparisons, highlighting Oracle's complete software and hardware solution.

This database world record result used Oracle's Sun Storage 2540-M2 arrays (rotating disk) connected to a SPARC T4-4 server running Oracle Solaris 11 and Oracle Database 11g Release 2 demonstrating the power of Oracle's integrated hardware and software solution.

  • The SPARC T4-4 server based configuration achieved a TPC-H scale factor 3000 world record for four processor systems of 205,792 QphH@3000GB with price/performance of $4.10/QphH@3000GB.

  • The SPARC T4-4 server with four SPARC T4 processors (total of 32 cores) is 7% faster than the IBM Power 780 server with eight POWER7 processors (total of 32 cores) on the TPC-H @3000GB benchmark.

  • The SPARC T4-4 server is 36% better in price performance compared to the IBM Power 780 server on the TPC-H @3000GB Benchmark.

  • The SPARC T4-4 server is 29% faster than the IBM Power 780 for data loading.

  • The SPARC T4-4 server is up to 3.4 times faster than the IBM Power 780 server for the Refresh Function.

  • The SPARC T4-4 server with four SPARC T4 processors is 27% faster than the HP ProLiant DL980 G7 server with eight x86 processors on the TPC-H @3000GB benchmark.

  • The SPARC T4-4 server is 52% faster than the HP ProLiant DL980 G7 server for data loading.

  • The SPARC T4-4 server is up to 3.2 times faster than the HP ProLiant DL980 G7 for the Refresh Function.

  • The SPARC T4-4 server achieved a peak IO rate from the Oracle database of 17 GB/sec. This rate was independent of the storage used, as demonstrated by the TPC-H @3000TB benchmark which used twelve Sun Storage 2540-M2 arrays (rotating disk) and the TPC-H @1000TB benchmark which used four Sun Storage F5100 Flash Array devices (flash storage). [*]

  • The SPARC T4-4 server showed linear scaling from TPC-H @1000GB to TPC-H @3000GB. This demonstrates that the SPARC T4-4 server can handle the increasingly larger databases required of DSS systems. [*]

  • The SPARC T4-4 server benchmark results demonstrate a complete solution of building Decision Support Systems including data loading, business questions and refreshing data. Each phase usually has a time constraint and the SPARC T4-4 server shows superior performance during each phase.

[*] The TPC believes that comparisons of results published with different scale factors are misleading and discourages such comparisons.

Performance Landscape

The table lists the leading TPC-H @3000GB results for non-clustered systems.

TPC-H @3000GB, Non-Clustered Systems
System
Processor
P/C/T – Memory
Composite
(QphH)
$/perf
($/QphH)
Power
(QppH)
Throughput
(QthH)
Database Available
SPARC Enterprise M9000
3.0 GHz SPARC64 VII+
64/256/256 – 1024 GB
386,478.3 $18.19 316,835.8 471,428.6 Oracle 11g R2 09/22/11
SPARC T4-4
3.0 GHz SPARC T4
4/32/256 – 1024 GB
205,792.0 $4.10 190,325.1 222,515.9 Oracle 11g R2 05/31/12
SPARC Enterprise M9000
2.88 GHz SPARC64 VII
32/128/256 – 512 GB
198,907.5 $15.27 182,350.7 216,967.7 Oracle 11g R2 12/09/10
IBM Power 780
4.1 GHz POWER7
8/32/128 – 1024 GB
192,001.1 $6.37 210,368.4 175,237.4 Sybase 15.4 11/30/11
HP ProLiant DL980 G7
2.27 GHz Intel Xeon X7560
8/64/128 – 512 GB
162,601.7 $2.68 185,297.7 142,685.6 SQL Server 2008 10/13/10

P/C/T = Processors, Cores, Threads
QphH = the Composite Metric (bigger is better)
$/QphH = the Price/Performance metric in USD (smaller is better)
QppH = the Power Numerical Quantity
QthH = the Throughput Numerical Quantity

The following table lists data load times and refresh function times during the power run.

TPC-H @3000GB, Non-Clustered Systems
Database Load & Database Refresh
System
Processor
Data Loading
(h:m:s)
T4
Advan
RF1
(sec)
T4
Advan
RF2
(sec)
T4
Advan
SPARC T4-4
3.0 GHz SPARC T4
04:08:29 1.0x 67.1 1.0x 39.5 1.0x
IBM Power 780
4.1 GHz POWER7
05:51:50 1.5x 147.3 2.2x 133.2 3.4x
HP ProLiant DL980 G7
2.27 GHz Intel Xeon X7560
08:35:17 2.1x 173.0 2.6x 126.3 3.2x

Data Loading = database load time
RF1 = power test first refresh transaction
RF2 = power test second refresh transaction
T4 Advan = the ratio of time to T4 time

Complete benchmark results found at the TPC benchmark website http://www.tpc.org.

Configuration Summary and Results

Hardware Configuration:

SPARC T4-4 server
4 x SPARC T4 3.0 GHz processors (total of 32 cores, 128 threads)
1024 GB memory
8 x internal SAS (8 x 300 GB) disk drives

External Storage:

12 x Sun Storage 2540-M2 array storage, each with
12 x 15K RPM 300 GB drives, 2 controllers, 2 GB cache

Software Configuration:

Oracle Solaris 11 11/11
Oracle Database 11g Release 2 Enterprise Edition

Audited Results:

Database Size: 3000 GB (Scale Factor 3000)
TPC-H Composite: 205,792.0 QphH@3000GB
Price/performance: $4.10/QphH@3000GB
Available: 05/31/2012
Total 3 year Cost: $843,656
TPC-H Power: 190,325.1
TPC-H Throughput: 222,515.9
Database Load Time: 4:08:29

Benchmark Description

The TPC-H benchmark is a performance benchmark established by the Transaction Processing Council (TPC) to demonstrate Data Warehousing/Decision Support Systems (DSS). TPC-H measurements are produced for customers to evaluate the performance of various DSS systems. These queries and updates are executed against a standard database under controlled conditions. Performance projections and comparisons between different TPC-H Database sizes (100GB, 300GB, 1000GB, 3000GB, 10000GB, 30000GB and 100000GB) are not allowed by the TPC.

TPC-H is a data warehousing-oriented, non-industry-specific benchmark that consists of a large number of complex queries typical of decision support applications. It also includes some insert and delete activity that is intended to simulate loading and purging data from a warehouse. TPC-H measures the combined performance of a particular database manager on a specific computer system.

The main performance metric reported by TPC-H is called the TPC-H Composite Query-per-Hour Performance Metric (QphH@SF, where SF is the number of GB of raw data, referred to as the scale factor). QphH@SF is intended to summarize the ability of the system to process queries in both single and multiple user modes. The benchmark requires reporting of price/performance, which is the ratio of the total HW/SW cost plus 3 years maintenance to the QphH. A secondary metric is the storage efficiency, which is the ratio of total configured disk space in GB to the scale factor.

Key Points and Best Practices

  • Twelve Sun Storage 2540-M2 arrays were used for the benchmark. Each Sun Storage 2540-M2 array contains 12 15K RPM drives and is connected to a single dual port 8Gb FC HBA using 2 ports. Each Sun Storage 2540-M2 array showed 1.5 GB/sec for sequential read operations and showed linear scaling, achieving 18 GB/sec with twelve Sun Storage 2540-M2 arrays. These were stand alone IO tests.

  • The peak IO rate measured from the Oracle database was 17 GB/sec.

  • Oracle Solaris 11 11/11 required very little system tuning.

  • Some vendors try to make the point that storage ratios are of customer concern. However, storage ratio size has more to do with disk layout and the increasing capacities of disks – so this is not an important metric in which to compare systems.

  • The SPARC T4-4 server and Oracle Solaris efficiently managed the system load of over one thousand Oracle Database parallel processes.

  • Six Sun Storage 2540-M2 arrays were mirrored to another six Sun Storage 2540-M2 arrays on which all of the Oracle database files were placed. IO performance was high and balanced across all the arrays.

  • The TPC-H Refresh Function (RF) simulates periodical refresh portion of Data Warehouse by adding new sales and deleting old sales data. Parallel DML (parallel insert and delete in this case) and database log performance are a key for this function and the SPARC T4-4 server outperformed both the IBM POWER7 server and HP ProLiant DL980 G7 server. (See the RF columns above.)

See Also

Disclosure Statement

TPC-H, QphH, $/QphH are trademarks of Transaction Processing Performance Council (TPC). For more information, see www.tpc.org. SPARC T4-4 205,792.0 QphH@3000GB, $4.10/QphH@3000GB, available 5/31/12, 4 processors, 32 cores, 256 threads; IBM Power 780 QphH@3000GB, 192,001.1 QphH@3000GB, $6.37/QphH@3000GB, available 11/30/11, 8 processors, 32 cores, 128 threads; HP ProLiant DL980 G7 162,601.7 QphH@3000GB, $2.68/QphH@3000GB available 10/13/10, 8 processors, 64 cores, 128 threads.

Monday Oct 03, 2011

SPARC T4-4 Servers Set World Record on SPECjEnterprise2010, Beats IBM POWER7, Cisco x86

Oracle produced a world record SPECjEnterprise2010 benchmark result of 40,104.86 SPECjEnterprise2010 EjOPS using four of Oracle's SPARC T4-4 servers in the application tier and two more SPARC T4-4 servers for the database server.

  • The four SPARC T4-4 server configuration (sixteen SPARC T4 processors total, 3.0 GHz) demonstrated 2.4x better performance compared to the IBM Power 780 server (eight POWER7 processors, 3.86 THz) result of 16,646.34 SPECjEnterprise2010 EjOPS.

  • In the database tier, two SPARC T4-4 servers with a total of eight SPARC T4 processors at 3.0 GHz, processed 2.4x more transactions compared to the IBM result of 16,646.34 SPECjEnterprise2010 EjOPS which used four POWER7 processors at 3.55 GHz.

  • The four SPARC T4-4 server configuration demonstrated 1.5x better performance compared to the Cisco UCS B440 M2 Blade Server result of 26,118.67 SPECjEnterprise2010 EjOPS.

  • The four SPARC T4-4 server configuration demonstrated 2.3x better performance compared to the Cisco UCS B440 M1 Blade Server result of 17,301.86 SPECjEnterprise2010 EjOPS.

  • This result demonstrated less than 1 second average response times for all SPECjEnterprise2010 transactions and 90% of all transaction times took less than 1 second.

  • This result demonstrated a sustained Java EE 5 transaction load generated by approximately 320,000 users.

  • This result using 16 Oracle WebLogic 10.3.5 server instances demonstrated 4.8x better performance per application server instance when compared to the IBM result which used 32 WebSphere instances.

  • The SPARC T4-4 servers delivered a 6.7x price/performance advantage over the IBM Power 780 for the servers used in the application tier (see disclosure statement below for details). This price/performance advantage in the application tier was accomplished with a SPARC T4-4 server configuration with 2 TB of total memory compared to the IBM solution with 0.5 TB of memory.

  • The SPARC T4-4 servers had a 1.9x advantage over IBM in performance per space for the application tier (see disclosure statement below for details) even though the Oracle solution had four servers.

  • The four SPARC T4-4 servers used for the application tier used Oracle Solaris Containers to consolidate four Oracle WebLogic application server instances on each server to achieve this result.

  • The two SPARC T4-4 servers used for the database tier hosted Oracle Database 11g Release 2 and Oracle RAC cluster software using Oracle Automatic Storage Management (ASM).

  • Oracle Fusion Middleware provides a family of complete, integrated, hot pluggable and best-of-breed products known for enabling enterprise customers to create and run agile and intelligent business applications. Oracle WebLogic Server's on-going, record-setting Java application server performance demonstrates why so many customers rely on Oracle Fusion Middleware as their foundation for innovation.

Performance Landscape

Complete benchmark results are at the SPEC website, SPECjEnterprise2010 Results.

SPECjEnterprise2010 Performance Chart
as of 10/11/2011
Submitter EjOPS* Java EE Server DB Server
Oracle 40,104.86 4 x SPARC T4-4
4 chips, 32 cores, 3.0 GHz SPARC T4
Oracle WebLogic 11g (10.3.5)
2 x SPARC T4-4
4 chips, 32 cores, 3.0 GHz SPARC T4
Oracle 11g DB 11.2.0.2
Cisco 26,118.67 2 x Cisco UCS B440 M2
4 chips, 40 cores, 2.4 GHz Xeon E7-4870
Oracle WebLogic 11g (10.3.5)
1 x Cisco UCS C460 M2
4 chips, 40 cores, 2.4 GHz Xeon E7-4870
Oracle 11g DB 11.2.0.2
Cisco 17,301.86 2 x Cisco UCS B440 M1
4 chips, 32 cores, 2.26 GHz Xeon X7560
Oracle WebLogic 10.3.4
1 x Cisco UCS C460 M1
4 chips, 32 cores, 2.26 GHz Xeon X7560
Oracle 11g DB 11.2.0.2
IBM 16,646.34 1 x IBM Power 780
8 chips, 64 cores, 3.86 GHz POWER7
WebSphere Application Server V7.0
1 x IBM Power 750 Express
4 chips, 32 cores, 3.55 GHz POWER7
IBM DB2 Universal Database 9.7

* SPECjEnterprise2010 EjOPS (bigger is better)

Configuration Summary

Application Servers:

4 x SPARC T4-4 servers, each with
4 x 3.0 GHz SPARC T4 processors
512 GB memory
2 x 10GbE NIC
Oracle Solaris 10 8/11
Oracle WebLogic Server 11g Release 1 (10.3.5)
Java HotSpot(TM) 64-Bit Server VM on Solaris, version 1.6.0_26 (Java SE 6 Update 26)

Database Servers:

2 x SPARC T4-4 servers, each with
4 x 3.0 GHz SPARC T4 processors
1024 GB memory
2 x 10GbE NIC
4 x 8Gb FC HBA
Oracle Solaris 10 8/11
Oracle Database 11g Enterprise Edition Release 11.2.0.2
Oracle Real Application Clusters 11g Release 2

Storage Servers:

8 x Sun Fire X4270 M2 (12-Drive)
1 x 3.0 GHz Intel Xeon
8 GB memory
1 x 8Gb FC HBA
Oracle Solaris 11 Express 2010.11
8 x Sun Storage F5100 Flash Arrays

Switch Hardware:

2 x Sun Network 10GbE 72-port Top of Rack (ToR) Switch
1 x Brocade 5300 80-port Fiber Channel Switch

Benchmark Description

SPECjEnterprise2010 is the third generation of the SPEC organization's J2EE end-to-end industry standard benchmark application. The new SPECjEnterprise2010 benchmark has been re-designed and developed to cover the Java EE 5 specification's significantly expanded and simplified programming model, highlighting the major features used by developers in the industry today. This provides a real world workload driving the Application Server's implementation of the Java EE specification to its maximum potential and allowing maximum stressing of the underlying hardware and software systems,
  • The web container, servlets, and web services
  • The EJB container
  • JPA 1.0 Persistence Model
  • JMS and Message Driven Beans
  • Transaction management
  • Database connectivity
Moreover, SPECjEnterprise2010 also heavily exercises all parts of the underlying infrastructure that make up the application environment, including hardware, JVM software, database software, JDBC drivers, and the system network.

The primary metric of the SPECjEnterprise2010 benchmark is jEnterprise Operations Per Second (SPECjEnterprise2010 EjOPS). The primary metric for the SPECjEnterprise2010 benchmark is calculated by adding the metrics of the Dealership Management Application in the Dealer Domain and the Manufacturing Application in the Manufacturing Domain. There is NO price/performance metric in this benchmark.

Key Points and Best Practices

  • Four Oracle WebLogic server instances on each SPARC T4-4 server were hosted in 4 separate Oracle Solaris Containers to demonstrate consolidation of multiple application servers.
  • Each Oracle Solaris Container was bound to a separate processor set, each contained 7 cores (total 56 threads). This was done to improve performance by reducing memory access latency by using the physical memory closest to the processors. The default set was used for network and disk interrupt handling.
  • The Oracle WebLogic application servers were executed in the FX scheduling class to improve performance by reducing the frequency of context switches.
  • The Oracle database processes were run in 2 processor sets using psrset(1M) and executed in the FX scheduling class. This improved performance by reducing memory access latency and reducing context switches.
  • The Oracle log writer process was run in a separate processor set containing 2 threads and run in the RT scheduling class. This insured that the log writer had the most efficient use of CPU resources.

See Also

Disclosure Statement

SPEC and the benchmark name SPECjEnterprise are registered trademarks of the Standard Performance Evaluation Corporation. Results from www.spec.org as of 10/11/2011. SPARC T4-4, 40,104.86 SPECjEnterprise2010 EjOPS; Cisco UCS B440 M2, 26,118.67 SPECjEnterprise2010 EjOPS; Cisco UCS B440 M1, 17,301.86 SPECjEnterprise2010 EjOPS; IBM Power 780, 16,646.34 SPECjEnterprise2010 EjOPS.

SPECjEnterprise2010 models contemporary Java-based applications that run on large Java EE (Java Enterprise Edition) servers, backed by network infrastructure and database servers. Focusing on the critical Java EE server hardware & OS, the IBM result includes a Java EE server with a list price of $1.30 million. The Oracle Java EE servers have a list price of $0.47 million. The Java EE server price versus delivered EjOPS is $77.97/EjOPS for IBM versus $11.67/EjOPS for Oracle. Oracle's $/perf advantage is 6.7x better than IBM ($77.97/$11.67).

Pricing details for IBM, IBM p780 512GB based on public pricing at http://tpc.org/results/FDR/TPCH/TPC-H_1TB_IBM780_Sybase-FDR.pdf. Adjusted hardware costs to license all 64 cores. AIX pricing at: http://www-304.ibm.com/easyaccess3/fileserve?contentid=214347 and AIX Standard Edition V7.1 per processor (5765-G98-0017 64*2,600=$166,400). This gives application tier hardware & OS Price/perf: $77.97/EjOPS (1297956/16646.34)

Pricing details for Oracle, four SPARC T4-4 512 GB, HW acquisition price from Oracle's price list: $467,856 http://www.oracle.com. This gives application tier hardware & OS Price/perf: $11.67/EjOPS (467856/40104.86)

The Oracle application tier servers occupy 20U of space, 40,140.86/20=2005 EjOPS/U. The IBM application tier server occupies 16U of space, 16,646.34/16=1040 EjOPS/U. 2005/1040=1.9x

SPARC T4-4 Beats IBM POWER7 and HP Itanium on TPC-H @1000GB Benchmark

Oracle's SPARC T4-4 server configured with SPARC-T4 processors, Oracle's Sun Storage F5100 Flash Array storage, Oracle Solaris, and Oracle Database 11g Release 2 achieved a TPC-H benchmark performance result of 201,487 QphH@1000GB with price/performance of $4.60/QphH@1000GB.

  • The SPARC T4-4 server benchmark results demonstrate a complete solution of building Decision Support Systems including data loading, business questions and refreshing data. Each phase usually has a time constraint and the SPARC T4-4 server shows superior performance during each phase.

  • The SPARC T4-4 server is 22% faster than the 8-socket IBM POWER7 server with the same number of cores. The SPARC T4-4 server has over twice the performance per socket compared to the IBM POWER7 server.

  • The SPARC T4-4 server achieves 33% better price/performance than the IBM POWER7 server.

  • The SPARC T4-4 server is up to 4 times faster than the IBM POWER7 server for the Refresh Function.

  • The SPARC T4-4 server is 44% faster than the HP Superdome 2 server. The SPARC T4-4 server has 5.7x the performance per socket of the HP Superdome 2 server.

  • The SPARC T4-4 server is 62% better on price/performance than the HP Itanium server.

  • The SPARC T4-4 server is up to 3.7 times faster than the HP Itanium server for the Refresh Function.

  • The SPARC T4-4 server delivers nearly the same performance as Oracle's SPARC Enterprise M8000 server, but with 52% better price/performance on the TPC-H @1000GB benchmark.

  • Oracle used Storage Redundancy Level 3 as defined by the TPC-H 2.14.2 specification which is the strictest level.

  • This TPC-H result demonstrates that the SPARC T4-4 server can deliver the performance while running the increasingly larger databases required of DSS systems. The server measured more than 16 GB/sec of IO throughput through Oracle Database 11g Release 2 software while maintaining the high cpu load.

Performance Landscape

The table below lists published non-cluster results from comparable enterprise class systems from Oracle, IBM and HP. Each system was configured with 512 GB of memory.

TPC-H @1000GB

System
CPU type
Proc/Core/Thread
Composite
(QphH)
$/perf
($/QphH)
Power
(QppH)
Throughput
(QthH)
Database Available
SPARC Enterprise M8000
3 GHz SPARC64 VII+
16 / 64 / 128
209,533.6 $9.53 177,845.9 246,867.2 Oracle 11g 09/22/11
SPARC T4-4
3 GHz SPARC-T4
4 / 32 / 256
201,487.0 $4.60 181,760.6 223,354.2 Oracle 11g 10/30/11
IBM Power 780
4.14 GHz POWER7
8 / 32 / 128
164,747.2 $6.85 170,206.4 159,463.1 Sybase 03/31/11
HP Superdome 2
1.73 GHz Intel Itanium 9350
16 / 64 / 64
140,181.1 $12.15 139,181.0 141,188.3 Oracle 11g 10/20/10

QphH = the Composite Metric (bigger is better)
$/QphH = the Price/Performance metric (smaller is better)
QppH = the Power Numerical Quantity
QthH = the Throughput Numerical Quantity

Complete benchmark results found at the TPC benchmark website http://www.tpc.org.

Configuration Summary and Results

Hardware Configuration:

SPARC T4-4 server
4 x SPARC-T4 3.0 GHz processors (total of 32 cores, 128 threads)
512 GB memory
8 x internal SAS (8 x 300 GB) disk drives

External Storage:

4 x Sun Storage F5100 Flash Array storage, each with
80 x 24 GB Flash Modules

Software Configuration:

Oracle Solaris 10 8/11
Oracle Database 11g Release 2 Enterprise Edition

Audited Results:

Database Size: 1000 GB (Scale Factor 1000)
TPC-H Composite: 201,487 QphH@1000GB
Price/performance: $4.60/QphH@1000GB
Available: 10/30/2011
Total 3 Year Cost: $925,525
TPC-H Power: 181,760.6
TPC-H Throughput: 223,354.2
Database Load Time: 1:22:39

Benchmark Description

The TPC-H benchmark is a performance benchmark established by the Transaction Processing Council (TPC) to demonstrate Data Warehousing/Decision Support Systems (DSS). TPC-H measurements are produced for customers to evaluate the performance of various DSS systems. These queries and updates are executed against a standard database under controlled conditions. Performance projections and comparisons between different TPC-H Database sizes (100GB, 300GB, 1000GB, 3000GB and 10000GB) are not allowed by the TPC.

TPC-H is a data warehousing-oriented, non-industry-specific benchmark that consists of a large number of complex queries typical of decision support applications. It also includes some insert and delete activity that is intended to simulate loading and purging data from a warehouse. TPC-H measures the combined performance of a particular database manager on a specific computer system.

The main performance metric reported by TPC-H is called the TPC-H Composite Query-per-Hour Performance Metric (QphH@SF, where SF is the number of GB of raw data, referred to as the scale factor). QphH@SF is intended to summarize the ability of the system to process queries in both single and multi user modes. The benchmark requires reporting of price/performance, which is the ratio of QphH to total HW/SW cost plus 3 years maintenance.

Key Points and Best Practices

  • Four Sun Storage F5100 Flash Array devices were used for the benchmark. Each F5100 device contains 80 flash modules (FMODs). Twenty (20) FMODs from each F5100 device were connected to a single SAS 6 Gb HBA. A single F5100 device showed 4.16 GB/sec for sequential read and demonstrated linear scaling of 16.62 GB/sec with 4 x F5100 devices.

  • The IO rate from the Oracle database was over 16 GB/sec.

  • Oracle Solaris 10 8/11 required very little system tuning.

  • The SPARC T4-4 server and Oracle Solaris efficiently managed the system load of over one thousand Oracle parallel processes.

  • The Oracle database files for tables and indexes were managed by Oracle Automatic Storage Manager (ASM) with 4M stripe. Two F5100 devices were mirrored to another 2 F5100 devices under ASM. IO performance was high and balanced across all the FMODs.
  • The Oracle redo log files were mirrored across the F5100 devices using Oracle Solaris Volume Manager with 128K stripe.
  • Parallel degree on tables and indexes was set to 128. This setting worked the best for performance.
  • TPC-H Refresh Function simulates periodical Refresh portion of Data Warehouse by adding new sales and deleting old sales data. Parallel DML (parallel insert and delete in this case) and database log performance are a key for this function and the SPARC T4-4 server outperformed both HP Superdome 2 and IBM POWER7 servers.

See Also

Disclosure Statement

TPC-H, QphH, $/QphH are trademarks of Transaction Processing Performance Council (TPC). For more information, see www.tpc.org. SPARC T4-4 201,487 QphH@1000GB, $4.60/QphH@1000GB, avail 10/30/2011, 4 processors, 32 cores, 256 threads; SPARC Enterprise M8000 209,533.6 QphH@1000GB, $9.53/QphH@1000GB, avail 09/22/11, 16 processors, 64 cores, 128 threads; IBM Power 780 QphH@1000GB, 164,747.2 QphH@1000GB, $6.85/QphH@1000GB, avail 03/31/11, 8 processors, 32 cores, 128 threads; HP Integrity Superdome 2 140,181.1 QphH@1000GB, $12.15/QphH@1000GB avail 10/20/10, 16 processors, 64, cores, 64 threads.

SPARC T4-4 Produces World Record Oracle OLAP Capacity

Oracle's SPARC T4-4 server delivered world record capacity on the Oracle OLAP Perf workload.

  • The SPARC T4-4 server was able to operate on a cube with a 3 billion row fact table of sales data containing 4 dimensions which represents as many as 70 quintillion aggregate rows (70 followed by 18 zeros).

  • The SPARC T4-4 server supported 3,500 cube-queries/minute against the Oracle OLAP cube with an average response time of 1.5 seconds and the median response time of 0.15 seconds.

Performance Landscape

Oracle OLAP Perf Benchmark
System Fact Table
Num of Rows
Cube-Queries/
minute
Median Response
seconds
Average Response
seconds
SPARC T4-4 3 Billion 3,500 0.15 1.5

Configuration Summary and Results

Hardware Configuration:

SPARC T4-4 server with
4 x SPARC T4 processors, 3.0 GHz
1 TB main memory
2 x Sun Storage F5100 Flash Array

Software Configuration:

Oracle Solaris 10 8/11
Oracle Database 11g Enterprise Edition with Oracle OLAP option

Benchmark Description

OLAP Perf is a workload designed to demonstrate and stress the Oracle OLAP product's core functionalities of fast query, fast update, and rich calculations on a dimensional model to support Enhanced Data Warehousing. The workload uses a set of realistic business intelligence (BI) queries that run against an OLAP cube.

Key Points and Best Practices

  • The SPARC T4-4 server is estimated to support 2,400 interactive users with this fast response time assuming only 5 seconds between query requests.

See Also

Disclosure Statement

Copyright 2011, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 10/3/2011.

Wednesday Sep 28, 2011

SPARC T4 Servers Set World Record on Oracle E-Business Suite R12 X-Large Order to Cash

With Oracle's SPARC T4-2 server running the application and SPARC T4-4 server running the database, Oracle set a world record result for the Oracle E-Business Suite Standard X-Large Order to Cash (OLTP) benchmark.

  • The combination of a SPARC T4-2 server running the Oracle E-Business Suite R12.1.2 application and a SPARC T4-4 server running the Oracle Database 11g Release 2 database enabled 2400 Order to Cash users of the X-Large Benchmark to simultaneously execute a large volume of medium to heavy transactions with an average response time of 2.4 seconds.

  • The SPARC T4-2 server in the application tier and the SPARC T4-4 server in the database tier are only about half utilized providing significant headroom for additional Oracle E-Business Suite R12.1.2 processing modules and future growth.

Performance Landscape

This is the first published result for the X-large benchmark using Oracle E-Business Order Management module.

OLTP Workload: Order to Cash
X-Large Configuration
System Users Average
Response Time
90th Percentile
Response Time
SPARC T4-2 2400 2.413 sec. 3.114 sec.

Configuration Summary

Application Tier Configuration:

1 x SPARC T4-2 server
2 x SPARC T4 processors, 2.85 GHz
256 GB memory
Oracle Solaris 10 8/11
Oracle E-Business Suite 12.1.2

Database Tier Configuration:

1 x SPARC T4-4 server
4 x SPARC T4 processors, 3.0 GHz
256 GB memory
Oracle Solaris 10 8/11
Oracle Database 11g Release 2

Storage Configuration:

1 x Sun Storage F5100 Flash Array

Benchmark Description

The Oracle R12 E-Business Suite Standard Benchmark combines online transaction execution by simulated users with concurrent batch processing to model a typical scenario for a global enterprise. This benchmark ran one OLTP component, Order to Cash, in the Extra-Large size. The goal is to obtain reference response times.

Results can be published in four sizes and utilize different combination

  • X-large: Maximum online users running all business flows between 10,000 to 20,000; 750,000 order to cash lines per hour and 250,000 payroll checks per hour.
    • Order to Cash Online -- 2400 users
      • The percentage across the 5 transactions in Order Management module is:
        • Insert Manual Invoice -- 16.66%
        • Insert Order -- 32.33%
        • Order Pick Release -- 16.66%
        • Ship Confirm -- 16.66%
        • Order Summary Report -- 16.66%
    • HR Self-Service -- 4000 users
    • Customer Support Flow -- 8000 users
    • Procure to Pay -- 2000 users
  • Large: 10,000 online users; 100,000 order to cash lines per hour and 100,000 payroll checks per hour.
  • Medium: up to 3000 online users; 50,000 order to cash lines per hour and 10,000 payroll checks per hour.
  • Small: up to 1000 online users; 10,000 order to cash lines per hour and 5,000 payroll checks per hour.

See Also

Disclosure Statement

Oracle E-Business X-Large Order to Cash benchmark, SPARC T4-2, SPARC T4, 2.85 GHz, 2 chips, 16 cores, 128 threads, 256 GB memory, SPARC T4-4, SPARC T4, 3.0 GHz, 4 chips, 32 cores, 256 threads, 256 GB memory, average response time 2.413 sec, 90th percentile response time 3.114 sec, Oracle Solaris 10 8/11, Oracle E-Business Suite 12.1.2, Oracle Database 11g Release 2, Results as of 9/26/2011.

SPARC T4-2 Server Beats Intel (Westmere AES-NI) on Oracle Database Tablespace Encryption Queries

Oracle's SPARC T4 processor with Encryption Instruction Accelerators greatly improves performance over software implementations. This will greatly expand the use of TDE for many customers.

  • Oracle's SPARC T4-2 server is over 42% faster than Oracle's Sun Fire X4270 M2 (Intel AES-NI) when running DSS-style queries referencing an encrypted tablespace.

Oracle's Transparent Data Encryption (TDE) feature of the Oracle Database simplifies the encryption of data within datafiles preventing unauthorized access to it from the operating system. Tablespace encryption allows encryption of the entire contents of a tablespace.

TDE tablespace encryption has been certified with Siebel, PeopleSoft, and Oracle E-Business Suite applications

Performance Landscape

Total Query Time (time in seconds)
System GHz AES-128 AES-192 AES-256
SPARC T4-2 server 2.85 588 588 588
Sun Fire X4270 M2 (Intel X5690) 3.46 836 841 842
SPARC T4-2 Advantage
42% 43% 43%

Configuration Summary

SPARC Configuration:

SPARC T4-2 server
2 x SPARC T4 processors, 2.85 GHz
256 GB memory
2 x Sun Storage F5100 Flash Array
Oracle Solaris 11
Oracle Database 11g Release 2

Intel Configuration:

Sun Fire X4270 M2 server
2 x Intel Xeon X5690 processors, 3.46 GHz
48 GB memory
2 x Sun Storage F5100 Flash Array
Oracle Linux 5.7
Oracle Database 11g Release 2

Benchmark Description

To test the performance of TDE, a 1 TB database was created. To demonstrate secure transactions, four 25 GB tables emulating customer private data were created: clear text, encrypted AES-128, encrypted AES-192, and encrypted AES-256. Eight queries of varying complexity that join on the customer table were executed.

The time spent scanning the customer table during each query was measured and query plans analyzed to ensure a fair comparison, e.g. no broken queries. The total query time for all queries is reported.

Key Points and Best Practices

  • Oracle Database 11g Release 2 is required for SPARC T4 processor Encryption Instruction Accelerators support with TDE tablespaces.

  • TDE tablespaces support the SPARC T4 processor Encryption Instruction Accelerators for Advanced Encryption Standard (AES) only.

  • AES-CFB is the mode used in the Oracle database with TDE

  • Prior to using TDE tablespaces you must create a wallet and setup an encryption key. Here is one method to do that:

  • Create a wallet entry in $ORACLE_HOME/network/admin/sqlnet.ora.
    ENCRYPTION_WALLET_LOCATION=
    (SOURCE=(METHOD=FILE)(METHOD_DATA=
    (DIRECTORY=/oracle/app/oracle/product/11.2.0/dbhome_1/encryption_wallet)))
    
    Set an encryption key. This also opens the wallet.
    $ sqlplus / as sysdba
    SQL> ALTER SYSTEM SET ENCRYPTION KEY IDENTIFIED BY "tDeDem0";
    
    On subsequent instance startup open the wallet.
    $ sqlplus / as sysdba
    SQL> STARTUP;
    SQL> ALTER SYSTEM SET ENCRYPTION WALLET OPEN IDENTIFIED BY "tDeDem0";
    
  • TDE tablespace encryption and decryption occur on physical writes and reads of database blocks, respectively.

  • For parallel query using direct path reads decryption overhead varies inversely with the complexity of the query.

    For a simple full table scan query overhead can be reduced and performance improved by reducing the degree of parallelism (DOP) of the query.

See Also

Disclosure Statement

Copyright 2011, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 9/26/2011.

SPARC T4 Servers Set World Record on PeopleSoft HRMS 9.1

Oracle's SPARC T4-4 servers running Oracle's PeopleSoft HRMS Self-Service 9.1 benchmark and Oracle Database 11g Release 2 achieved World Record performance on Oracle Solaris 10.

  • Using two SPARC T4-4 servers to run the application and database tiers and one SPARC T4-2 server to run the webserver tier, Oracle demonstrated world record performance of 15,000 concurrent users running the PeopleSoft HRMS Self-Service 9.1 benchmark.

  • The combination of the SPARC T4 servers running the PeopleSoft HRMS 9.1 benchmark supports 3.8x more online users with faster response time compared to the best published result from IBM on the previous PeopleSoft HRMS 8.9 benchmark.

  • The average CPU utilization on the SPARC T4-4 server in the application tier handling 15,000 users was less than 50%, leaving significant room for application growth.

  • The SPARC T4-4 server on the application tier used Oracle Solaris Containers which provide a flexible, scalable and manageable virtualization environment.

Performance Landscape

PeopleSoft HRMS Self-Service 9.1 Benchmark
Systems Processors Users Ave Response -
Search (sec)
Ave Response -
Save (sec)
SPARC T4-2 (web)
SPARC T4-4 (app)
SPARC T4-4 (db)
2 x SPARC T4, 2.85 GHz
4 x SPARC T4, 3.0 GHz
4 x SPARC T4, 3.0 GHz
15,000 1.01 0.63
PeopleSoft HRMS Self-Service 8.9 Benchmark
IBM Power 570 (web/app)
IBM Power 570 (db)
12 x POWER5, 1.9 GHz
4 x POWER5, 1.9 GHz
4,000 1.74 1.25
IBM p690 (web)
IBM p690 (app)
IBM p690 (db)
4 x POWER4, 1.9 GHz
12 x POWER4, 1.9 GHz
6 x 4392 MPIS/Gen1
4,000 1.35 1.01

The main differences between version 9.1 and version 8.9 of the benchmark are:

  • the database expanded from 100K employees and 20K managers to 500K employees and 100K managers,
  • the manager data was expanded,
  • a new transaction, "Employee Add Profile," was added, the percent of users executing it is less then 2%, and the transaction has a heavier footprint,
  • version 9.1 has a different benchmark metric (Average Response search/save time for x number of users) versus single user search/save time,
  • newer versions of the PeopleSoft application and PeopleTools software are used.

Configuration Summary

Application Server:

1 x SPARC T4-4 server
4 x SPARC T4 processors 3.0 GHz
512 GB main memory
5 x 300 GB SAS internal disks,
2 x 100 GB internal SSDs
1 x 300 GB internal SSD
Oracle Solaris 10 8/11
PeopleSoft PeopleTools 8.51.02
PeopleSoft HCM 9.1
Oracle Tuxedo, Version 10.3.0.0, 64-bit, Patch Level 031
Java HotSpot(TM) 64-Bit Server VM on Solaris, version 1.6.0_20

Web Server:

1 x SPARC T4-2 server
2 x SPARC T4 processors 2.85 GHz
256 GB main memory
1 x 300 GB SAS internal disks
1 x 300 GB internal SSD
Oracle Solaris 10 8/11
PeopleSoft PeopleTools 8.51.02
Oracle WebLogic Server 11g (10.3.3)
Java HotSpot(TM) 64-Bit Server VM on Solaris, version 1.6.0_20

Database Server:

1 x SPARC T4-4 server
4 x SPARC T4 processors 3.0 GHz
256 GB main memory
3 x 300 GB SAS internal disks
1 x Sun Storage F5100 Flash Array (80 flash modules)
Oracle Solaris 10 8/11
Oracle Database 11g Release 2

Benchmark Description

The purpose of the PeopleSoft HRMS Self-Service 9.1 benchmark is to measure comparative online performance of the selected processes in PeopleSoft Enterprise HCM 9.1 with Oracle Database 11g. The benchmark kit is an Oracle standard benchmark kit run by all platform vendors to measure the performance. It's an OLTP benchmark with no dependency on remote COBOL calls, there is no batch workload, and DB SQLs are moderately complex. The results are certified by Oracle and a white paper is published.

PeopleSoft defines a business transaction as a series of HTML pages that guide a user through a particular scenario. Users are defined as corporate Employees, Managers and HR administrators. The benchmark consists of 14 scenarios which emulate users performing typical HCM transactions such as viewing paychecks, promoting and hiring employees, updating employee profiles and other typical HCM application transactions.

All these transactions are well-defined in the PeopleSoft HR Self-Service 9.1 benchmark kit. The benchmark metric is the Average Response Time for search and save for 15,000 users..

Key Points and Best Practices

  • The application tier was configured with two PeopleSoft application server instances on the SPARC T4-4 server hosted in two separate Oracle Solaris Containers to demonstrate consolidation of multiple application, ease of administration, and load balancing.

  • Each PeopleSoft Application Server instance running in an Oracle Solaris Container was configured to run 5 application server Domains with 30 application server instances to be able to effectively handle the 15,000 users workload with zero application server queuing and minimal use of resources.

  • The web tier was configured with 20 WebLogic instances and with 4 GB JVM heap size to load balance transactions across 10 PeopleSoft Domains. That enables equitable distribution of transactions and scaling to high number of users.

  • Internal SSDs were configured in the application tier to host PeopleSoft Application Servers object CACHE file systems and in the web tier for WebLogic servers' logging providing near zero millisecond service time and faster server response time.

See Also

Disclosure Statement

Oracle's PeopleSoft HRMS 9.1 benchmark, www.oracle.com/us/solutions/benchmark/apps-benchmark/peoplesoft-167486.html, results 9/26/2011.

Tuesday Sep 27, 2011

SPARC T4-2 Servers Set World Record on JD Edwards EnterpriseOne Day in the Life Benchmark with Batch, Outperforms IBM POWER7

Using Oracle's SPARC T4-2 server for the application tier and a SPARC T4-1 server for the database tier, a world record result was produced running the Oracle's JD Edwards EnterpriseOne application Day in the Life (DIL) benchmark concurrently with a batch workload.

  • The SPARC T4-2 server running online and batch with JD Edwards EnterpriseOne 9.0.2 is 1.7x faster and has better response time than the IBM Power 750 system which only ran the online component of JD Edwards EnterpriseOne 9.0 Day in the Life test.

  • The combination of SPARC T4 servers delivered a Day in the Life benchmark result of 10,000 online users with 0.35 seconds of average transaction response time running concurrently with 112 Universal Batch Engine (UBE) processes at 67 UBEs/minute.

  • This is the first JD Edwards EnterpriseOne benchmark for 10,000 users and payroll batch on a SPARC T4-2 server for the application tier and the database tier with Oracle Database 11g Release 2. All servers ran with the Oracle Solaris 10 operating system.

  • The single-thread performance of the SPARC T4 processor produced sub-second response for the online components and provided dramatic performance for the batch jobs.

  • The SPARC T4 servers, JD Edwards EnterpriseOne 9.0.2, and Oracle WebLogic Server 11g Release 1 support 17% more users per JAS (Java Application Server) than the SPARC T3-1 server for this benchmark.

  • The SPARC T4-2 server provided a 6.7x better batch processing rate than the previous SPARC T3-1 server record result and had 2.5x faster response time.

  • The SPARC T4-2 server used Oracle Solaris Containers, which provide flexible, scalable and manageable virtualization.

  • JD Edwards EnterpriseOne uses Oracle Fusion Middleware WebLogic Server 11g R1 and Oracle Fusion Middleware Cluster Web Tier Utilities 11g HTTP server.

  • The combination of the SPARC T4-2 server and Oracle JD Edwards EnterpriseOne in the application tier with a SPARC T4-1 server in the database tier measured low CPU utilization providing headroom for growth.

Performance Landscape

JD Edwards EnterpriseOne Day in the Life Benchmark
Online with Batch Workload

System Online
Users
Resp
Time (sec)
Batch
Concur
(# of UBEs)
Batch
Rate
(UBEs/m)
Version
2xSPARC T4-2 (app+web)
SPARC T4-1 (db)
10000 0.35 112 67 9.0.2
SPARC T3-1 (app+web)
SPARC Enterprise M3000 (db)
5000 0.88 19 10 9.0.1

Resp Time (sec) — Response time of online jobs reported in seconds
Batch Concur (# of UBEs) — Batch concurrency presented in the number of UBEs
Batch Rate (UBEs/m) — Batch transaction rate in UBEs per minute

Edwards EnterpriseOne Day in the Life Benchmark
Online Workload Only

System Online
Users
Response
Time (sec)
Version
SPARC T3-1, 1 x SPARC T3 (1.65 GHz), Solaris 10 (app)
M3000, 1 x SPARC64 VII (2.75 GHz), Solaris 10 (db)
5000 0.52 9.0.1
IBM Power 750, POWER7 (3.55 GHz) (app+db) 4000 0.61 9.0

IBM result from http://www-03.ibm.com/systems/i/advantages/oracle/, IBM used WebSphere

Configuration Summary

Application Tier Configuration:

1 x SPARC T4-2 server with
2 x 2.85 GHz SPARC T4 processors
128 GB main memory
6 x 300 GB 10K RPM SAS internal HDD
Oracle Solaris 10 9/10
JD Edwards EnterpriseOne 9.0.2 with Tools 8.98.3.3

Web Tier Configuration:

1 x SPARC T4-2 server with
2 x 2.85 GHz SPARC T4 processors
256 GB main memory
2 x 300 GB SSD
4 x 300 GB 10K RPM SAS internal HDD
Oracle Solaris 10 9/10
Oracle WebLogic Server 11g Release 1

Database Tier Configuration:

1 x SPARC T4-1 server with
1 x 2.85 GHz SPARC T4 processor
128 GB main memory
6 x 300 GB 10K RPM SAS internal HDD
2 x Sun Storage F5100 Flash Array
Oracle Solaris 10 9/10
Oracle Database 11g Release 2

Benchmark Description

JD Edwards EnterpriseOne is an integrated applications suite of Enterprise Resource Planning (ERP) software. Oracle offers 70 JD Edwards EnterpriseOne application modules to support a diverse set of business operations.

Oracle's Day in the Life (DIL) kit is a suite of scripts that exercises most common transactions of JD Edwards EnterpriseOne applications, including business processes such as payroll, sales order, purchase order, work order, and manufacturing processes, such as ship confirmation. These are labeled by industry acronyms such as SCM, CRM, HCM, SRM and FMS. The kit's scripts execute transactions typical of a mid-sized manufacturing company.

  • The workload consists of online transactions and the UBE – Universal Business Engine workload of 42 short, 8 medium and 4 long UBEs.

  • LoadRunner runs the DIL workload, collects the user’s transactions response times and reports the key metric of Combined Weighted Average Transaction Response time.

  • The UBE processes workload runs from the JD Enterprise Application server.

    • Oracle's UBE processes come as three flavors:
      • Short UBEs < 1 minute engage in Business Report and Summary Analysis,
      • Mid UBEs > 1 minute create a large report of Account, Balance, and Full Address,
      • Long UBEs > 2 minutes simulate Payroll, Sales Order, night only jobs.
    • The UBE workload generates large numbers of PDF files reports and log files.
    • The UBE Queues are categorized as the QBATCHD, a single threaded queue for large and medium UBEs, and the QPROCESS queue for short UBEs run concurrently.

Oracle’s UBE process performance metric is Number of Maximum Concurrent UBE processes at transaction rate, UBEs/minute.

Key Points and Best Practices

One JD Edwards EnterpriseOne Application Server and two Oracle WebLogic Servers 11g R1 coupled with two Oracle Fusion Middleware 11g Web Tier HTTP Server instances on the SPARC T4-2 servers were hosted in three separate Oracle Solaris Containers to demonstrate consolidation of multiple application and web servers.

  • Interrupt fencing was configured on all Oracle Solaris Containers to channel the interrupts to processors other than the processor sets used for the JD Edwards Application server and WebLogic servers.

  • Processor 0 was left alone for clock interrupts.

  • The applications were executed in the FX scheduling class to improve performance by reducing the frequency of context switches.

  • A WebLogic vertical cluster was configured on each WebServer Container with twelve managed instances each to load balance users' requests and to provide the infrastructure that enables scaling to high number of users with ease of deployment and high availability.

  • The database server was run in an Oracle Solaris Container hosted on the SPARC T4-2 server.

  • The database log writer was run in the real time RT class and bound to a processor set.

  • The database redo logs were configured on the raw disk partitions.

  • The private network between the SPARC T4-2 servers was configured with a 10 GbE interface.

  • The Oracle Solaris Container on the Enterprise Application server ran 42 Short UBEs, 8 Medium UBEs and 4 Long UBEs concurrently as the mixed size batch workload.

  • The mixed size UBEs ran concurrently from the application server with the 10000 online users driven by the LoadRunner.

See Also

Disclosure Statement

Copyright 2011, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 9/26/2011.

About

BestPerf is the source of Oracle performance expertise. In this blog, Oracle's Strategic Applications Engineering group explores Oracle's performance results and shares best practices learned from working on Enterprise-wide Applications.

Index Pages
Search

Archives
« April 2014
SunMonTueWedThuFriSat
  
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
   
       
Today