Thursday Nov 19, 2015

SPECvirt_2013: SPARC T7-2 World Record Performance for Two- and Four-Chip Systems

Oracle's SPARC T7-2 server delivered a world record SPECvirt_sc2013 result for systems with two to four chips.

  • The SPARC T7-2 server produced a result of 3198 @ 179 VMs SPECvirt_sc2013.

  • The two-chip SPARC T7-2 server beat the best four-chip x86 Intel E7-8890 v3 server (HP ProLiant DL580 Gen9), demonstrating that the SPARC M7 processor is 2.1 times faster than the Intel Xeon Processor E7-8890 v3 (chip-to-chip comparison).

  • The two-chip SPARC T7-2 server beat the best two-chip x86 Intel E5-2699 v3 server results by nearly 2 times (Huawei FusionServer RH2288H V3, HP ProLiant DL360 Gen9).

  • The two-chip SPARC T7-2 server delivered nearly 2.2 times the performance of the four-chip IBM Power System S824 server solution which used 3.5 GHz POWER8 six core chips.

  • The SPARC T7-2 server running Oracle Solaris 11.3 operating system, utilizes embedded virtualization products as the Oracle Solaris 11 zones, which in turn provide a low overhead, flexible, scalable and manageable virtualization environment.

  • The SPARC T7-2 server result used Oracle VM Server for SPARC 3.3 and Oracle Solaris Zones providing a flexible, scalable and manageable virtualization environment.

Performance Landscape

Complete benchmark results are at the SPEC website, SPECvirt_sc2013 Results. The following table highlights the leading two-, and four-chip results for the benchmark, bigger is better.

SPECvirt_sc2013
Leading Two to Four-Chip Results
System
Processor
Chips Result @ VMs Virtualization Software
SPARC T7-2
SPARC M7 (4.13 GHz, 32core)
2 3198 @ 179 Oracle VM Server for SPARC 3.3
Oracle Solaris Zones
HP ProLiant DL580 Gen9
Intel E7-8890 v3 (2.5 GHz, 18core)
4 3020 @ 168 Red Hat Enterprise Linux 7.1 KVM
Lenovo System x3850 X6
Intel E7-8890 v3 (2.5 GHz, 18core)
4 2655 @ 147 Red Hat Enterprise Linux 6.6 KVM
Huawei FusionServer RH2288H V3
Intel E5-2699 v3 (2.3 GHz, 18core)
2 1616 @ 95 Huawei FusionSphere V1R5C10
HP ProLiant DL360 Gen9
Intel E5-2699 v3 (2.3 GHz, 18core)
2 1614 @ 95 Red Hat Enterprise Linux 7.1 KVM
IBM Power S824
POWER8 (3.5 GHz, 6core)
4 1370 @ 79 PowerVM Enterprise Edition 2.2.3

Configuration Summary

System Under Test Highlights:

Hardware:
1 x SPARC T7-2 server, with
2 x 4.13 GHz SPARC M7
1 TB memory
2 Sun Dual Port 10GBase-T Adapter
2 Sun Storage Dual 16 Gb Fibre Channel PCIe Universal HBA

Software:
Oracle Solaris 11.3
Oracle VM Server for SPARC 3.3 (LDom)
Oracle Solaris Zones
Oracle iPlanet Web Server 7.0.20
Oracle PHP 5.3.29
Dovecot v2.2.18
Oracle WebLogic Server Standard Edition Release 10.3.6
Oracle Database 12c Enterprise Edition (12.1.0.2.0)
Java HotSpot(TM) 64-Bit Server VM on Solaris, version 1.7.0_85-b15

Storage:
3 x Oracle Server X5-2L, with
2 x Intel Xeon Processor E5-2630 v3 8-core 2.4 GHz
32 GB memory
4 x Oracle Flash Accelerator F160 PCIe Card
Oracle Solaris 11.3

1 x Oracle Server X5-2L, with
2 x Intel Xeon Processor E5-2630 v3 8-core 2.4 GHz
32 GB memory
4 x Oracle Flash Accelerator F160 PCIe Card
4x 400 GB SSDs
Oracle Solaris 11.3

Benchmark Description

SPECvirt_sc2013 is SPEC's updated benchmark addressing performance evaluation of datacenter servers used in virtualized server consolidation. SPECvirt_sc2013 measures the end-to-end performance of all system components including the hardware, virtualization platform, and the virtualized guest operating system and application software. It utilizes several SPEC workloads representing applications that are common targets of virtualization and server consolidation. The workloads were made to match a typical server consolidation scenario of CPU resource requirements, memory, disk I/O, and network utilization for each workload. These workloads are modified versions of SPECweb2005, SPECjAppServer2004, SPECmail2008, and SPEC CPU2006. The client-side SPECvirt_sc2013 harness controls the workloads. Scaling is achieved by running additional sets of virtual machines, called "tiles", until overall throughput reaches a peak.

Key Points and Best Practices

  • The SPARC T7-2 server running the Oracle Solaris 11.3, utilizes embedded virtualization products as the Oracle VM Server for SPARC and Oracle Solaris Zones, which provide a low overhead, flexible, scalable and manageable virtualization environment.

  • In order to provide a high level of data integrity and availability, all the benchmark data sets are stored on mirrored (RAID1) storage

  • Using Oracle VM Server for SPARC to bind the SPARC M7 processor with its local memory optimized the memory use in this virtual environment.

  • This improved result used a fractional tile to fully saturate the system.

See Also

Disclosure Statement

SPEC and the benchmark name SPECvirt_sc are registered trademarks of the Standard Performance Evaluation Corporation. Results from www.spec.org as of 11/19/2015. SPARC T7-2, SPECvirt_sc2013 3198@179 VMs; HP ProLiant DL580 Gen9, SPECvirt_sc2013 3020@168 VMs; Lenovo x3850 X6; SPECvirt_sc2013 2655@147 VMs; Huawei FusionServer RH2288H V3, SPECvirt_sc2013 1616@95 VMs; HP ProLiant DL360 Gen9, SPECvirt_sc2013 1614@95 VMs; IBM Power S824, SPECvirt_sc2013 1370@79 VMs.

Monday Oct 26, 2015

Real-Time Enterprise: SPARC T7-1 Faster Than x86 E5 v3

A goal of the modern business is real-time enterprise where analytics are run simultaneously with transaction processing on the same system to provide the most effective decision making. Oracle Database 12c Enterprise Edition utilizing the In-Memory option is designed to have the same database able to perform transactions at the highest performance and to transform analytical calculations that once took days or hours to complete orders of magnitude faster.

Oracle's SPARC M7 processor has deep innovations to take the real-time enterprise to the next level of performance. In this test both OLTP transactions and analytical queries were run in a single database instance using all of the same features of Oracle Database 12c Enterprise Edition utilizing the In-Memory option in order to compare the advantages of the SPARC M7 processor compared to a generic x86 processor. On both systems the OLTP and analytical queries both took about half of the processing load of the server.

In this test Oracle's SPARC T7-1 server is compared to a two-chip x86 E5 v3 based server. On analytical queries the SPARC M7 processor is 8.2x faster than the x86 E5 v3 processor. Simultaneously on OLTP transactions the SPARC M7 processor is 2.9x faster than the x86 E5 v3 processor. In addition, the SPARC T7-1 server had better OLTP transactional response time than the x86 E5 v3 server.

The SPARC M7 processor does this by using the Data Accelerator co-processor (DAX). DAX is not a SIMD instruction set, but rather an actual co-processor that offloads in-memory queries which frees the cores up for other processing. The DAX has direct access to the memory bus and can execute scans at near full memory bandwidth. Oracle makes the DAX API available to other applications, so this kind of acceleration is not just to the Oracle database, it is open.

The results below were obtained running a set of OLTP transactions and analytic queries simultaneously against two schema: a real time online orders system and a related historical orders schema configured as a real cardinality database (RCDB) star schema. The in-memory analytics RCDB queries are executed using the Oracle Database 12c In-Memory columnar feature.

  • The SPARC T7-1 server and the x86 E5 v3 server both ran OLTP transactions and the in-memory analytics on the same database instance using Oracle Database 12c Enterprise Edition utilizing the In-Memory option.

  • The SPARC T7-1 server ran the in-memory analytics RCDB based queries 8.2x faster per chip than a two-chip x86 E5 v3 server on the 48 stream test.

  • The SPARC T7-1 server delivers 2.9x higher OLTP transaction throughput results per chip than a two-chip x86 E5 v3 server on the 48 stream test.

Performance Landscape

The table below compares the SPARC T7-1 server and 2-chip x86 E5 v3 server while running OLTP and in-memory analytics against tables in the same database instance. The same set of transactions and queries were executed on each system.

Real-Time Enterprise Performance Chart
48 RCDB DSS Streams, 224 OLTP users
System OLTP Transactions Analytic Queries
Trans Per
Second
Per Chip
Advantage
Average
Response Time
Queries Per
Minute
Per Chip
Advantage
SPARC T7-1
1 x SPARC M7 (32core)
338 K 2.9x 11 (msec) 267 8.2x
x86 E5 v3 server
2 x Intel E5-2699 v3 (2x 18core)
236 K 1.0 12 (msec) 65 1.0

The number of cores listed is per chip.
The Per Chip Advantage it computed by normalizing to a single chip's performance

Configuration Summary

SPARC Server:

1 X SPARC T7-1 server
1 X SPARC M7 processor
256 GB Memory
Oracle Solaris 11.3
Oracle Database 12c Enterprise Edition Release 12.1.0.2.10

x86 Server:

1 X Oracle Server X5-2L
2 X Intel Xeon Processor E5-2699 v3
256 GB Memory
Oracle Linux 6 Update 5 (3.8.13-16.2.1.el6uek.x86_64)
Oracle Database 12c Enterprise Edition Release 12.1.0.2.10

Benchmark Description

The Real-Time Enterprise benchmark simulates the demands of customers who want to simultaneously run both their OLTP database and the related historical warehouse DSS data that would be based on that OLTP data. It answers the question of how a system will perform when doing data analysis while at the same time executing real-time on-line transactions.

The OLTP workload simulates an Order Inventory System that exercises both reads and writes with a potentially large number of users that stresses the lock management and connectivity, as well as, database access.

The number of customers, orders and users is fully parametrized. This benchmark is base on 100 GB dataset, 15 million customers, 600 million orders and up to 580 users. The workload consists of a number of transaction types including show-expenses, part-cost, supplier-phone, low-inv, high-inv, update-price, update-phone, update-cost, and new-order.

The real cardinality database (RCDB) schema was created to showcase the potential speedup one may see moving from on disk, row format data warehouse/Star Schema, to utilizing Oracle Database 12c's In-Memory feature for analytical queries.

The workload consists of as many as 2,304 unique queries asking questions such as "In 2014, what was the total revenue of single item orders", or "In August 2013, how many orders exceeded a total price of $50". Questions like these can help a company see where to focus for further revenue growth or identify weaknesses in their offerings.

RCDB scale factor 1050 represents a 1.05 TB data warehouse. It is transformed into a star schema of 1.0 TB, and then becomes 110 GB in size when loaded in memory. It consists of 1 fact table, and 4 dimension tables with over 10.5 billion rows. There are 56 columns with most cardinalities varying between 5 and 2,000, a primary key being an example of something outside this range.

Two reports are generated: one for the OLTP-Perf workload and one for the RCDB DSS workload. For the analytical DSS workload, queries per minute and average query elapsed times are reported. For the OLTP-Perf workload, both transactions-per-seconds in thousands and OLTP average response times in milliseconds are reported.

Key Points and Best Practices

  • This benchmark utilized the SPARC M7 processor's co-processor DAX for query acceleration.

  • All SPARC T7-1 server results were run with out-of-the-box tuning for Oracle Solaris.

  • All Oracle Server X5-2L system results were run with out of the box tunings for Oracle Linux except for the setting in /etc/sysctl.conf to get large pages for the Oracle Database:

    • vm.nr_hugepages=98304

  • To create an in memory area, the following was added to the init.ora:

      inmemory_size = 120g

  • An example of how to set a table to be in memory is below:

      ALTER TABLE CUSTOMER INMEMORY MEMCOMPRESS FOR QUERY HIGH

See Also

Disclosure Statement

Copyright 2015, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 25 October 2015.

In-Memory Database: SPARC T7-1 Faster Than x86 E5 v3

Fast analytics on large databases are critical to transforming key business processes. Oracle's SPARC M7 processors are specifically designed to accelerate in-memory analytics using Oracle Database 12c Enterprise Edition utilizing the In-Memory option. The SPARC M7 processor outperforms an x86 E5 v3 chip by up to 10.8x on analytics queries. In order to test real world deep analysis on the SPARC M7 processor a scenario with over 2,300 analytical queries was run against a real cardinality database (RCDB) star schema. This benchmark was audited by Enterprise Strategy Group (ESG). ESG is an IT research, analyst, strategy, and validation firm focused on the global IT community.

The SPARC M7 processor does this by using Data Accelerator co-processor (DAX). DAX is not a SIMD instruction but rather an actual co-processor that offloads in-memory queries which frees the cores up for other processing. The DAX has direct access to the memory bus and can execute scans at near full memory bandwidth. Oracle makes the DAX API available to other applications, so this kind of acceleration not just for the Oracle database, it is open.

  • The SPARC M7 processor delivers up to a 10.8x Query Per Minute speedup per chip over the Intel Xeon Processor E5-2699 v3 when executing analytical queries using the In-Memory option of Oracle Database 12c.

  • Oracle's SPARC T7-1 server delivers up to a 5.4x Query Per Minute speedup over the 2-chip x86 E5 v3 server when executing analytical queries using the In-Memory option of Oracle Database 12c.

  • The SPARC T7-1 server delivers over 143 GB/sec of memory bandwidth which is up to 7x more than the 2-chip x86 E5 v3 server when the Oracle Database 12c is executing the same analytical queries against the RCDB.

  • The SPARC T7-1 server scanned over 48 billion rows per second through the database.

  • The SPARC T7-1 server compresses the on-disk RCDB star schema by around 6x when using the Memcompress For Query High setting (more information following below) and by nearly 10x compared to a standard data warehouse row format version of the same database.

Performance Landscape

The table below compares the SPARC T7-1 server and 2-chip x86 E5 v3 server. The x86 E5 v3 server single chip compares are from actual measurements against a single chip configuration.

The number of cores is per chip, multiply by number of chips to get system total.

RCDB Performance Chart
2,304 Queries
System Elapsed
Seconds
Queries Per
Minute
System
Adv
Chip
Adv
DB Memory
Bandwidth
SPARC T7-1
1 x SPARC M7 (32core)
381 363 5.4x 10.8x 143 GB/sec
x86 E5 v3 server
2 x Intel E5-2699 v3 (2x 18core)
2059 67 1.0x 2.0x 20 GB/sec
x86 E5 v3 server
1 x Intel E5-2699 v3 (18core)
4096 34 0.5x 1.0x 10 GB/sec

Fused Decompress + Scan

The In-Memory feature of Oracle Database 12c puts tables in columnar format. There are different levels of compression that can be applied. One of these is Oracle Zip (OZIP) which is used with the "MEMCOMPRESS FOR QUERY HIGH" setting. Typically when compression is applied to data, in order to operate on it, the data must be:

    (1) Decompressed
    (2) Written back to memory in uncompressed form
    (3) Scanned and the results returned.

When OZIP is applied to the data inside of an In-Memory Columnar Unit (or IMCU, an N sized chunk of rows), the DAX is able to take this data in its compressed format and operate (scan) directly upon it, returning results in a single step. This not only saves on compute power by not having the CPU do the decompression step, but also on memory bandwidth as the uncompressed data is not put back into memory. Only the results are returned. To illustrate this, a microbenchmark was used which measured the amount of rows that could be scanned per second.

SAE hpk-uperf

Compression

This performance test was run on a Scale Factor 1750 database, which represents a 1.75 TB row format data warehouse. The database is then transformed into a star schema which ends up around 1.1 TB in size. The star schema is then loaded in memory with a setting of "MEMCOMPRESS FOR QUERY HIGH", which focuses on performance with somewhat more aggressive compression. This memory area is a separate part of the System Global Area (SGA) which is defined by the database initialization parameter "inmemory_size". See below for an example. Here is a breakdown of each table in memory with compression ratios.

Column Name Original Size
(Bytes)
In Memory
Size (Bytes)
Compression
Ratio
LINEORDER 1,103,524,528,128 178,586,451,968 6.2x
DATE 11,534,336 1,179,648 9.8x
PART 11,534,336 1,179,648 9.8x
SUPPLIER 11,534,336 1,179,648 9.8x
CUSTOMER 11,534,336 1,179,648 9.8x

Configuration Summary

SPARC Server:

1 X SPARC T7-1 server
1 X SPARC M7 processor
512 GB memory
Oracle Solaris 11.3
Oracle Database 12c Enterprise Edition Release 12.1.0.2.13

x86 Server:

1 X Oracle Server X5-2L
2 X Intel Xeon Processor E5-2699 v3
512 GB memory
Oracle Linux 6 Update 5 (3.8.13-16.2.1.el6uek.x86_64)
Oracle Database 12c Enterprise Edition Release 12.1.0.2.13

Benchmark Description

The real cardinality database (RCDB) benchmark was created to showcase the potential speedup one may see moving from on disk, row format data warehouse/Star Schema, to utilizing Oracle Database 12c's In-Memory feature for analytical queries.

The workload consists of 2,304 unique queries asking questions such as "In 2014, what was the total revenue of single item orders", or "In August 2013, how many orders exceeded a total price of $50". Questions like these can help a company see where to focus for further revenue growth or identify weaknesses in their offerings.

RCDB scale factor 1750 represents a 1.75 TB data warehouse. It is transformed into a star schema of 1.1 TB, and then becomes 179 GB in size when loaded in memory. It consists of 1 fact table, and 4 dimension tables with over 10.5 billion rows. There are 56 columns with most cardinalities varying between 5 and 2,000, a primary key being an example of something outside this range.

One problem with many industry standard generated databases is that as they have grown in size the cardinalities for the generated columns have become exceedingly unrealistic. For instance one industry standard benchmark uses a schema where at scale factor 1 TB it calls for the number of parts to be SF * 800,000. A 1 TB database that calls for 800 million unique parts is not very realistic. Therefore RCDB attempts to take some of these unrealistic cardinalities and size them to be more representative of at least a section of customer data. Obviously one cannot encompass every database in one schema, this is just an example.

We carefully scaled each system so that the optimal number of users was run on each system under test so that we did not create artificial bottlenecks. Each user ran an equal number of queries and the same queries were run on each system, allowing for a fair comparison of the results.

Key Points and Best Practices

  • This benchmark utilized the SPARC M7 processor's co-processor DAX for query acceleration.

  • All SPARC T7-1 server results were run with out of the box tuning for Oracle Solaris.

  • All Oracle Server X5-2L system results were run with out of the box tunings for Oracle Linux except for the setting in /etc/sysctl.conf to get large pages for the Oracle Database:

    • vm.nr_hugepages=64520

  • To create an in memory area, the following was added to the init.ora:

      inmemory_size = 200g

  • An example of how to set a table to be in memory is below:

      ALTER TABLE CUSTOMER INMEMORY MEMCOMPRESS FOR QUERY HIGH

See Also

Disclosure Statement

Copyright 2015, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 10/25/2015.

In-Memory Aggregation: SPARC T7-2 Beats 4-Chip x86 E7 v2

Oracle's SPARC T7-2 server demonstrates better performance both in throughput and number of users compared to a four-chip x86 E7 v2 sever. The workload consists of a realistic set of business intelligence (BI) queries in a multi-user environment against a 500 million row fact table using Oracle Database 12c Enterprise Edition utilizing the In-Memory option.

  • The SPARC M7 chip delivers 2.3 times more query throughput per hour compared to an x86 E7 v2 chip.

  • The two-chip SPARC T7-2 server delivered 13% more query throughput per hour compared to a four-chip x86 E7 v2 server.

  • The two-chip SPARC T7-2 server supported over 10% more users than a four-chip x86 E7 v2 server.

  • Both the SPARC server and x86 server ran with just under 5 second average response time.

Performance Landscape

The results below were run as part of this benchmark. All results use 500,000,000 fact table rows and had average cpu utilization of 100%.

In-Memory Aggregation
500 Million Row Fact Table
System Users Queries
per Hour
Queries per Hour
per Chip
Average
Response Time
SPARC T7-2
2 x SPARC M7 (32core)
190 127,540 63,770 4.99 (sec)
x86 E7 v2
4 x E7-8895 v2 (4x 15core)
170 112,470 28,118 4.92 (sec)

The number of cores are listed per chip.

Configuration Summary

SPARC Configuration:

SPARC T7-2
2 x 4.13 GHz SPARC M7 processors
1 TB memory (32 x 32 GB)
Oracle Solaris 11.3
Oracle Database 12c Enterprise /Edition (12.1.0.2.0)

x86 Configuration:

Sun Server X4-4
4 x Intel Xeon Processor E7-8895 v2 processors
1 TB memory (64 x 16 GB)
Oracle Linux Server 6.5 (kernel 2.6.32-431.el6.x86_64)
Oracle Database 12c Enterprise /Edition (12.1.0.2.0)

Benchmark Description

The benchmark is designed to highlight the efficacy of the Oracle Database 12c In-Memory Aggregation facility (join and aggregation optimizations) together with the fast scan and filtering capability of Oracle's in-memory column store facility.

The benchmark runs analytic queries such as those seen in typical customer business intelligence (BI) applications. These are done in the context of a star schema database. The key metrics are query throughput, number of users and average response times

The implementation of the workload used to achieve the results is based on a schema consisting of 9 dimension tables together with a 500 million row fact table.

The query workload consists of randomly generated star-style queries simulating a collection of ad-hoc business intelligence users. Up to 300 concurrent users have been run, with each user running approximately 500 queries. The implementation includes a relatively small materialized view, which contains some precomputed data. The creation of the materialized view takes only a few minutes.

Key Points and Best Practices

The reported results were obtained by using the following settings on both systems except where otherwise noted:

  1. starting with a completely cold shared pool
  2. without making use of the result cache
  3. without using dynamic sampling or adaptive query optimization
  4. running all queries in parallel, where
    parallel_max_servers = 1600 (on the SPARC T7-2) or
    parallel_max_servers = 240 (on the Sun Server X4-4)
    each query hinted with PARALLEL(4)
    parallel_degree_policy = limited
  5. having appropriate queries rewritten to the materialized view, MV3, defined as
    SELECT
    /*+ append vector_transform */
    d1.calendar_year_name, d1.calendar_quarter_name, d2.all_products_name,
    d2.department_name, d2.category_name, d2.type_name, d3.all_customers_name,
    d3.region_name, d3.country_name, d3.state_province_name, d4.all_channels_name,
    d4.class_name, d4.channel_name, d5.all_ages_name, d5.age_name, d6.all_sizes_name,
    d6.household_size_name, d7.all_years_name, d7.years_customer_name, d8.all_incomes_name,
    d8.income_name, d9.all_status_name, d9.marital_status_name,
    SUM(f.sales) AS sales,
    SUM(f.units) AS units,
    SUM(f.measure_3) AS measure_3,
    SUM(f.measure_4) AS measure_4,
    SUM(f.measure_5) AS measure_5,
    SUM(f.measure_6) AS measure_6,
    SUM(f.measure_7) AS measure_7,
    SUM(f.measure_8) AS measure_8,
    SUM(f.measure_9) AS measure_9,
    SUM(f.measure_10) AS measure_10
    FROM time_dim d1, product_dim d2, customer_dim_500M_10 d3, channel_dim d4, age_dim d5,
    household_size_dim d6, years_customer_dim d7, income_dim d8, marital_status_dim d9,
    units_fact_500M_10 f
    WHERE d1.day_id = f.day_id AND
    d2.item_id = f.item_id AND
    d3.customer_id = f.customer_id AND
    d4.channel_id = f.channel_id AND
    d5.age_id = f.age_id AND
    d6.household_size_id = f.household_size_id AND
    d7.years_customer_id = f.years_customer_id AND
    d8.income_id = f.income_id AND
    d9.marital_status_id = f.marital_status_id
    GROUP BY d1.calendar_year_name, d1.calendar_quarter_name, d2.all_products_name,
    d2.department_name, d2.category_name, d2.type_name, d3.all_customers_name,
    d3.region_name, d3.country_name, d3.state_province_name, d4.all_channels_name,
    d4.class_name, d4.channel_name, d5.all_ages_name, d5.age_name, d6.all_sizes_name,
    d6.household_size_name, d7.all_years_name, d7.years
    

See Also

Disclosure Statement

Copyright 2015, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of October 25, 2015.

Neural Network Models Using Oracle R Enterprise: SPARC T7-4 Beats 4-Chip x86 E7 v3

Oracle's SPARC T7-4 server executing neural network algorithms using Oracle R Enterprise (ORE) is up to two times faster than a four-chip x86 E7 v3 server.

  • For a neural network with two hidden layers, 10-neuron with 5-neuron hyperbolic tangent, the SPARC T7-4 server is 1.5 times faster than a four-chip x86 T7 v3 server on calculation time.

  • For a neural network with two hidden layers, 20-neuron with 10-neuron hyperbolic tangent, the SPARC T7-4 server is 2.0 times faster than than a four-chip x86 T7 v3 server on calculation time.

Performance Landscape

Oracle Enterprise R Statistics in Oracle Database
(250 million rows)
Neural Network
with Two Hidden Layers
Elapsed Calculation Time SPARC Advantage
4-chip x86 E7 v3 SPARC T7-4
10-neuron + 5-neuron
hyperbolic tangent
520.1 (sec) 337.3 (sec) 1.5x
20-neuron + 10-neuron
hyperbolic tangent
1128.4 (sec) 578.1 (sec) 2.0x

Configuration Summary

SPARC Configuration:

SPARC T7-4
4 x SPARC M7 processors (4.13 GHz)
2 TB memory (64 x 32 GB dimms)
Oracle Solaris 11.3
Oracle Database 12c Enterprise Edition
Oracle R Enterprise 1.5
Oracle Solaris Studio 12.4 with 4/15 patch set

x86 Configuration:

Oracle Server X5-4
4 x Intel Xeon Processor E5-8895 v3 (2.6 GHz)
512 GB memory
Oracle Linux 6.4
Oracle Database 12c Enterprise Edition
Oracle R Enterprise 1.5

Storage Configuration:

Oracle Server X5-2L
2 x Intel Xeon Processor E5-2699 v3
512 GB memory
4 x 1.6 TB 2.5-inch NVMe PCIe 3.0 SSD
2 x Sun Storage Dual 16Gb FC PCIe HBA
Oracle Solaris 11.3

Benchmark Description

The benchmark is designed to run various statistical analyses using Oracle R Enterprise (ORE) with historical aviation data. The size of the benchmark data is about 35 GB, a single table holding 250 million rows. One of the most popular algorithms, neural network, has been used against the dataset to generate comparable results.

The neural network algorithms support various features. In this workload, the following two neural network features have been used: neural net with two hidden layers 10-neuron with 5-neuron hyperbolic tangent and neural net with two hidden layers 20-neuron with 10-neuron hyperbolic tangent.

See Also

Disclosure Statement

Copyright 2015, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 25 October 2015.

SPECjEnterprise2010: SPARC T7-1 World Record with Single Application Server Using 1 to 4 Chips

Oracle's SPARC T7-1 servers have set a world record for the SPECjEnterprise2010 benchmark for solutions using a single application server with one to four chips. The result of 25,818.85 SPECjEnterprise2010 EjOPS used two SPARC T7-1 servers, one server for the application tier and the other server for the database tier.

  • The SPARC T7-1 servers obtained a result of 25,093.06 SPECjEnterprise2010 EjOPS using encrypted data. This secured result used Oracle Advanced Security Transparent Data Encryption (TDE) for the application database tablespaces with the AES-256-CFB cipher. The network connection between the application server and the database server was also encrypted using the secure JDBC.

  • The SPARC T7-1 server solution delivered 34% more performance compared to the two-chip IBM x3650 M5 server result of 19,282.14 SPECjEnterprise2010 EjOPS.

  • The SPARC T7-1 server solution delivered 14% more performance compared to the four-chip IBM Power System S824 server result of 22,543.34 SPECjEnterprise2010 EjOPS.

  • The SPARC T7-1 server based results demonstrated 20% more performance compared to the Oracle Server X5-2 system result of 21,504.30 SPECjEnterprise2010 EjOPS. Oracle holds the top x86 two-chip application server SPECjEnterprise2010 result.

  • The application server used Oracle Fusion Middleware components including the Oracle WebLogic 12.1 application server and Java HotSpot(TM) 64-Bit Server VM on Solaris, version 1.8.0_60. The database server was configured with Oracle Database 12c Release 1.

  • For the secure result, the application data was encrypted in the Oracle database using the Oracle Advanced Security Transparent Data Encryption (TDE) feature. Hardware accelerated cryptography support in the SPARC M7 processor for the AES-256-CFB cipher was used to provide data security.

  • The benchmark performance using the secure SPARC T7-1 server configuration with encryption was less than 3% when compared to the peak result.

  • This result demonstrated less than 1 second average response times for all SPECjEnterprise2010 transactions and represents Jave EE 5.0 transactions generated by over 210,000 users.

Performance Landscape

Select single application server results. Complete benchmark results are at the SPEC website, SPECjEnterprise2010 Results.

SPECjEnterprise2010 Performance Chart
10/25/2015
Submitter EjOPS* Java EE Server DB Server Notes
Oracle 25,818.85 1 x SPARC T7-1
1 x 4.13 GHz SPARC M7
Oracle WebLogic 12c (12.1.3)
1 x SPARC T7-1
1 x 4.13 GHz SPARC M7
Oracle Database 12c (12.1.0.2)
-
Oracle 25,093.06 1 x SPARC T7-1
1 x 4.13 GHz SPARC M7
Oracle WebLogic 12c (12.1.3)
Network Data Encryption for JDBC
1 x SPARC T7-1
1 x 4.13 GHz SPARC M7
Oracle Database 12c (12.1.0.2)
Transparent Data Encryption
Secure
IBM 22,543.34 1 x IBM Power S824
4 x 3.5 GHz POWER 8
WebSphere Application Server V8.5
1 x IBM Power S824
4 x 3.5 GHz POWER 8
IBM DB2 10.5 FP3
-
Oracle 21,504.30 1 x Oracle Server X5-2
2 x 2.3 GHz Intel Xeon E5-2699 v3
Oracle WebLogic 12c (12.1.3)
1 x Oracle Server X5-2
2 x 2.3 GHz Intel Xeon E5-2699 v3
Oracle Database 12c (12.1.0.2)
COD
IBM 19,282.14 1 x System x3650 M5
2 x 2.6 GHz Intel Xeon E5-2697 v3
WebSphere Application Server V8.5
1 x System x3850 X6
4 x 2.8 GHz Intel Xeon E7-4890 v2
IBM DB2 10.5 FP5
-

* SPECjEnterprise2010 EjOPS (bigger is better)

The Cluster on Die (COD) mode is a BIOS setting that effectively splits the chip in half, making the operating system think it has twice as many chips as it does (in this case, four, 9 core chips). Intel has stated that COD is appropriate only for highly NUMA optimized workloads. Dell has shown that there is a 3.7x slower bandwidth to the other half of the chip split by COD.

Configuration Summary

Application Server:

1 x SPARC T7-1 server, with
1 x SPARC M7 processor (4.13 GHz)
256 GB memory (16 x 16 GB)
2 x 600 GB SAS HDD
2 x 400 GB SAS SSD
3 x Sun Dual Port 10 GbE PCIe 2.0 Networking card with Intel 82599 10 GbE Controller
Oracle Solaris 11.3 (11.3.0.0.30)
Oracle WebLogic Server 12c (12.1.3)
Java HotSpot(TM) 64-Bit Server VM on Solaris, version 1.8.0_60

Database Server:

1 x SPARC T7-1 server, with
1 x SPARC M7 processor (4.13 GHz)
512 GB memory (16 x 32 GB)
2 x 600 GB SAS HDD
1 x Sun Dual Port 10 GbE PCIe 2.0 Networking card with Intel 82599 10 GbE Controller
1 x Sun Storage 16 Gb Fibre Channel Universal HBA
Oracle Solaris 11.3 (11.3.0.0.30)
Oracle Database 12c (12.1.0.2)

Storage Servers:

1 x Oracle Server X5-2L (8-Drive), with
2 x Intel Xeon Processor E5-2699 v3 (2.3 GHz)
32 GB memory
1 x Sun Storage 16 Gb Fibre Channel Universal HBA
4 x 1.6 TB NVMe SSD
2 x 600 GB SAS HDD
Oracle Solaris 11.3 (11.3.0.0.30)
1 x Oracle Server X5-2L (24-Drive), with
2 x Intel Xeon Processor E5-2699 v3 (2.3 GHz)
32 GB memory
1 x Sun Storage 16 Gb Fibre Channel Universal HBA
14 x 600 GB SAS HDD
Oracle Solaris 11.3 (11.3.0.0.30)

1 x Brocade 6510 16 Gb FC switch

Benchmark Description

SPECjEnterprise2010 is the third generation of the SPEC organization's J2EE end-to-end industry standard benchmark application. The SPECjEnterprise2010 benchmark has been designed and developed to cover the Java EE 5 specification's significantly expanded and simplified programming model, highlighting the major features used by developers in the industry today. This provides a real world workload driving the Application Server's implementation of the Java EE specification to its maximum potential and allowing maximum stressing of the underlying hardware and software systems,

  • The web zone, servlets, and web services
  • The EJB zone
  • JPA 1.0 Persistence Model
  • JMS and Message Driven Beans
  • Transaction management
  • Database connectivity
Moreover, SPECjEnterprise2010 also heavily exercises all parts of the underlying infrastructure that make up the application environment, including hardware, JVM software, database software, JDBC drivers, and the system network.

The primary metric of the SPECjEnterprise2010 benchmark is jEnterprise Operations Per Second (SPECjEnterprise2010 EjOPS). The primary metric for the SPECjEnterprise2010 benchmark is calculated by adding the metrics of the Dealership Management Application in the Dealer Domain and the Manufacturing Application in the Manufacturing Domain. There is NO price/performance metric in this benchmark.

Key Points and Best Practices

  • Four Oracle WebLogic server instances on the SPARC T7-1 server were hosted in 4 separate Oracle Solaris Zones.
  • The Oracle WebLogic application servers were executed in the FX scheduling class to improve performance by reducing the frequency of context switches.
  • The Oracle log writer process was run in the RT scheduling class.

See Also

Disclosure Statement

SPEC and the benchmark name SPECjEnterprise are registered trademarks of the Standard Performance Evaluation Corporation. Results from www.spec.org as of 10/25/2015. SPARC T7-1, 25,818.85 SPECjEnterprise2010 EjOPS (unsecure); SPARC T7-1, 25,093.06 SPECjEnterprise2010 EjOPS (secure); Oracle Server X5-2, 21,504.30 SPECjEnterprise2010 EjOPS (unsecure); IBM Power S824, 22,543.34 SPECjEnterprise2010 EjOPS (unsecure); IBM x3650 M5, 19,282.14 SPECjEnterprise2010 EjOPS (unsecure);

SPECvirt_sc2013: SPARC T7-2 World Record for 2 and 4 Chip Systems

Oracle has had a new result accepted by SPEC as of November 19, 2015. This new result may be found here.

Oracle's SPARC T7-2 server delivered a world record SPECvirt_sc2013 result for systems with two to four chips.

  • The SPARC T7-2 server produced a result of 3026 @ 168 VMs SPECvirt_sc2013.

  • The two-chip SPARC T7-2 server beat the best two-chip x86 Intel E5-2699 v3 server results by nearly 1.9 times (Huawei FusionServer RH2288H V3, HP ProLiant DL360 Gen9).

  • The two-chip SPARC T7-2 server delivered nearly 2.2 times the performance of the four-chip IBM Power System S824 server solution which used 3.5 GHz POWER8 six core chips.

  • The SPARC T7-2 server running Oracle Solaris 11.3 operating system, utilizes embedded virtualization products as the Oracle Solaris 11 zones, which in turn provide a low overhead, flexible, scalable and manageable virtualization environment.

  • The SPARC T7-2 server result used Oracle VM Server for SPARC 3.3 and Oracle Solaris Zones providing a flexible, scalable and manageable virtualization environment.

Performance Landscape

Complete benchmark results are at the SPEC website, SPECvirt_sc2013 Results. The following table highlights the leading two-, and four-chip results for the benchmark, bigger is better.

SPECvirt_sc2013
Leading Two to Four-Chip Results
System
Processor
Chips Result @ VMs Virtualization Software
SPARC T7-2
SPARC M7 (4.13 GHz, 32core)
2 3026 @ 168 Oracle VM Server for SPARC 3.3
Oracle Solaris Zones
HP DL580 Gen9
Intel E7-8890 v3 (2.5 GHz, 18core)
4 3020 @ 168 Red Hat Enterprise Linux 7.1 KVM
Lenovo System x3850 X6
Intel E7-8890 v3 (2.5 GHz, 18core)
4 2655 @ 147 Red Hat Enterprise Linux 6.6 KVM
Huawei FusionServer RH2288H V3
Intel E5-2699 v3 (2.3 GHz, 18core)
2 1616 @ 95 Huawei FusionSphere V1R5C10
HP DL360 Gen9
Intel E5-2699 v3 (2.3 GHz, 18core)
2 1614 @ 95 Red Hat Enterprise Linux 7.1 KVM
IBM Power S824
POWER8 (3.5 GHz, 6core)
4 1370 @ 79 PowerVM Enterprise Edition 2.2.3

Configuration Summary

System Under Test Highlights:

Hardware:
1 x SPARC T7-2 server, with
2 x 4.13 GHz SPARC M7
1 TB memory
2 Sun Dual Port 10GBase-T Adapter
2 Sun Storage Dual 16 Gb Fibre Channel PCIe Universal HBA

Software:
Oracle Solaris 11.3
Oracle VM Server for SPARC 3.3 (LDom)
Oracle Solaris Zones
Oracle iPlanet Web Server 7.0.20
Oracle PHP 5.3.29
Dovecot v2.2.18
Oracle WebLogic Server Standard Edition Release 10.3.6
Oracle Database 12c Enterprise Edition (12.1.0.2.0)
Java HotSpot(TM) 64-Bit Server VM on Solaris, version 1.7.0_85-b15

Storage:
3 x Oracle Server X5-2L, with
2 x Intel Xeon Processor E5-2630 v3 8-core 2.4 GHz
32 GB memory
4 x Oracle Flash Accelerator F160 PCIe Card
Oracle Solaris 11.3

1 x Oracle Server X5-2L, with
2 x Intel Xeon Processor E5-2630 v3 8-core 2.4 GHz
32 GB memory
4 x Oracle Flash Accelerator F160 PCIe Card
4x 400 GB SSDs
Oracle Solaris 11.3

Benchmark Description

SPECvirt_sc2013 is SPEC's updated benchmark addressing performance evaluation of datacenter servers used in virtualized server consolidation. SPECvirt_sc2013 measures the end-to-end performance of all system components including the hardware, virtualization platform, and the virtualized guest operating system and application software. It utilizes several SPEC workloads representing applications that are common targets of virtualization and server consolidation. The workloads were made to match a typical server consolidation scenario of CPU resource requirements, memory, disk I/O, and network utilization for each workload. These workloads are modified versions of SPECweb2005, SPECjAppServer2004, SPECmail2008, and SPEC CPU2006. The client-side SPECvirt_sc2013 harness controls the workloads. Scaling is achieved by running additional sets of virtual machines, called "tiles", until overall throughput reaches a peak.

Key Points and Best Practices

  • The SPARC T7-2 server running the Oracle Solaris 11.3, utilizes embedded virtualization products as the Oracle VM Server for SPARC and Oracle Solaris Zones, which provide a low overhead, flexible, scalable and manageable virtualization environment.

  • In order to provide a high level of data integrity and availability, all the benchmark data sets are stored on mirrored (RAID1) storage

  • Using Oracle VM Server for SPARC to bind the SPARC M7 processor with its local memory optimized system memory use in this virtual environment.

See Also

Disclosure Statement

SPEC and the benchmark name SPECvirt_sc are registered trademarks of the Standard Performance Evaluation Corporation. Results from www.spec.org as of 10/25/2015. SPARC T7-2, SPECvirt_sc2013 3026@168 VMs; HP DL580 Gen9, SPECvirt_sc2013 3020@168 VMs; Lenovo x3850 X6; SPECvirt_sc2013 2655@147 VMs; Huawei FusionServer RH2288H V3, SPECvirt_sc2013 1616@95 VMs; HP ProLiant DL360 Gen9, SPECvirt_sc2013 1614@95 VMs; IBM Power S824, SPECvirt_sc2013 1370@79 VMs.

Oracle Internet Directory: SPARC T7-2 World Record

Oracle's SPARC T7-2 server running Oracle Internet Directory (OID, Oracle's LDAP Directory Server) on Oracle Solaris 11 on a virtualized processor configuration achieved a record result on the Oracle Internet Directory benchmark.

  • The SPARC T7-2 server, virtualized to use a single processor, achieved world record performance running Oracle Internet Directory benchmark with 50M users.

  • The SPARC T7-2 server and Oracle Internet Directory using Oracle Database 12c running on Oracle Solaris 11 achieved record result of 1.18M LDAP searches/sec with an average latency of 0.85 msec with 1000 clients.

  • The SPARC T7 server demonstrated 25% better throughput and 23% better latency for LDAP search/sec over similarly configured SPARC T5 server benchmark environment.

  • Oracle Internet Directory achieved near linear scalability on the virtualized single processor domain on the SPARC T7-2 server with 79K LDAP searches/sec with 2 cores to 1.18M LDAP searches/sec with 32 cores.

  • Oracle Internet Directory and the virtualized single processor domain on the SPARC T7-2 server achieved up to 22,408 LDAP modify/sec with an average latency of 2.23 msec for 50 clients.

Performance Landscape

A virtualized single SPARC M7 processor in a SPARC T7-2 server was used for the test results presented below. The SPARC T7-2 server and SPARC T5-2 server results were run as part of this benchmark effort. The remaining results were part of a previous benchmark effort.

Oracle Internet Directory Tests
System chips/
cores
Search Modify Add
ops/sec lat (msec) ops/sec lat (msec) ops/sec lat (msec)
SPARC T7-2 1/32 1,177,947 0.85 22,400 2.2 1,436 11.1
SPARC T5-2 2/32 944,624 1.05 16,700 2.9 1,000 15.95
SPARC T4-4 4/32 682,000 1.46 12,000 4.0 835 19.0

Scaling runs were also made on the virtualized single processor domain on the SPARC T7-2 server.

Scaling of Search Tests – SPARC T7-2, One Processor
Cores Clients ops/sec Latency (msec)
32 1000 1,177,947 0.85
24 1000 863,343 1.15
16 500 615,563 0.81
8 500 280,029 1.78
4 100 156,114 0.64
2 100 79,300 1.26

Configuration Summary

System Under Test:

SPARC T7-2
2 x SPARC M7 processors, 4.13 GHz
512 GB memory
6 x 600 GB internal disks
1 x Sun Storage ZS3-2 (used for database and log files)
Flash storage (used for redo logs)
Oracle Solaris 11.3
Oracle Internet Directory 11g Release 1 PS7 (11.1.1.7.0)
Oracle Database 12c Enterprise Edition 12.1.0.2 (64-bit)

Benchmark Description

Oracle Internet Directory (OID) is Oracle's LDAPv3 Directory Server. The throughput for five key operations are measured — Search, Compare, Modify, Mix and Add.

LDAP Search Operations Test

This test scenario involved concurrent clients binding once to OID and then performing repeated LDAP Search operations. The salient characteristics of this test scenario is as follows:

  • SLAMD SearchRate job was used.
  • BaseDN of the search is root of the DIT, the scope is SUBTREE, the search filter is of the form UID=, DN and UID are the required attribute.
  • Each LDAP search operation matches a single entry.
  • The total number concurrent clients was 1000 and were distributed amongst two client nodes.
  • Each client binds to OID once and performs repeated LDAP Search operations, each search operation resulting in the lookup of a unique entry in such a way that no client looks up the same entry twice and no two clients lookup the same entry and all entries are searched randomly.
  • In one run of the test, random entries from the 50 Million entries are looked up in as many LDAP Search operations.
  • Test job was run for 60 minutes.

LDAP Compare Operations Test

This test scenario involved concurrent clients binding once to OID and then performing repeated LDAP Compare operations on userpassword attribute. The salient characteristics of this test scenario is as follows:

  • SLAMD CompareRate job was used.
  • Each LDAP compare operation matches user password of user.
  • The total number concurrent clients was 1000 and were distributed amongst two client nodes.
  • Each client binds to OID once and performs repeated LDAP compare operations.
  • In one run of the test, random entries from the 50 Million entries are compared in as many LDAP compare operations.
  • Test job was run for 60 minutes.

LDAP Modify Operations Test

This test scenario consisted of concurrent clients binding once to OID and then performing repeated LDAP Modify operations. The salient characteristics of this test scenario is as follows:

  • SLAMD LDAP modrate job was used.
  • A total of 50 concurrent LDAP clients were used.
  • Each client updates a unique entry each time and a total of 50 Million entries are updated.
  • Test job was run for 60 minutes.
  • Value length was set to 11.
  • Attribute that is being modified is not indexed.

LDAP Mixed Load Test

The test scenario involved both the LDAP search and LDAP modify clients enumerated above.

  • The ratio involved 60% LDAP search clients, 30% LDAP bind and 10% LDAP modify clients.
  • A total of 1000 concurrent LDAP clients were used and were distributed on 2 client nodes.
  • Test job was run for 60 minutes.

LDAP Add Load Test

The test scenario involved concurrent clients adding new entries as follows.

  • Slamd standard add rate job is used.
  • A total of 500,000 entries were added.
  • A total of 16 concurrent LDAP clients were used.
  • Slamd add's inetorgperson objectclass entry with 21 attributes (includes operational attributes).

See Also

Disclosure Statement

Copyright 2015, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 25 October 2015.

Oracle Stream Explorer DDOS Attack: SPARC T7-4 World Record

A single processor of Oracle's SPARC T7-4 server achieved a world record result running an Oracle Stream Explorer platform benchmark. The Oracle Stream Explorer platform is used to process multiple event streams to detect patterns and trends in real time. The benchmark detects malicious IP addresses that cause a distributed denial of service (DDOS) attack.

  • A single SPARC M7 processor of a SPARC T7-4 server running Oracle Stream Explorer achieved a throughput result of 1.505 million ops/sec.

  • The SPARC M7 processor achieved 2.9 times the throughput of an x86 Intel Xeon Processor E7-8895 v3 based server.

Performance Landscape

All of the following results were run as part of this benchmark effort.

Oracle Stream Explorer Throughput Test
One Processor Performance
System Throughput
SPARC T7-4 1.505 M ops/sec
Oracle Server X5-4 0.522 M ops/sec

Configuration Summary

SPARC Server:

SPARC T7-4
4 x SPARC M7 processors
1 TB memory
Oracle Solaris 11.3
Oracle Stream Explorer 11.1.1.7 (PS6)
Oracle JDK 6

x86 Server:

Oracle Server X5-4
4 x Intel Xeon Processor E7-8895 v3
1 TB memory
Oracle Solaris 11.3
Oracle Stream Explorer 11.1.1.7 (PS6)
Oracle JDK 6

Benchmark Description

The benchmark detects malicious IP addresses that cause a distributed denial of service (DDOS) attack on a system. The benchmark determines which IP address sent the most packets. The benchmark has a dedicated load generator program for each Oracle Stream Explorer platform instance.

The Oracle Stream Explorer platform instance is always in a listening mode. When it receives data on its network socket, it starts incrementing the packet counter. Different Oracle Stream Explorer platform instances are deployed on different network sockets. The packet counter is printed out in regular intervals as the throughput for benchmarking purposes.

Key Points and Best Practices

  • The load generator was run on the system under test. One processor was used for the event processing, the other processors were used for the load generation.

  • On the SPARC T7-4 server, three SPARC M7 processors were assigned the task of running the 200 load generators. This was accomplished using the psrset command.

  • On the Oracle Server X5-4 system, three Intel Xeon Processor E7-8895 v3 were assigned the task of running the 36 load generators.

  • Only 25 cores of the SPARC M7 processor were required to satisfy the workload. The 200 Oracle Stream Explorer applications were bound eight per core.

  • All 18 cores of the Intel Xeon Processor E7-8895 v3 were required to satisfy the workload. The 36 Oracle Stream Explorer applications were bound two per core.

See Also

Disclosure Statement

Copyright 2015, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 25 October 2015.

Oracle FLEXCUBE Universal Banking: SPARC T7-1 World Record

Oracle's SPARC T7-1 servers running Oracle FLEXCUBE Universal Banking Release 12 along with Oracle Database 12c Enterprise Edition with Oracle Real Application Clusters on Oracle Solaris 11 produced record results for two processor solutions.

  • Two SPARC T7-1 servers each running Oracle FLEXCUBE Universal Banking Release 12 (v 12.0.1) and Oracle Real Application Clusters 12c database on Oracle Solaris 11 achieved record End of Year batch processing of 25 million accounts with 200 branches in 4 hrs 34 minutes (total of two processors).

  • A single SPARC T7-1 server running Oracle FLEXCUBE Universal Banking Release 12 processing 100 branches was able to complete the workload in similar time as the two node 200 branches End of Year workload, demonstrating good scaling of the application.

  • The customer representative workload for all 25 million accounts included saving accounts, current accounts, loans and TD accounts were created on the basis 25 million Customer IDs with 200 branches.

  • Oracle's SPARC M7 and T7 Servers running Oracle Solaris 11 with built-in Silicon Secured Memory with Oracle Database 12c can benefit global retail and corporate financial institutions who are running Oracle FLEXCUBE Universal Banking Release 12. The uniquely co-engineered Oracle software and hardware unlock unique agile capabilities demanded by modern business environments.

  • The SPARC T7-1 system and Oracle Solaris are able to provide a combination of uniquely essential characteristics that resonate with core values for a modern financial services institution.

  • The SPARC M7 processor based systems are capable of delivering higher performance and lower total cost of ownership (TCO) than older SPARC infrastructure, without introducing the unseen tax and risk of migrating applications away from older SPARC systems.

Performance Landscape

Oracle FLEXCUBE Universal Banking Release 12
End of Year Batch Processing
System Branches Time in Minutes
2 x SPARC T7-1 200 274 (min)
1 x SPARC T7-1 100 268 (min)

Configuration Summary

Systems Under Test:

2 x SPARC T7-1 each with
1 x SPARC M7 processor, 4.13 GHz
256 GB memory
Oracle Solaris 11.3 (11.3.0.27.0)
Oracle Database 12c (RAC/ASM 12.1.0.2 BP7)
Oracle FLEXCUBE Universal Banking Release 12

Storage Configuration:

Oracle ZFS Storage ZS4-4 appliance

Benchmark Description

The Oracle FLEXCUBE Universal Banking Release 12 benchmark models an actual customer bank with End of Cycle transaction batch jobs which typically execute during non-banking hours. This benchmark includes accrual for savings and term deposit accounts, interest capitalization for saving accounts, interest pay out for term deposit accounts and consumer load processing.

This benchmark helps banks refine their infrastructure requirements for the volumes and scale of operations for business expansion. The end of cycle can be year, month or day, with year having the most processing followed by month and then day.

See Also

Disclosure Statement

Copyright 2015, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 25 October 2015.

PeopleSoft Human Capital Management 9.1 FP2: SPARC M7-8 World Record

This result demonstrates how Oracle's SPARC M7-8 server using Oracle VM Server for SPARC (LDoms) provides mission critical enterprise virtualization.

  • The virtualized two-chip, 1 TB LDom of the SPARC M7-8 server set a world record two-chip PeopleSoft Human Capital Management (HCM) 9.1 FP2 benchmark result, supporting 35,000 HR Self-Service online users with response times under one second, while simultaneously running the Payroll batch workload.

  • The virtualized two-chip LDom of the SPARC M7-8 server demonstrated 4 times better Search and 6 times better Save average response times running nearly double the number of online users along with payroll batch, compared to the ten-chip x86 solution from Cisco.

  • Using only a single chip in the virtualized two-chip LDom on the SPARC M7-8 server, the batch-only run demonstrated 1.8 times better throughput (payments/hour) compared to a four-chip Cisco UCSB460 M4 server.

  • Using only a single chip in the virtualized two-chip LDom on the SPARC M7-8 server, the batch-only run demonstrated 2.3 times better throughput (payments/hour) compared to a nine-chip IBM zEnterprise z196 server (EC 2817-709, 9-way, 8943 MIPS).

  • This record result demonstrates that a two SPARC M7 processor LDom (in SPARC M7-8), can run the same number of online users as a dynamic domain (PDom) of eight SPARC M6 processors (in SPARC M6-32), with better online response times, batch elapsed times and batch throughput (payments/hour).

  • The SPARC M7-8 server provides enterprise applications high availability and security, where each application is executed on its own environment independent of the others.

Performance Landscape

The first table presents the combined results, running both the PeopleSoft HR Self-Service Online and Payroll Batch tests concurrently.

PeopleSoft HR Self-Service Online And Payroll Batch Using Oracle Database 11g
System
Processors
Chips
Used
Users Search/Save Batch Elapsed
Time
Batch Pay/Hr
SPARC M7-8
SPARC M7
LDom1 2 35,000 0.67 sec/0.42 sec 22.71 min 1,322,272
LDom2 2 35,000 0.85 sec/0.50 sec 22.96 min 1,307,875
SPARC M6-32
SPARC M6
8 35,000 1.80 sec/1.12 sec 29.2 min 1,029,440
Cisco 1 x B460 M4, 3 x B200 M3
Intel E7-4890 v2, Intel E5-2697 v2
10 18,000 2.70 sec/2.60 sec 21.70 min 1,383,816

The following results are running only the Peoplesoft HR Self-Service Online test.

PeopleSoft HR Self-Service Online Using Oracle Database 11g
System
Processors
Chips
Used
Users Search/Save
Avg Response Times
SPARC M7-8
SPARC M7
LDom1 2 40,000 0.55 sec/0.33 sec
LDom2 2 40,000 0.56 sec/0.32 sec
SPARC M6-32
SPARC M6
8 40,000 2.73 sec/1.33 sec
Cisco 1 x B460 M4, 3 x B200 M3
Intel E7-4890 v2, Intel E5-2697 v2
10 20,000 0.35 sec/0.17 sec

The following results are running only the Peoplesoft Payroll Batch test. For the SPARC M7-8 server results, only one of the processors was used per LDom. This was accomplished using processor sets to further restrict the test to a single SPARC M7 processor.

PeopleSoft Payroll Batch Using Oracle Database 11g
System
Processors
Chips
Used
Batch Elapsed
Time
Batch Pay/Hr
SPARC M7-8
SPARC M7
LDom1 1 13.06 min 2,299,296
LDom2 1 12.85 min 2,336,872
SPARC M6-32
SPARC M6
2 18.27 min 1,643,612
Cisco UCS B460 M4
Intel E7-4890 v2
4 23.02 min 1,304,655
IBM z196
zEnterprise (5.2 GHz, 8943 MIPS)
9 30.50 min 984,551

Configuration Summary

System Under Test:

SPARC M7-8 server with
8 x SPARC M7 processor (4.13 GHz)
4 TB memory
Virtualized as two Oracle VM Server for SPARC (LDom) each with
2 x SPARC M7 processor (4.13 GHz)
1 TB memory

Storage Configuration:

2 x Oracle ZFS Storage ZS3-2 appliance (DB Data) each with
40 x 300 GB 10K RPM SAS-2 HDD,
8 x Write Flash Accelerator SSD and
2 x Read Flash Accelerator SSD 1.6TB SAS
2 x Oracle Server X5-2L (DB redo logs & App object cache) each with
2 x Intel Xeon Processor E5-2630 v3
32 GB memory
4 x 1.6 TB NVMe SSD

Software Configuration:

Oracle Solaris 11.3
Oracle Database 11g Release 2 (11.2.0.3.0)
PeopleSoft Human Capital Management 9.1 FP2
PeopleSoft PeopleTools 8.52.03
Oracle Java SE 6u32
Oracle Tuxedo, Version 10.3.0.0, 64-bit, Patch Level 043
Oracle WebLogic Server 11g (10.3.5)

Benchmark Description

The PeopleSoft Human Capital Management benchmark simulates thousands of online employees, managers and Human Resource administrators executing transactions typical of a Human Resources Self Service application for the Enterprise. Typical transactions are: viewing paychecks, promoting and hiring employees, updating employee profiles, etc. The database tier uses a database instance of about 500 GB in size, containing information for 500,480 employees. The application tier for this test includes web and application server instances, specifically Oracle WebLogic Server 11g, PeopleSoft Human Capital Management 9.1 FP2 and Oracle Java SE 6u32.

Key Points and Best Practices

In the HR online along with Payroll batch run, each LDom had one Oracle Solaris Zone of 7 cores containing the Web tier, two Oracle Solaris Zones of 16 cores each containing the Application tier and one Oracle Solaris Zone of 23 cores containing the Database tier. Two cores were dedicated to network and disk interrupt handling. In the HR online only run, each LDom had one Oracle Solaris Zone of 12 cores containing the Web tier, two Oracle Solaris Zones of 18 cores each containing the Application tier and one Oracle Solaris Zone of 14 cores containing the Database tier. 2 cores were dedicated to network and disk interrupt handling. In the Payroll batch only run, each LDom had one Oracle Solaris Zone of 31 cores containing the Database tier. 1 core was dedicated to disk interrupt handling.

All database data files, recovery files and Oracle Clusterware files for the PeopleSoft test were created with the Oracle Automatic Storage Management (Oracle ASM) volume manager for the added benefit of the ease of management provided by Oracle ASM integrated storage management solution.

In the application tier on each LDom, 5 PeopleSoft application domains with 350 application servers (70 per domain) were hosted in two separate Oracle Solaris Zones for a total of 10 domains with 700 application server processes.

All PeopleSoft Application processes and the 32 Web Server JVM instances were executed in the Oracle Solaris FX scheduler class.

See Also

Disclosure Statement

Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 10/25/2015.

Oracle Communications ASAP – Telco Subscriber Activation: SPARC T7-2 World Record

Oracle's SPARC T7-2 server delivered world record results on Oracle Communications ASAP. The SPARC T7-2 server ran Oracle Solaris 11 with Oracle Database 11g Release 2, Oracle WebLogic Server 12c and Oracle Communications ASAP version 7.2.

  • Running Oracle Communications ASAP, the SPARC T7-2 server delivered a world record result of 3,018 ASDLs/sec (atomic network activation actions).

  • Oracle's SPARC M7 processor delivered over 2.5 times the throughput per ASDL cost compared to the previous generation SPARC T5 processor.

  • The SPARC T7-2 server running a single instance of the Oracle Communications ASAP application, with both the application and database tiers consolidated onto a single machine, easily supported the service activation volumes of 3,018 ASDLs/sec which is representative of a typical mobile operator with more than 100 million subscribers.

  • Oracle Communications ASAP v7.2.0.4 delivered 35% higher throughput on the SPARC T7-2 server when compared to the SPARC T5-4 server.

Performance Landscape

All of the following results were run as part of this benchmark effort.

ASAP 7.2.0.4 Test Results – 16 NEP
Both tests used 1 cpu for App tier and 1 cpu for DB tier
System ASDLs/sec CPU Usage CPU Cost per ASDL Cost Improvement Ratio
SPARC T7-2 3,018.56 11.4% 1.10 2.6
SPARC T5-4 2,238.97 29.6% 2.15 1.0

CPU Cost per ASDL – computing cost per ASDL (smaller is better)
Cost Improvement Ratio – improvement per cpu of SPARC T7-2 to SPARC T5-4

Configuration Summary

Hardware Configuration:

SPARC T7-2 server
2 x SPARC M7 processors (4.13 GHz)
512 GB memory

SPARC T5-4 server
4 x SPARC T5 processors (3.6 GHz)
512 GB memory

Storage Configuration:

Pillar Axiom

Software Configuration:

Oracle Communications ASAP 7.2.0.4.1
Oracle Solaris 11.2
Oracle Database 12c Release 12.1.0.1.0
Oracle WebLogic Server 10.3.6.0
Oracle JDK 7 update 75

Benchmark Description

Oracle Communications ASAP provides a convergent service activation platform that automatically activates customer services in a heterogeneous network and IT environment. It supports the activation of consumer and business services in fixed and mobile domains against network and IT applications.

ASAP enables rapid service design and network technology introduction by means of its metadata-driven architecture, design-time configuration environment, and catalog of pre-built activation cartridges to reduce deployment time, cost, and risk. The application has been deployed for mobile (3G, 4G and M2M) services and fixed multi-play (broadband, voice, video, and IT) services in telecommunications, cable and satellite environments as well as for business voice, data, and IT cloud services.

It may be deployed in a fully integrated manner as part of the Oracle Communications Service Fulfillment solution or directly integrated with third- party upstream systems. Market-proven for high-volume performance and scalability, Oracle Communications ASAP is deployed by more than 75 service providers worldwide and activates services for approximately 250 million subscribers globally.

The throughput of ASAP is measured in atomic actions per second (or ASDLs/sec). An atomic action is a single command or operation that can be executed on a network element. Atomic actions are grouped together to form a common service action, where each service action typically relates to an orderable item, such as "GSM voice" or "voice mail" or "GSM data". One or more service actions are invoked by an order management system via an activation work order request.

The workload resembles a typical mobile order to activate a GSM subscriber. A single service action to add a subscriber consists of seven atomic actions where each atomic action executes a command on a network element. Each network element was serviced by a dedicated Network Element Processor (NEP). The ASAP benchmark can vary the number of NEPs, which correlate to the complexity of a Telco operator's environment.

See Also

Disclosure Statement

Copyright 2015, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 25 October 2015.

Oracle E-Business Payroll Batch Extra-Large: SPARC T7-1 World Record

Oracle's SPARC T7-1 server set a world record running the Oracle E-Business Suite 12.1.3 Standard Extra-Large (250,000 Employees) Payroll (Batch) workload.

  • The SPARC T7-1 server produced a world record result of 1,527,494 employee records processed per hour (9.82 min elapsed time) on the Oracle E-Business Suite R12 (12.1.3) Extra-Large Payroll (Batch) benchmark.

  • The SPARC T7-1 server equipped with one 4.13 GHz SPARC M7 processor, demonstrated 36% better hourly employee throughput compared to a two-chip Cisco UCS B200 M4 (Intel Xeon E5-2697 v3).

  • The SPARC T7-1 server equipped with one 4.13 GHz SPARC M7 processor, demonstrated 40% better hourly employee throughput compared to two-chip IBM S824 (POWER8 using 12 cores total).

Performance Landscape

This is the world record result for the Payroll Extra-Large model using Oracle E-Business 12.1.3 workload.

Batch Workload: Payroll Extra-Large Model
System Processor Employees/Hr Elapsed Time
SPARC T7-1 1 x SPARC M7 (4.13 GHz) 1,527,494 9.82 minutes
Cisco UCS B200 M4 2 x Intel Xeon Processor E5-2697 v3 1,125,281 13.33 minutes
IBM S824 2 x POWER8 (3.52 GHz) 1,090,909 13.75 minutes
Cisco UCS B200 M3 2 x Intel Xeon Processor E5-2697 v2 1,017,639 14.74 minutes
Cisco UCS B200 M3 2 x Intel Xeon Processor E5-2690 839,865 17.86 minutes
Sun Server X3-2L 2 x Intel Xeon Processor E5-2690 789,473 19.00 minutes

Configuration Summary

Hardware Configuration:

SPARC T7-1 server
1 x SPARC M7 processor (4.13 GHz)
256 GB memory (16 x 16 GB)
Oracle ZFS Storage ZS3-2 appliance (DB Data storage) with
40 x 900 GB 10K RPM SAS-2 HDD,
8 x Write Flash Accelerator SSD and
2 x Read Flash Accelerator SSD 1.6 TB SAS
Oracle Flash Accelerator F160 PCIe Card (1.6 TB NVMe for DB Log storage)

Software Configuration:

Oracle Solaris 11.3
Oracle E-Business Suite R12 (12.1.3)
Oracle Database 11g (11.2.0.3.0)

Benchmark Description

The Oracle E-Business Suite Standard R12 Benchmark combines online transaction execution by simulated users with concurrent batch processing to model a typical scenario for a global enterprise. This benchmark ran one Batch component, Payroll, in the Extra-Large size.

Results can be published in four sizes and use one or more online/batch modules

  • X-large: Maximum online users running all business flows between 10,000 to 20,000; 750,000 order to cash lines per hour and 250,000 payroll checks per hour.
    • Order to Cash Online — 2400 users
      • The percentage across the 5 transactions in Order Management module is:
        • Insert Manual Invoice — 16.66%
        • Insert Order — 32.33%
        • Order Pick Release — 16.66%
        • Ship Confirm — 16.66%
        • Order Summary Report — 16.66%
    • HR Self-Service — 4000 users
    • Customer Support Flow — 8000 users
    • Procure to Pay — 2000 users
  • Large: 10,000 online users; 100,000 order to cash lines per hour and 100,000 payroll checks per hour.
  • Medium: up to 3000 online users; 50,000 order to cash lines per hour and 10,000 payroll checks per hour.
  • Small: up to 1000 online users; 10,000 order to cash lines per hour and 5,000 payroll checks per hour.

Key Points and Best Practices

  • All system optimizations are in the published report which is referenced in the See Also section below.

See Also

Disclosure Statement

Oracle E-Business X-Large Payroll Batch workload, SPARC T7-1, 4.13 GHz, 1 chip, 32 cores, 256 threads, 256 GB memory, elapsed time 9.82 minutes, 1,527,494 hourly employee throughput, Oracle Solaris 11.3, Oracle E-Business Suite 12.1.3, Oracle Database 11g Release 2, Results as of 10/25/2015.

Oracle E-Business Suite Applications R12.1.3 (OLTP X-Large): SPARC M7-8 World Record

Oracle's SPARC M7-8 server, using a four-chip Oracle VM Server for SPARC (LDom) virtualized server, produced a world record 20,000 users running the Oracle E-Business OLTP X-Large benchmark. The benchmark runs five Oracle E-Business online workloads concurrently: Customer Service, iProcurement, Order Management, Human Resources Self-Service, and Financials.

  • The virtualized four-chip LDom on the SPARC M7-8 was able to handle more users than the previous best result which used eight processors of Oracle's SPARC M6-32 server.

  • The SPARC M7-8 server using Oracle VM Server for SPARC provides enterprise applications high availability, where each application is executed on its own environment, insulated and independent of the others.

Performance Landscape

Oracle E-Business (3-tier) OLTP X-Large Benchmark
System Chips Total Online Users Weighted Average
Response Time (sec)
90th Percentile
Response Time (s)
SPARC M7-8 4 20,000 0.70 1.13
SPARC M6-32 8 18,500 0.61 1.16

Break down of the total number of users by component.

Users per Component
Component SPARC M7-8 SPARC M6-32
Total Online Users 20,000 users 18,500 users
HR Self-Service
Order-to-Cash
iProcurement
Customer Service
Financial
5000 users
2500 users
2700 users
7000 users
2800 users
4000 users
2300 users
2400 users
7000 users
2800 users

Configuration Summary

System Under Test:

SPARC M7-8 server
8 x SPARC M7 processors (4.13 GHz)
4 TB memory
2 x 600 GB SAS-2 HDD
using a Logical Domain with
4 x SPARC M7 processors (4.13 GHz)
2 TB memory
2 x Sun Storage Dual 16Gb Fibre Channel PCIe Universal HBA
2 x Sun Dual Port 10GBase-T Adapter
Oracle Solaris 11.3
Oracle E-Business Suite 12.1.3
Oracle Database 11g Release 2

Storage Configuration:

4 x Oracle ZFS Storage ZS3-2 appliances each with
2 x Read Flash Accelerator SSD
1 x Storage Drive Enclosure DE2-24P containing:
20 x 900 GB 10K RPM SAS-2 HDD
4 x Write Flash Accelerator SSD
1 x Sun Storage Dual 8Gb FC PCIe HBA
Used for Database files, Zones OS, EBS Mid-Tier Apps software stack
and db-tier Oracle Server
2 x Sun Server X4-2L server with
2 x Intel Xeon Processor E5-2650 v2
128 GB memory
1 x Sun Storage 6Gb SAS PCIe RAID HBA
4 x 400 GB SSD
14 x 600 GB HDD
Used for Redo log files, db backup storage.

Benchmark Description

The Oracle E-Business OLTP X-Large benchmark simulates thousands of online users executing transactions typical of an internal Enterprise Resource Processing, simultaneously executing five application modules: Customer Service, Human Resources Self Service, iProcurement, Order Management and Financial.

Each database tier uses a database instance of about 600 GB in size, supporting thousands of application users, accessing hundreds of objects (tables, indexes, SQL stored procedures, etc.).

Key Points and Best Practices

This test demonstrates virtualization technologies running concurrently various Oracle multi-tier business critical applications and databases on four SPARC M7 processors contained in a single SPARC M7-8 server supporting thousands of users executing a high volume of complex transactions with constrained (<1 sec) weighted average response time.

The Oracle E-Business LDom is further configured using Oracle Solaris Zones.

This result of 20,000 users was achieved by load balancing the Oracle E-Business Suite Applications 12.1.3 five online workloads across two Oracle Solaris processor sets and redirecting all network interrupts to a dedicated third processor set.

Each applications processor set (set-1 and set-2) was running concurrently two Oracle E-Business Suite Application servers and two database servers instances, each within its own Oracle Solaris Zone (4 x Zones per set).

Each application server network interface (to a client) was configured to map with the locality group associated to the CPUs processing the related workload, to guarantee memory locality of network structures and application servers hardware resources.

All external storage was connected with at least two paths to the host multipath-capable fibre channel controller ports and Oracle Solaris I/O multipathing feature was enabled.

See Also

Disclosure Statement

Oracle E-Business Suite R12 extra-large multiple-online module benchmark, SPARC M7-8, SPARC M7, 4.13 GHz, 4 chips, 128 cores, 1024 threads, 2 TB memory, 20,000 online users, average response time 0.70 sec, 90th percentile response time 1.13 sec, Oracle Solaris 11.3, Oracle Solaris Zones, Oracle VM Server for SPARC, Oracle E-Business Suite 12.1.3, Oracle Database 11g Release 2, Results as of 10/25/2015.

Oracle E-Business Order-To-Cash Batch Large: SPARC T7-1 World Record

Oracle's SPARC T7-1 server set a world record running the Oracle E-Business Suite 12.1.3 Standard Large (100,000 Order/Inventory Lines) Order-To-Cash (Batch) workload.

  • The SPARC T7-1 server produced a world record hourly order line throughput of 273,973 per hour (21.90 min elapsed time) on the Oracle E-Business Suite R12 (12.1.3) Large Order-To-Cash (Batch) benchmark using a SPARC T7-1 server for the database and application tiers running Oracle Database 11g on Oracle Solaris 11.

  • The SPARC T7-1 server demonstrated 12% better hourly order line throughput compared to a two-chip Cisco UCS B200 M4 (Intel Xeon Processor E5-2697 v3).

Performance Landscape

Results for the Oracle E-Business 12.1.3 Order-To-Cash Batch Large model workload.

Batch Workload: Order-To-Cash Large Model
System CPU Employees/Hr Elapsed Time (min)
SPARC T7-1 1 x SPARC M7 processor 273,973 21.90
Cisco UCS B200 M4 2 x Intel Xeon Processor E5-2697 v3 243,803 24.61
Cisco UCS B200 M3 2 x Intel Xeon Processor E5-2690 232,739 25.78

Configuration Summary

Hardware Configuration:

SPARC T7-1 server with
1 x SPARC M7 processor (4.13 GHz)
256 GB memory (16 x 16 GB)
Oracle ZFS Storage ZS3-2 appliance (DB Data storage) with
40 x 900 GB 10K RPM SAS-2 HDD,
8 x Write Flash Accelerator SSD and
2 x Read Flash Accelerator SSD 1.6TB SAS
Oracle Flash Accelerator F160 PCIe Card (1.6 TB NVMe for DB Log storage)

Software Configuration:

Oracle Solaris 11.3
Oracle E-Business Suite R12 (12.1.3)
Oracle Database 11g (11.2.0.3.0)

Benchmark Description

The Oracle E-Business Suite Standard R12 Benchmark combines online transaction execution by simulated users with concurrent batch processing to model a typical scenario for a global enterprise. This benchmark ran one Batch component, Order-To-Cash, in the Large size.

Results can be published in four sizes and use one or more online/batch modules

  • X-large: Maximum online users running all business flows between 10,000 to 20,000; 750,000 order to cash lines per hour and 250,000 payroll checks per hour.
    • Order to Cash Online — 2400 users
      • The percentage across the 5 transactions in Order Management module is:
        • Insert Manual Invoice — 16.66%
        • Insert Order — 32.33%
        • Order Pick Release — 16.66%
        • Ship Confirm — 16.66%
        • Order Summary Report — 16.66%
    • HR Self-Service — 4000 users
    • Customer Support Flow — 8000 users
    • Procure to Pay — 2000 users
  • Large: 10,000 online users; 100,000 order to cash lines per hour and 100,000 payroll checks per hour.
  • Medium: up to 3000 online users; 50,000 order to cash lines per hour and 10,000 payroll checks per hour.
  • Small: up to 1000 online users; 10,000 order to cash lines per hour and 5,000 payroll checks per hour.

Key Points and Best Practices

  • All system optimizations are in the published report, find link in See Also section below.

See Also

Disclosure Statement

Oracle E-Business Large Order-To-Cash Batch workload, SPARC T7-1, 4.13 GHz, 1 chip, 32 cores, 256 threads, 256 GB memory, elapsed time 21.90 minutes, 273,973 hourly order line throughput, Oracle Solaris 11.3, Oracle E-Business Suite 12.1.3, Oracle Database 11g Release 2, Results as of 10/25/2015.

PeopleSoft Enterprise Financials 9.2: SPARC T7-2 World Record

Oracle's SPARC T7-2 server achieved world record performance being the first to publish on Oracle's PeopleSoft Enterprise Financials 9.2 benchmark. This result was obtained using one Oracle VM Server for SPARC (LDom) virtualized system configured with a single SPARC M7 processor.

  • The single processor LDom on the SPARC T7-2 server achieved world record performance executing 200 million Journal Lines in 18.60 minutes.

  • The single processor LDom on the SPARC T7-2 server was able to process General Ledger Journal Edit and Post batch jobs at 10,752,688 journal lines/min which reflects a large customer environment that utilizes a back-end database of nearly 1.0 TB performing highly competitive journal processing for Ledger.

Performance Landscape

Results are presented for PeopleSoft Financials Benchmark 9.2. Results obtained with PeopleSoft Financials Benchmark 9.2 are not comparable to the the previous version of the benchmark, PeopleSoft Financials Benchmark 9.1, due to significant change in data model and supports only batch.

PeopleSoft Financials Benchmark, Version 9.2
Solution Under Test Batch Journal lines/min
SPARC T7-2 (using 1 x SPARC M7, 4.13 GHz) 18.60 min 10,752,688

Configuration Summary

System:

SPARC T7-2 server with
2 x SPARC M7 processors
1 TB memory
4 x Oracle Flash Accelerator F160 PCIe Card (DB Redo, DB undo and DB Data)
4 x 600 GB internal disks
Oracle Solaris 11.3
Oracle Database 11g (11.2.0.4)
PeopleSoft Financials (9.20.348)
PeopleSoft PeopleTools (8.53.09)
Java HotSpot 64-Bit Server VM (build 1.7.0_45-b18)
Oracle Tuxedo, Version 11.1.1.3.0, 64-bit
Oracle WebLogic Server 11g (10.3.6)

LDom Under Test:

Oracle VM Server for SPARC (LDom) virtualized server (APP & DB Tier)
1 x SPARC M7 processor
512 GB memory

Benchmark Description

The PeopleSoft Enterprise Financials 9.2 benchmark emulates a large enterprise that processes and validates a large number of financial journal transactions before posting the journal entry to the ledger. The validation process certifies that the journal entries are accurate, ensuring that ChartFields values are valid, debits and credits equal out, and inter/intra-units are balanced. Once validated, the entries are processed, ensuring that each journal line posts to the correct target ledger, and then changes the journal status to posted. In this benchmark, the Journal Edit & Post is set up to edit and post both Inter-Unit and Regular multi-currency journals. The benchmark processes 200 million journal lines using AppEngine for edits and Cobol for post processes.

Key Points and Best Practices

  • The PeopleSoft Enterprise Financials 9.2 Batch benchmark ran on a one chip LDom consisting of 32 cores, each core had 8 threads. All total there were 256 virtual processors.

  • The LDom contained two Oracle Solaris Zones: a database tier zone and an application tier zone. The application tier zone consisted of 1 core with 8 virtual processors. The database tier zone consisted of 244 virtual processors from 31 cores. The remaining four virtual processors were dedicated to network and disk interrupt handling.

  • Inside of the database tier zone, the database log writer ran under 4 virtual processors and eight virtual processors were dedicated to four database writers.

  • There were 160 PeopleSoft Application instance processes running 320 streams of PeopleSoft Financial workload in the Oracle Solaris Fixed Priority FX class.

See Also

Disclosure Statement

Copyright 2015, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 25 October 2015.

SAP Two-Tier Standard Sales and Distribution SD Benchmark: SPARC T7-2 World Record 2 Processors

Oracle's SPARC T7-2 server produces a world record result for 2-processors on the SAP two-tier Sales and Distribution (SD) Standard Application Benchmark using SAP Enhancement Package 5 for SAP ERP 6.0 (2 chips / 64 cores / 512 threads).

  • The SPARC T7-2 server achieved 30,800 SAP SD benchmark users running the two-tier SAP Sales and Distribution (SD) Standard Application Benchmark using SAP Enhancement Package 5 for SAP ERP 6.0.

  • The SPARC T7-2 server achieved 1.9 times more users than the Dell PowerEdge R730 server result.

  • The SPARC T7-2 server achieved 1.5 times more users than the IBM Power System S824 server result.

  • The SPARC T7-2 server achieved 1.9 times more users than the HP ProLiant DL380 Gen9 server result.

  • The SPARC T7-2 server result was run with Oracle Solaris 11 and used Oracle Database 12c.

Performance Landscape

SAP-SD 2-tier performance table in decreasing performance order for leading two-processor systems and four-processor IBM Power System S824 server, with SAP ERP 6.0 Enhancement Package 5 for SAP ERP 6.0 results (current version of the benchmark as of May, 2012).

SAP SD Two-Tier Benchmark
System
Processor
OS
Database
Users Resp Time
(sec)
Version Cert#
SPARC T7-2
2 x SPARC M7 (2x 32core)
Oracle Solaris 11
Oracle Database 12c
30,800 0.96 EHP5 2015050
IBM Power S824
4 x POWER8 (4x 6core)
AIX 7
DB2 10.5
21,212 0.98 EHP5 2014016
Dell PowerEdge R730
2 x Intel E5-2699 v3 (2x 18core)
Red Hat Enterprise Linux 7
SAP ASE 16
16,500 0.99 EHP5 2014033
HP ProLiant DL380 Gen9
2 x Intel E5-2699 v3 (2x 18core)
Red Hat Enterprise Linux 6.5
SAP ASE 16
16,101 0.99 EHP5 2014032

Version – Version of SAP, EHP5 refers to SAP ERP 6.0 Enhancement Package 5 for SAP ERP 6.0

Number of cores presented are per chip, to get system totals, multiple by the number of chips.

Complete benchmark results may be found at the SAP benchmark website http://www.sap.com/benchmark.

Configuration Summary and Results

Database/Application Server:

1 x SPARC T7-2 server with
2 x SPARC M7 processors (4.13 GHz, total of 2 processors / 64 cores / 512 threads)
1 TB memory
Oracle Solaris 11.3
Oracle Database 12c

Database Storage:
3 x Sun Server X3-2L each with
2 x Intel Xeon Processors E5-2609 (2.4 GHz)
16 GB memory
4 x Sun Flash Accelerator F40 PCIe Card
12 x 3 TB SAS disks
Oracle Solaris 11

REDO log Storage:
1 x Pillar FS-1 Flash Storage System, with
2 x FS1-2 Controller (Netra X3-2)
2 x FS1-2 Pilot (X4-2)
4 x DE2-24P Disk enclosure
96 x 300 GB 10000 RPM SAS Disk Drive Assembly

Certified Results (published by SAP)

Number of SAP SD benchmark users: 30,800
Average dialog response time: 0.96 seconds
Throughput:
  Fully processed order line items per hour: 3,372,000
  Dialog steps per hour: 10,116,000
  SAPS: 168,600
Average database request time (dialog/update): 0.022 sec / 0.047 sec
SAP Certification: 2015050

Benchmark Description

The SAP Standard Application SD (Sales and Distribution) Benchmark is an ERP business test that is indicative of full business workloads of complete order processing and invoice processing, and demonstrates the ability to run both the application and database software on a single system. The SAP Standard Application SD Benchmark represents the critical tasks performed in real-world ERP business environments.

SAP is one of the premier world-wide ERP application providers, and maintains a suite of benchmark tests to demonstrate the performance of competitive systems on the various SAP products.

See Also

Disclosure Statement

Two-tier SAP Sales and Distribution (SD) standard application benchmarks, SAP Enhancement Package 5 for SAP ERP 6.0 as of 10/23/15:

SPARC T7-2 (2 processors, 64 cores, 512 threads) 30,800 SAP SD users, 2 x 4.13 GHz SPARC M7, 1 TB memory, Oracle Database 12c, Oracle Solaris 11, Cert# 2015050.
IBM Power System S824 (4 processors, 24 cores, 192 threads) 21,212 SAP SD users, 4 x 3.52 GHz POWER8, 512 GB memory, DB2 10.5, AIX 7, Cert#2014016
Dell PowerEdge R730 (2 processors, 36 cores, 72 threads) 16,500 SAP SD users, 2 x 2.3 GHz Intel Xeon Processor E5-2699 v3 256 GB memory, SAP ASE 16, RHEL 7, Cert#2014033
HP ProLiant DL380 Gen9 (2 processors, 36 cores, 72 threads) 16,101 SAP SD users, 2 x 2.3 GHz Intel Xeon Processor E5-2699 v3 256 GB memory, SAP ASE 16, RHEL 6.5, Cert#2014032

SAP, R/3, reg TM of SAP AG in Germany and other countries. More info www.sap.com/benchmark

Friday Apr 03, 2015

Oracle Server X5-2 Produces World Record 2-Chip Single Application Server SPECjEnterprise2010 Result

Two Oracle Server X5-2 systems, using the Intel Xeon E5-2699 v3 processor, produced a World Record x86 two-chip single application server SPECjEnterprise2010 benchmark result of 21,504.30 SPECjEnterprise2010 EjOPS. One Oracle Server X5-2 ran the application tier and the second Oracle Server X5-2 was used for the database tier.

  • The Oracle Server X5-2 system demonstrated 11% better performance when compared to the IBM X3650 M5 server result of 19,282.14 SPECjEnterprise2010 EjOPS.

  • The Oracle Server X5-2 system demonstrated 1.9x better performance when compared to the previous generation Sun Server X4-2 server result of 11,259.88 SPECjEnterprise2010 EjOPS.

  • This result used Oracle WebLogic Server 12c, Java HotSpot(TM) 64-Bit Server 1.8.0_40 Oracle Database 12c, and Oracle Linux.

Performance Landscape

Complete benchmark results are at the SPEC website, SPECjEnterprise2010 Results. The table below shows the top single application server, two-chip x86 results.

SPECjEnterprise2010 Performance Chart
as of 4/1/2015
Submitter EjOPS* Application Server Database Server
Oracle 21,504.30 1x Oracle Server X5-2
2x 2.3 GHz Intel Xeon E5-2699 v3
Oracle WebLogic 12c (12.1.3)
1x Oracle Server X5-2
2x 2.3 GHz Intel Xeon E5-2699 v3
Oracle Database 12c (12.1.0.2)
IBM 19,282.14 1x IBM X3650 M5
2x 2.6 GHz Intel Xeon E5-2697 v3
WebSphere Application Server V8.5
1x IBM X3850 X6
4x 2.8 GHz Intel Xeon E7-4890 v2
IBM DB2 10.5
Oracle 11,259.88 1x Sun Server X4-2
2x 2.7 GHz Intel Xeon E5-2697 v2
Oracle WebLogic 12c (12.1.2)
1x Sun Server X4-2L
2x 2.7 GHz Intel Xeon E5-2697 v2
Oracle Database 12c (12.1.0.1)

* SPECjEnterprise2010 EjOPS, bigger is better.

Configuration Summary

Application Server:

1 x Oracle Server X5-2
2 x 2.3 GHz Intel Xeon E5-2699 v3 processors
256 GB memory
3 x 10 GbE NIC
Oracle Linux 6 Update 5 (kernel-2.6.39-400.243.1.el6uek.x86_64)
Oracle WebLogic Server 12c (12.1.3)
Java HotSpot(TM) 64-Bit Server VM on Linux, version 1.8.0_40 (Java SE 8 Update 40)
BIOS SW 1.2

Database Server:

1 x Oracle Server X5-2
2 x 2.3 GHz Intel Xeon E5-2699 v3 processors
512 GB memory
2 x 10 GbE NIC
1 x 16 Gb FC HBA
2 x Oracle Server X5-2L Storage
Oracle Linux 6 Update 5 (kernel-3.8.13-16.2.1.el6uek.x86_64)
Oracle Database 12c Enterprise Edition Release 12.1.0.2

Benchmark Description

SPECjEnterprise2010 is the third generation of the SPEC organization's J2EE end-to-end industry standard benchmark application. The SPECjEnterprise2010 benchmark has been designed and developed to cover the Java EE 5 specification's significantly expanded and simplified programming model, highlighting the major features used by developers in the industry today. This provides a real world workload driving the Application Server's implementation of the Java EE specification to its maximum potential and allowing maximum stressing of the underlying hardware and software systems.

The workload consists of an end to end web based order processing domain, an RMI and Web Services driven manufacturing domain and a supply chain model utilizing document based Web Services. The application is a collection of Java classes, Java Servlets, Java Server Pages, Enterprise Java Beans, Java Persistence Entities (pojo's) and Message Driven Beans.

The SPECjEnterprise2010 benchmark heavily exercises all parts of the underlying infrastructure that make up the application environment, including hardware, JVM software, database software, JDBC drivers, and the system network.

The primary metric of the SPECjEnterprise2010 benchmark is jEnterprise Operations Per Second ("SPECjEnterprise2010 EjOPS"). This metric is calculated by adding the metrics of the Dealership Management Application in the Dealer Domain and the Manufacturing Application in the Manufacturing Domain. There is no price/performance metric in this benchmark.

Key Points and Best Practices

  • Four Oracle WebLogic server instances were started using numactl binding 2 instances per chip.
  • Four Oracle database listener processes were started, 2 processes bound per processor.
  • Additional tuning information is in the report at http://spec.org.
  • COD (Cluster on Die) is enabled in the BIOS on the application server.

See Also

Disclosure Statement

SPEC and the benchmark name SPECjEnterprise are registered trademarks of the Standard Performance Evaluation Corporation. Oracle Server X5-2, 21,504.30 SPECjEnterprise2010 EjOPS; IBM System X3650 M5, 19,282.14 SPECjEnterprise2010 EjOPS. Sun Server X4-2, 11,259.88 SPECjEnterprise2010 EjOPS; Results from www.spec.org as of 4/1/2015.

Thursday Mar 27, 2014

SPARC M6-32 Produces SAP SD Two-Tier Benchmark World Record for 32-Processor Systems

Oracle's SPARC M6-32 server produced a world record result for 32-processors on the SAP two-tier Sales and Distribution (SD) Standard Application Benchmark using SAP Enhancement Package 5 for SAP ERP 6.0 (32 chips / 384 cores / 3072 threads).

  • SPARC M6-32 server achieved 140,000 SAP SD benchmark users with a low average dialog response time of 0.58 seconds running the SAP two-tier Sales and Distribution (SD) Standard Application Benchmark using SAP Enhancement package 5 for SAP ERP 6.0.

  • The SPARC M6-32 delivered 2.5 times more users than the IBM Power 780 result using SAP Enhancement Package 5 for SAP ERP 6.0. The IBM result also had 1.7 times worse average dialog response time compared to the SPARC M6-32 server result.

  • The SPARC M6-32 delivered 3.0 times more users than the Fujitsu PRIMEQUEST 2800E (with Intel Xeon E7-8890 v2 processors) result. The Fujitsu result also had 1.7 times worse average dialog response time compared to the SPARC M6-32 server result.

  • The SPARC M6-32 server solution was run with Oracle Solaris 11 and used Oracle Database 11g.

Performance Landscape

SAP-SD 2-Tier Performance Table (in decreasing performance order). With SAP ERP 6.0 Enhancement Package 4 for SAP ERP 6.0 (Old version of the benchmark, obsolete at the end of April, 2012), and SAP ERP 6.0 Enhancement Package 5 for SAP ERP 6.0 results (current version of the benchmark as of May, 2012).

System
Processor
Ch / Co / Th — Memory
OS
Database
Users Resp Time
(sec)
Version Cert#
Fujitsu SPARC M10-4S
SPARC64 X @3.0 GHz
40 / 640 / 1280 — 10 TB
Solaris 11
Oracle 11g
153,000 0.87 EHP5 2013014
SPARC M6-32 Server
SPARC M6 @3.6 GHz
32 / 384 / 3072 — 16 TB
Solaris 11
Oracle 11g
140,000 0.58 EHP5 2014008
IBM Power 795
POWER7 @4 GHz
32 / 256 / 1024 — 4 TB
AIX 7.1
DB2 9.7
126,063 0.98 EHP4 2010046
IBM Power 780
POWER7+ @3.72 GHz
12 / 96 / 834 — 1536 GB
AIX 7.1
DB2 10
57,024 0.98 EHP5 2012033
Fujitsu PRIMEQUEST 2800E
Intel Xeon E7-8890 v2 @2.8 GHz
8 / 120 / 240 — 1024 GB
Windows Server 2012 SE
SQL Server 2012
47,500 0.97 EHP5 2014003
IBM Power 760
POWER7+ @3.41 GHz
8 / 48 / 192 — 1024 GB
AIX 7.1
DB2 10
25,488 0.99 EHP5 2013004

Version – Version of SAP, EHP5 refers to SAP ERP 6.0 Enhancement Package 5 for SAP ERP 6.0 and EHP4 refers to SAP ERP 6.0 Enhancement Package 4 for SAP ERP 6.0

Ch / Co / Th – Total chips, coreas and threads

Complete benchmark results may be found at the SAP benchmark website http://www.sap.com/benchmark.

Configuration Summary and Results

Hardware Configuration:

1 x SPARC M6-32 server with
32 x 3.6 GHz SPARC M6 processors (total of 32 processors / 384 cores / 3072 threads)
16 TB memory
6 x Sun Server X3-2L each with
2 x Intel Xeon E5-2609 2.4 GHz Processors
16 GB Memory
4 x Flash Accelerator F40
12 x 3 TB SAS disks
2 x Sun Server X3-2L each with
2 x Intel Xeon E5-2609 2.4 GHz Processors
16 GB Memory
1 x 8-Port 6Gbps SAS-2 RAID PCI Express HBA
12 x 3 TB SAS disks

Software Configuration:

Oracle Solaris 11
SAP Enhancement Package 5 for SAP ERP 6.0
Oracle Database 11g Release 2

Certified Results (published by SAP)

Number of SAP SD benchmark users:
140,000
Average dialog response time:
0.58 seconds
Throughput:

  Fully processed order line items per hour:
15,878,670
  Dialog steps per hour:
47,636,000
  SAPS:
793,930
Average database request time (dialog/update):
0.020 sec / 0.041 sec
SAP Certification:
2014008

Benchmark Description

The SAP Standard Application SD (Sales and Distribution) Benchmark is an ERP business test that is indicative of full business workloads of complete order processing and invoice processing, and demonstrates the ability to run both the application and database software on a single system. The SAP Standard Application SD Benchmark represents the critical tasks performed in real-world ERP business environments.

SAP is one of the premier world-wide ERP application providers, and maintains a suite of benchmark tests to demonstrate the performance of competitive systems on the various SAP products.

See Also

Disclosure Statement

Two-tier SAP Sales and Distribution (SD) standard application benchmarks, SAP Enhancement Package 5 for SAP ERP 6.0 as of 3/26/14:

SPARC M6-32 (32 processors, 384 cores, 3072 threads) 140,000 SAP SD users, 32 x 3.6 GHz SPARC M6, 16 TB memory, Oracle Database 11g, Oracle Solaris 11, Cert# 2014008. Fujitsu SPARC M10-4S (40 processors, 640 cores, 1280 threads) 153,000 SAP SD users, 40 x 3.0 GHz SPARC65 X, 10 TB memory, Oracle Database 11g, Oracle Solaris 11, Cert# 2013014. IBM Power 780 (12 processors, 96 cores, 384 threads) 57,024 SAP SD users, 12 x 3.72 GHz IBM POWER7+, 1536 GB memory, DB210, AIX7.1, Cert#2012033. Fujitsu PRIMEQUEST 2800E (8 processors, 120 cores, 240 threads) 47,500 SAP SD users, 8 x 2.8 GHz Intel Xeon Processor E7-8890 v2, 1024 GB memory, SQL Server 2012, Windows Server 2012 Standard Edition, Cert# 2014003. IBM Power 760 (8 processors, 48 cores, 192 threads) 25,488 SAP SD users, 8 x 3.41 GHz IBM POWER7+, 1024 GB memory, DB2 10, AIX 7.1, Cert#2013004.

Two-tier SAP Sales and Distribution (SD) standard application benchmarks, SAP Enhancement Package 4 for SAP ERP 6.0 as of 3/26/14:

IBM Power 795 (32 processors, 256 cores, 1024 threads) 126,063 SAP SD users, 32 x 4 GHz IBM POWER7, 4 TB memory, DB2 9.7, AIX7.1, Cert#2010046.

SAP, R/3, reg TM of SAP AG in Germany and other countries. More info www.sap.com/benchmark

Wednesday Mar 05, 2014

SPARC T5-2 Delivers World Record 2-Socket SPECvirt_sc2010 Benchmark

Oracle's SPARC T5-2 server delivered a world record two-chip SPECvirt_sc2010 result of 4270 @ 264 VMs, establishing performance superiority in virtualized environments of the SPARC T5 processors with Oracle Solaris 11, which includes as standard virtualization products Oracle VM for SPARC and Oracle Solaris Zones.

  • The SPARC T5-2 server has 2.3x better performance than an HP BL620c G7 blade server (with two Westmere EX processors) which used VMware ESX 4.1 U1 virtualization software (best SPECvirt_sc2010 result on two-chip servers using VMware software).

  • The SPARC T5-2 server has 1.6x better performance than an IBM Flex System x240 server (with two Sandy Bridge processors) which used Kernel-based Virtual Machines (KVM).

  • This is the first SPECvirt_sc2010 result using Oracle production level software: Oracle Solaris 11.1, Oracle WebLogic Server 10.3.6, Oracle Database 11g Enterprise Edition, Oracle iPlanet Web Server 7 and Oracle Java Development Kit 7 (JDK). The only exception for the Dovecot mail server.

Performance Landscape

Complete benchmark results are at the SPEC website, SPECvirt_sc2010 Results. The following table highlights the leading two-chip results for the benchmark, bigger is better.

SPECvirt_sc2010
Leading Two-Chip Results
System Processor Result @ VMs Virtualization Software
SPARC T5-2 2 x SPARC T5, 3.6 GHz 4270 @ 264 Oracle VM Server for SPARC 3.0
Oracle Solaris Zones
IBM Flex System x240 2 x Intel E5-2690, 2.9 GHz 2741 @ 168 Red Hat Enterprise Linux 6.4 KVM
HP Proliant BL6200c G7 2 x Intel E7-2870, 2.4 GHz 1878 @ 120 VMware ESX 4.1 U1

Configuration Summary

System Under Test Highlights:

1 x SPARC T5-2 server, with
2 x 3.6 GHz SPARC T5 processors
1 TB memory
Oracle Solaris 11.1
Oracle VM Server for SPARC 3.0
Oracle iPlanet Web Server 7.0.15
Oracle PHP 5.3.14
Dovecot 2.1.17
Oracle WebLogic Server 11g (10.3.6)
Oracle Database 11g (11.2.0.3)
Java HotSpot(TM) 64-Bit Server VM on Solaris, version 1.7.0_51

Benchmark Description

The SPECvirt_sc2010 benchmark is SPEC's first benchmark addressing performance of virtualized systems. It measures the end-to-end performance of all system components that make up a virtualized environment.

The benchmark utilizes several previous SPEC benchmarks which represent common tasks which are commonly used in virtualized environments. The workloads included are derived from SPECweb2005, SPECjAppServer2004 and SPECmail2008. Scaling of the benchmark is achieved by running additional sets of virtual machines until overall throughput reaches a peak. The benchmark includes a quality of service criteria that must be met for a successful run.

Key Points and Best Practices

  • The SPARC T5 server running the Oracle Solaris 11.1, utilizes embedded virtualization products as the Oracle VM for SPARC and Oracle Solaris Zones, which provide a low overhead, flexible, scalable and manageable virtualization environment.

  • In order to provide a high level of data integrity and availability, all the benchmark data sets are stored on mirrored (RAID1) storage.

See Also

Disclosure Statement

SPEC and the benchmark name SPECvirt_sc are registered trademarks of the Standard Performance Evaluation Corporation. Results from www.spec.org as of 3/5/2014. SPARC T5-2, SPECvirt_sc2010 4270 @ 264 VMs; IBM Flex System x240, SPECvirt_sc2010 2741 @ 168 VMs; HP Proliant BL620c G7, SPECvirt_sc2010 1878 @ 120 VMs.

Friday Feb 14, 2014

SPARC M6-32 Delivers Oracle E-Business and PeopleSoft World Record Benchmarks, Linear Data Warehouse Scaling in a Virtualized Configuration

This result demonstrates how the combination of Oracle virtualization technologies for SPARC and Oracle's SPARC M6-32 server allow the deployment and concurrent high performance execution of multiple Oracle applications and databases sized for the Enterprise.

  • In an 8-chip Dynamic Domain (also known as PDom), the SPARC M6-32 server set a World Record E-Business 12.1.3 X-Large world record with 14,660 online users running five simultaneous E-Business modules.

  • In a second 8-chip Dynamic Domain, the SPARC M6-32 server set a World Record PeopleSoft HCM 9.1 HR Self-Service online supporting 35,000 users while simultaneously running a batch workload in 29.17 minutes. This was done with a database of 600,480 employees. Two other separate tests were run, one supporting 40,000 online users only and another a batch-only workload that was run in 18.27 min.

  • In a third Dynamic Domain with 16-chips on the SPARC M6-32 server, a data warehouse test was run that showed near-linear scaling.

  • On the SPARC M6-32 server, several critical applications instances were virtualized: an Oracle E-Business application and database, an Oracle's PeopleSoft application and database, and a Decision Support database instance using Oracle Database 12c.

  • In this Enterprise Virtualization benchmark a SPARC M6-32 server utilized all levels of Oracle Virtualization features available for SPARC servers. The 32-chip SPARC M6 based server was divided in three separate Dynamic Domains (also known as PDoms), available only on the SPARC Enterprise M-Series systems, which are completely electrically isolated and independent hardware partitions. Each PDom was subsequently split into multiple hypervisor-based Oracle VM for SPARC partitions (also known as LDoms), each one running its own Oracle Solaris kernel and managing its own CPUs and I/O resources. The hardware resources allocated to each Oracle VM for SPARC partition were then organized in various Oracle Solaris Zones, to further refine application tier isolation and resources management. The three PDoms were dedicated to the enterprise applications as follows:

    • Oracle E-Business PDom: Oracle E-Business 12.1.3 Suite World Record Extra-Large benchmark, exercising five Online Modules: Customer Service, Human Resources Self Service, iProcurement, Order Management and Financial, with 14,660 users and an average user response time under 2 seconds.

    • PeopleSoft PDom: PeopleSoft Human Capital Management (HCM) 9.1 FP2 World Record Benchmark, using PeopleTools 8.52 and an Oracle Database 11g Release 2, with 35,000 users, at an average user Search Time of 1.46 seconds and Save Time of 0.93 seconds. An online run with 40,000 users, had an average user Search Time of 2.17 seconds and Save Time of 1.39 seconds, and a Payroll batch run completed in 29.17 minutes elapsed time for more than 500,000 employees.

    • Decision Support PDom: An Oracle Database 12c instance executing a Decision Support workload on about 30 billion rows of data and achieving linear scalability, i.e. on the 16 chips comprising the PDom, the workload ran 16x faster than on a single chip. Specifically, the 16-chip PDom processed about 320M rows/sec whereas a single chip could process about 20M rows/sec.

  • The SPARC M6-32 server is ideally suited for large-memory utilization. In this virtualized environment, three critical applications made use of 16 TB of physical memory. Each of the Oracle VM Server for SPARC environments utilized from 4 to 8 TB of memory, more than the limits of other virtualization solutions.

  • SPARC M6-32 Server Virtualization Layout Highlights

    • The Oracle E-Business application instances were run in a dedicated Dynamic Domain consisting of 8 SPARC M6 processors and 4 TB of memory. The PDom was split into four symmetric Oracle VM Server for SPARC (LDoms) environments of 2 chips and 1 TB of memory each, two dedicated to the Application Server tier and the other two to the Database Server tier. Each Logical Domain was subsequently divided into two Oracle Solaris Zones, for a total of eight, one for each E-Business Application server and one for each Oracle Database 11g instance.

    • The PeopleSoft application was run in a dedicated Dynamic Domain (PDom) consisting of 8 SPARC M6 processors and 4 TB of memory. The PDom was split into two Oracle VM Server for SPARC (LDoms) environments one of 6 chips and 3 TB of memory, reserved for the Web and Application Server tiers, and a second one of 2 chips and 1 TB of memory, reserved for the Database tier. Two PeopleSoft Application Servers, a Web Server instance, and a single Oracle Database 11g instance were each executed in their respective and exclusive Oracle Solaris Zone.

    • The Oracle Database 12c Decision Support workload was run in a Dynamic Domain consisting of 16 SPARC M6 processors and 8 TB of memory.

  • All the Oracle Applications and Database instances were running at high level of performance and concurrently in a virtualized environment. Running three Enterprise level application environments on a single SPARC M6-32 server offers centralized administration, simplified physical layout, high availability and security features (as each PDom and LDom runs its own Oracle Solaris operating system copy physically and logically isolated from the other environments), enabling the coexistence of multiple versions Oracle Solaris and application software on a single physical server.

  • Dynamic Domains and Oracle VM Server for SPARC guests were configured with independent direct I/O domains, allowing for fast and isolated I/O paths, providing secure and high performance I/O access.

Performance Landscape

Oracle E-Business Test using Oracle Database 11g
SPARC M6-32 PDom, 8 SPARC M6 Processors, 4 TB Memory
Total Online Users Weighted Average
Response Time (sec)
90th Percentile
Response Time (s)
14,660 0.81 0.88
Multiple Online Modules X-Large Configuration (HR Self-Service, Order Management, iProcurement, Customer Service, Financial)

PeopleSoft HR Self-Service Online Plus Payroll Batch using Oracle Database 11g
SPARC M6-32 PDom, 8 SPARC M6 Processors, 4 TB Memory
HR Self-Service Payroll Batch
Elapsed (min)
Online Users Average User
Search / Save
Time (sec)
Transactions
per Second
35,000 1.46 / 0.93 116 29.17

HR Self-Service Only Payroll Batch Only
Elapsed (min)
40,000 2.17 / 1.39 132 18.27

Oracle Database 12c Decision Support Query Test
SPARC M6-32 PDom, 16 SPARC M6 Processors, 8 TB Memory
Parallelism
Chips Used
Rows Processing Rate
(rows/s)
Scaling Normalized to 1 Chip
16 319,981,734 15.9
8 162,545,303 8.1
4 80,943,271 4.0
2 40,458,329 2.0
1 20,086,829 1.0

Configuration Summary

System Under Test:

SPARC M6-32 server with
32 x SPARC M6 processors (3.6 GHz)
16 TB memory

Storage Configuration:

6 x Sun Storage 2540-M2 each with
8 x Expansion Trays (each tray equipped with 12 x 300 GB SAS drives)
7 x Sun Server X3-2L each with
2 x Intel Xeon E5-2609 2.4 GHz Processors
16 GB Memory
4 x Sun Flash Accelerator F40 PCIe 400 GB cards
Oracle Solaris 11.1 (COMSTAR)
1 x Sun Server X3-2L with
2 x Intel Xeon E5-2609 2.4 GHz Processors
16 GB Memory
12 x 3 TB SAS disks
Oracle Solaris 11.1 (COMSTAR)

Software Configuration:

Oracle Solaris 11.1 (11.1.10.5.0), Oracle E-Business
Oracle Solaris 11.1 (11.1.10.5.0), PeopleSoft
Oracle Solaris 11.1 (11.1.9.5.0), Decision Support
Oracle Database 11g Release 2, Oracle E-Business and PeopleSoft
Oracle Database 12c Release 1, Decision Support
Oracle E-Business Suite 12.1.3
PeopleSoft Human Capital Management 9.1 FP2
PeopleSoft PeopleTools 8.52.03
Oracle Java SE 6u32
Oracle Tuxedo, Version 10.3.0.0, 64-bit, Patch Level 043
Oracle WebLogic Server 11g (10.3.4)

Oracle Dynamic Domains (PDoms) resources:


Oracle E-Business PeopleSoft Oracle DSS
Processors 8 8 16
Memory 4 TB 4 TB 8 TB
Oracle Solaris 11.1 (11.1.10.5.0) 11.1 (11.1.10.5.0) 11.1 (11.1.9.5.0)
Oracle Database 11g 11g 12c
Oracle VM for SPARC /
Oracle Solaris Zones
4 LDom / 8 Zones 2 LDom / 4 Zones None
Storage 7 x Sun Server X3-2L 1 x Sun Server X3-2L
(12 x 3 TB SAS )
2 x Sun Storage 2540-M2 / 2501 pairs
4 x Sun Storage 2540-M2/2501 pairs

Benchmark Description

This benchmark consists of three different applications running concurrently. It shows that large, enterprise workloads can be run on a single system and without performance impact between application environments.

The three workloads are:

  • Oracle E-Business Suite Online

    • This test simulates thousands of online users executing transactions typical of an internal Enterprise Resource Processing, including 5 application modules: Customer Service, Human Resources Self Service, Procurement, Order Management and Financial.

    • Each database tier uses a database instance of about 600 GB in size, and supporting thousands of application users, accessing hundreds of objects (tables, indexes, SQL stored procedures, etc.).

    • The application tier includes multiple web and application server instances, specifically Apache Web Server, Oracle Application Server 10g and Oracle Java SE 6u32.

  • PeopleSoft Human Capital Management

    • This test simulates thousands of online employees, managers and Human Resource administrators executing transactions typical of a Human Resources Self Service application for the Enterprise. Typical transactions are: viewing paychecks, promoting and hiring employees, updating employee profiles, etc.

    • The database tier uses a database instance of about 500 GB in size, containing information for 500,480 employees.

    • The application tier for this test includes web and application server instances, specifically Oracle WebLogic Server 11g, PeopleSoft Human Capital Management 9.1 and Oracle Java SE 6u32.

  • Decision Support Workload using the Oracle Database.

    • The query processes 30 billion rows stored in the Oracle Database, making heavy use of Oracle parallel query processing features. It performs multiple aggregations and summaries by reading and processing all the rows of the database.

Key Points and Best Practices

Oracle E-Business Environment

The Oracle E-Business Suite setup consisted 4 Oracle E-Business environments running 5 online Oracle E-Business modules simultaneously.

The Oracle E-Business environments were deployed on 4 Oracle VM for SPARC, respectively 2 for the Application tier and 2 for the Database tier. Each LDom included 2 SPARC M6 processor chips. The Application LDom was further split into 2 Oracle Solaris Zones, each one containing one Oracle E-Business Application instance. Similarly, on the Database tier, each LDom was further divided into 2 Oracle Solaris Zones, each containing an Oracle Database instance. Applications on the same LDom shared a 10 GbE network link to connect to the Database tier LDom. Each Application in a Zone was connected to its own dedicated Database Zone. The communication between the two Zones was implemented via Oracle Solaris 11 virtual network, which provides high performance, low latency transfers at memory speed using large frames (9000 bytes vs typical 1500 bytes frames).

The Oracle E-Business setup made use of the Oracle Database Shared Server feature in order to limit memory utilization, as well as the number of database Server processes. The Oracle Database configuration and optimization was substantially out-of-the-box, except for proper sizing the Oracle Database memory areas (System Global Area and Program Global Area).

In the Oracle E-Business Application LDom handling Customer Service and HR Self Service modules, 28 Forms servers and 8 OC4J application servers were hosted in the two separate Oracle Solaris Zones, for a total of 56 forms servers and 16 applications servers.

All the Oracle Database server processes and the listener processes were executed in the Oracle Solaris FX scheduler class.

PeopleSoft Environment

The PeopleSoft Application Oracle VM for SPARC had one Oracle Solaris Zone of 12 cores containing the web tier and two Oracle Solaris Zones of 57 cores total containing the Application tier. The Database tier was contained in an Oracle VM for SPARC consisting of one Oracle Solaris Zone of 24 cores. One core, in the Application Oracle VM, was dedicated to network and disk interrupt handling.

All database data files, recovery files and Oracle Clusterware files for the PeopleSoft test were created with the Oracle Automatic Storage Management (Oracle ASM) volume manager for the added benefit of the ease of management provided by Oracle ASM integrated storage management solution.

In the application tier, 5 PeopleSoft domains with 350 application servers (70 per each domain) were hosted in the two separate Oracle Solaris Zones for a total of 10 domains with 700 application server processes.

All PeopleSoft Application processes and Web Server JVM instances were executed in the Oracle Solaris FX scheduler class.

Oracle Decision Support Environment

The decision support workload showed how the combination of a large memory (8 TB) and a large number of processors (16 chips comprising 1536 virtual CPUs) together with Oracle parallel query facility can linearly increase the performance of certain decision support queries as the number of CPUs increase.

The large memory was used to cache the entire 30 billion row Oracle table in memory. There are a number of ways to accomplish this. The method deployed in this test was to allocate sufficient memory for Oracle's "keep cache" and direct the table to the "keep cache."

To demonstrate scalability, it was necessary to ensure that the number of Oracle parallel servers was always equal to the number of available virtual CPUs. This was accomplished by the combination of providing a degree of parallelism hint to the query and setting both parallel_max_servers and parallel_min_servers to the number of virtual CPUs.

The number of virtual CPUs for each stage of the scalability test was adjusted using the psradm command available in Oracle Solaris.

See Also

Disclosure Statement

Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. PeopleSoft results as of 02/14/2014. Other results as of 09/22/2013.

Oracle E-Business Suite R12 extra-large multiple-online module benchmark, SPARC M6-32, SPARC M6, 3.6 GHz, 8 chips, 96 cores, 768 threads, 4 TB memory, 14,660 online users, average response time 0.81 sec, 90th percentile response time 0.88 sec, Oracle Solaris 11.1, Oracle Solaris Zones, Oracle VM for SPARC, Oracle E-Business Suite 12.1.3, Oracle Database 11g Release 2, Results as of 9/22/2013.

Thursday Jan 23, 2014

SPARC T5-2 Delivers World Record 2-Socket Application Server for SPECjEnterprise2010 Benchmark

Oracle's SPARC T5-2 servers have set the world record for the SPECjEnterprise2010 benchmark using two-socket application servers with a result of 17,033.54 SPECjEnterprise2010 EjOPS. The result used two SPARC T5-2 servers, one server for the application tier and the other server for the database tier.

  • The SPARC T5-2 server delivered 29% more performance compared to the 2-socket IBM PowerLinux server result of 13,161.07 SPECjEnterprise2010 EjOPS.

  • The two SPARC T5-2 servers have 1.2x better price performance than the two IBM PowerLinux 7R2 POWER7+ processor-based servers (based on hardware plus software configuration costs for both tiers). The price performance of the SPARC T5-2 server is $35.99 compared to the IBM PowerLinux 7R2 at $44.75.

  • The SPARC T5-2 server demonstrated 1.5x more performance compared to Oracle's x86-based 2-socket Sun Server X4-2 system (Ivy Bridge) result of 11,259.88 SPECjEnterprise2010 EjOPS. Oracle holds the top x86 2-socket application server SPECjEnterprise2010 result.

  • This SPARC T5-2 server result represents the best performance per socket for a single system in the application tier of 8,516.77 SPECjEnterprise2010 EjOPS per socket.

  • The application server used Oracle Fusion Middleware components including the Oracle WebLogic 12.1 application server and Java HotSpot(TM) 64-Bit Server VM on Solaris, version 1.7.0_45. The database server was configured with Oracle Database 12c Release 1.

  • This result demonstrated less than 1 second average response times for all SPECjEnterprise2010 transactions and represents Jave EE 5.0 transactions generated by 139,000 users.

Performance Landscape

Select 2-socket single application server results. Complete benchmark results are at the SPEC website, SPECjEnterprise2010 Results.

SPECjEnterprise2010 Performance Chart
1/22/2014
Submitter EjOPS* Java EE Server DB Server
Oracle 17,033.54 1 x SPARC T5-2
2 x 3.6 GHz SPARC T5
Oracle WebLogic 12c (12.1.2)
1 x SPARC T5-2
2 x 3.6 GHz SPARC T5
Oracle Database 12c (12.1.0.1)
IBM 13,161.07 1x IBM PowerLinux 7R2
2 x 4.2 GHz POWER 7+
WebSphere Application Server V8.5
1x IBM PowerLinux 7R2
2 x 4.2 GHz POWER 7+
IBM DB2 10.1 FP2
Oracle 11,259.88 1x Sun Server X4-2
2 x 2.7 GHz Intel Xeon E5-2697 v2
Oracle WebLogic 12c (12.1.2)
1x Sun Server X4-2L
2 x 2.7 GHz Intel Xeon E5-2697 v2
Oracle Database 12c (12.1.0.1)

* SPECjEnterprise2010 EjOPS (bigger is better)

Configuration Summary

Application Server:

1 x SPARC T5-2 server, with
2 x 3.6 GHz SPARC T5 processors
512 GB memory
2 x 10 GbE dual-port NIC
Oracle Solaris 11.1 (11.1.13.6.0)
Oracle WebLogic Server 12c (12.1.2)
Java HotSpot(TM) 64-Bit Server VM on Solaris, version 1.7.0_45

Database Server:

1 x SPARC T5-2 server, with
2 x 3.6 GHz SPARC T5 processors
512 GB memory
1 x 10 GbE dual-port NIC
2 x 8 Gb FC HBA
Oracle Solaris 11.1 (11.1.13.6.0)
Oracle Database 12c (12.1.0.1)

Storage Servers:

2 x Sun Server X4-2L (24-Drive), with
2 x 2.6 GHz Intel Xeon
64 GB memory
1 x 8 Gb FC HBA
4 x Sun Flash Accelerator F80 PCI-E Cards
Oracle Solaris 11.1

Benchmark Description

SPECjEnterprise2010 is the third generation of the SPEC organization's J2EE end-to-end industry standard benchmark application. The new SPECjEnterprise2010 benchmark has been re-designed and developed to cover the Java EE 5 specification's significantly expanded and simplified programming model, highlighting the major features used by developers in the industry today. This provides a real world workload driving the Application Server's implementation of the Java EE specification to its maximum potential and allowing maximum stressing of the underlying hardware and software systems,

  • The web zone, servlets, and web services
  • The EJB zone
  • JPA 1.0 Persistence Model
  • JMS and Message Driven Beans
  • Transaction management
  • Database connectivity
Moreover, SPECjEnterprise2010 also heavily exercises all parts of the underlying infrastructure that make up the application environment, including hardware, JVM software, database software, JDBC drivers, and the system network.

The primary metric of the SPECjEnterprise2010 benchmark is jEnterprise Operations Per Second (SPECjEnterprise2010 EjOPS). The primary metric for the SPECjEnterprise2010 benchmark is calculated by adding the metrics of the Dealership Management Application in the Dealer Domain and the Manufacturing Application in the Manufacturing Domain. There is NO price/performance metric in this benchmark.

Key Points and Best Practices

  • Two Oracle WebLogic server instances on the SPARC T5-2 server were hosted in 2 separate Oracle Solaris Zones.
  • The Oracle WebLogic application servers were executed in the FX scheduling class to improve performance by reducing the frequency of context switches.
  • The Oracle log writer process was run in the RT scheduling class.

See Also

Disclosure Statement

SPEC and the benchmark name SPECjEnterprise are registered trademarks of the Standard Performance Evaluation Corporation. Results from www.spec.org as of 1/22/2014. SPARC T5-2, 17,033.54 SPECjEnterprise2010 EjOPS; IBM PowerLinux 7R2, 13,161.07 SPECjEnterprise2010 EjOPS; Sun Server X4-2, 11,259.88 SPECjEnterprise2010 EjOPS.

The SPARC T5-2 configuration cost is the total application and database server hardware plus software. List price is $613,052 from http://www.oracle.com as of 1/22/2014. The IBM PowerLinux 7R2 configuration total hardware plus software list price is $588,970 based on public pricing from http://www.ibm.com as of 1/22/2014. Pricing does not include database storage hardware for IBM or Oracle.

Monday Nov 25, 2013

World Record Single System TPC-H @10000GB Benchmark on SPARC T5-4

Oracle's SPARC T5-4 server delivered world record single server performance of 377,594 QphH@10000GB with price/performance of $4.65/QphH@10000GB USD on the TPC-H @10000GB benchmark. This result shows that the 4-chip SPARC T5-4 server is significantly faster than the 8-chip server results from HP (Intel x86 based).

  • The SPARC T5-4 server with four SPARC T5 processors is 2.4 times faster than the HP ProLiant DL980 G7 server with eight x86 processors.

  • The SPARC T5-4 server delivered 4.8 times better performance per chip and 3.0 times better performance per core than the HP ProLiant DL980 G7 server.

  • The SPARC T5-4 server has 28% better price/performance than the HP ProLiant DL980 G7 server (for the price/QphH metric).

  • The SPARC T5-4 server with 2 TB memory is 2.4 times faster than the HP ProLiant DL980 G7 server with 4 TB memory (for the composite metric).

  • The SPARC T5-4 server took 9 hours, 37 minutes, 54 seconds for data loading while the HP ProLiant DL980 G7 server took 8.3 times longer.

  • The SPARC T5-4 server accomplished the refresh function in around a minute, the HP ProLiant DL980 G7 server took up to 7.1 times longer to do the same function.

This result demonstrates a complete data warehouse solution that shows the performance both of individual and concurrent query processing streams, faster loading, and refresh of the data during business operations. The SPARC T5-4 server delivers superior performance and cost efficiency when compared to the HP result.

Performance Landscape

The table lists the leading TPC-H @10000GB results for non-clustered systems.

TPC-H @10000GB, Non-Clustered Systems
System
Processor
P/C/T – Memory
Composite
(QphH)
$/perf
($/QphH)
Power
(QppH)
Throughput
(QthH)
Database Available
SPARC T5-4
3.6 GHz SPARC T5
4/64/512 – 2048 GB
377,594.3 $4.65 342,714.1 416,024.4 Oracle 11g R2 11/25/13
HP ProLiant DL980 G7
2.4 GHz Intel Xeon E7-4870
8/80/160 – 4096 GB
158,108.3 $6.49 185,473.6 134,780.5 SQL Server 2012 04/15/13

P/C/T = Processors, Cores, Threads
QphH = the Composite Metric (bigger is better)
$/QphH = the Price/Performance metric in USD (smaller is better)
QppH = the Power Numerical Quantity (bigger is better)
QthH = the Throughput Numerical Quantity (bigger is better)

The following table lists data load times and average refresh function times.

TPC-H @10000GB, Non-Clustered Systems
Database Load & Database Refresh
System
Processor
Data Loading
(h:m:s)
T5
Advan
RF1
(sec)
T5
Advan
RF2
(sec)
T5
Advan
SPARC T5-4
3.6 GHz SPARC T5
09:37:54 8.3x 58.8 7.1x 62.1 6.4x
HP ProLiant DL980 G7
2.4 GHz Intel Xeon E7-4870
79:28:23 1.0x 416.4 1.0x 394.9 1.0x

Data Loading = database load time
RF1 = throughput average first refresh transaction
RF2 = throughput average second refresh transaction
T5 Advan = the ratio of time to the SPARC T5-4 server time

Complete benchmark results found at the TPC benchmark website http://www.tpc.org.

Configuration Summary and Results

Server Under Test:

SPARC T5-4 server
4 x SPARC T5 processors (3.6 GHz total of 64 cores, 512 threads)
2 TB memory
2 x internal SAS (2 x 300 GB) disk drives
12 x 16 Gb FC HBA

External Storage:

24 x Sun Server X4-2L servers configured as COMSTAR nodes, each with
2 x 2.5 GHz Intel Xeon E5-2609 v2 processors
4 x Sun Flash Accelerator F80 PCIe Cards, 800 GB each
6 x 4 TB 7.2K RPM 3.5" SAS disks
1 x 8 Gb dual port HBA

2 x 48 port Brocade 6510 Fibre Channel Switches

Software Configuration:

Oracle Solaris 11.1
Oracle Database 11g Release 2 Enterprise Edition

Audited Results:

Database Size: 10000 GB (Scale Factor 10000)
TPC-H Composite: 377,594.3 QphH@10000GB
Price/performance: $4.65/QphH@10000GB USD
Available: 11/25/2013
Total 3 year Cost: $1,755,709 USD
TPC-H Power: 342,714.1
TPC-H Throughput: 416,024.4
Database Load Time: 9:37:54

Benchmark Description

The TPC-H benchmark is a performance benchmark established by the Transaction Processing Council (TPC) to demonstrate Data Warehousing/Decision Support Systems (DSS). TPC-H measurements are produced for customers to evaluate the performance of various DSS systems. These queries and updates are executed against a standard database under controlled conditions. Performance projections and comparisons between different TPC-H Database sizes (100GB, 300GB, 1000GB, 3000GB, 10000GB, 30000GB and 100000GB) are not allowed by the TPC.

TPC-H is a data warehousing-oriented, non-industry-specific benchmark that consists of a large number of complex queries typical of decision support applications. It also includes some insert and delete activity that is intended to simulate loading and purging data from a warehouse. TPC-H measures the combined performance of a particular database manager on a specific computer system.

The main performance metric reported by TPC-H is called the TPC-H Composite Query-per-Hour Performance Metric (QphH@SF, where SF is the number of GB of raw data, referred to as the scale factor). QphH@SF is intended to summarize the ability of the system to process queries in both single and multiple user modes. The benchmark requires reporting of price/performance, which is the ratio of the total HW/SW cost plus 3 years maintenance to the QphH. A secondary metric is the storage efficiency, which is the ratio of total configured disk space in GB to the scale factor.

Key Points and Best Practices

  • COMSTAR (Common Multiprotocol SCSI Target) is the software framework that enables an Oracle Solaris host to serve as a SCSI Target platform. COMSTAR uses a modular approach to break the huge task of handling all the different pieces in a SCSI target subsystem into independent functional modules which are glued together by the SCSI Target Mode Framework (STMF). The modules implementing functionality at SCSI level (disk, tape, medium changer etc.) are not required to know about the underlying transport. And the modules implementing the transport protocol (FC, iSCSI, etc.) are not aware of the SCSI-level functionality of the packets they are transporting. The framework hides the details of allocation providing execution context and cleanup of SCSI commands and associated resources and simplifies the task of writing the SCSI or transport modules.

  • The SPARC T5-4 server achieved a peak IO rate of 37 GB/sec from the Oracle database configured with this storage.

  • Twelve COMSTAR nodes were mirrored to another twelve COMSTAR nodes on which all of the Oracle database files were placed. IO performance was high and balanced across all the nodes.

  • Oracle Solaris 11.1 required very little system tuning.

  • Some vendors try to make the point that storage ratios are of customer concern. However, storage ratio size has more to do with disk layout and the increasing capacities of disks – so this is not an important metric when comparing systems.

  • The SPARC T5-4 server and Oracle Solaris efficiently managed the system load of nearly two thousand Oracle Database parallel processes.

See Also

Disclosure Statement

TPC Benchmark, TPC-H, QphH, QthH, QppH are trademarks of the Transaction Processing Performance Council (TPC). Results as of 11/25/13, prices are in USD. SPARC T5-4 www.tpc.org/3293; HP ProLiant DL980 G7 www.tpc.org/3285.

Thursday Sep 26, 2013

SPARC M6-32 Delivers Oracle E-Business and PeopleSoft World Record Benchmarks, Linear Data Warehouse Scaling in a Virtualized Configuration

This result has been superceded.  Please see the latest result.

 This result demonstrates how the combination of Oracle virtualization technologies for SPARC and Oracle's SPARC M6-32 server allow the deployment and concurrent high performance execution of multiple Oracle applications and databases sized for the Enterprise.

  • In an 8-chip Dynamic Domain (also known as PDom), the SPARC M6-32 server set a World Record E-Business 12.1.3 X-Large world record with 14,660 online users running five simultaneous E-Business modules.

  • In a second 8-chip Dynamic Domain, the SPARC M6-32 server set a World Record PeopleSoft HCM 9.1 HR Self-Service online supporting 34,000 users while simultaneously running a batch workload in 29.7 minutes. This was done with a database of 600,480 employees. In a separate test running a batch-only workload was run in 21.2 min.

  • In a third Dynamic Domain with 16-chips on the SPARC M6-32 server, a data warehouse test was run that showed near-linear scaling.

  • On the SPARC M6-32 server, several critical applications instances were virtualized: an Oracle E-Business application and database, an Oracle's PeopleSoft application and database, and a Decision Support database instance using Oracle Database 12c.

  • In this Enterprise Virtualization benchmark a SPARC M6-32 server utilized all levels of Oracle Virtualization features available for SPARC servers. The 32-chip SPARC M6 based server was divided in three separate Dynamic Domains (also known as PDoms), available only on the SPARC Enterprise M-Series systems, which are completely electrically isolated and independent hardware partitions. Each PDom was subsequently split into multiple hypervisor-based Oracle VM for SPARC partitions (also known as LDoms), each one running its own Oracle Solaris kernel and managing its own CPUs and I/O resources. The hardware resources allocated to each Oracle VM for SPARC partition were then organized in various Oracle Solaris Zones, to further refine application tier isolation and resources management. The three PDoms were dedicated to the enterprise applications as follows:

    • Oracle E-Business PDom: Oracle E-Business 12.1.3 Suite World Record Extra-Large benchmark, exercising five Online Modules: Customer Service, Human Resources Self Service, iProcurement, Order Management and Financial, with 14,660 users and an average user response time under 2 seconds.

    • PeopleSoft PDom: PeopleSoft Human Capital Management (HCM) 9.1 FP2 World Record Benchmark, using PeopleTools 8.52 and an Oracle Database 11g Release 2, with 34,000 users, at an average user Search Time of 1.11 seconds and Save Time of 0.77 seconds, and a Payroll batch run completed in 29.7 minutes elapsed time for more than 500,000 employees.

    • Decision Support PDom: An Oracle Database 12c instance executing a Decision Support workload on about 30 billion rows of data and achieving linear scalability, i.e. on the 16 chips comprising the PDom, the workload ran 16x faster than on a single chip. Specifically, the 16-chip PDom processed about 320M rows/sec whereas a single chip could process about 20M rows/sec.

  • The SPARC M6-32 server is ideally suited for large-memory utilization. In this virtualized environment, three critical applications made use of 16 TB of physical memory. Each of the Oracle VM Server for SPARC environments utilized from 4 to 8 TB of memory, more than the limits of other virtualization solutions.

  • SPARC M6-32 Server Virtualization Layout Highlights

    • The Oracle E-Business application instances were run in a dedicated Dynamic Domain consisting of 8 SPARC M6 processors and 4 TB of memory. The PDom was split into four symmetric Oracle VM Server for SPARC (LDoms) environments of 2 chips and 1 TB of memory each, two dedicated to the Application Server tier and the other two to the Database Server tier. Each Logical Domain was subsequently divided into two Oracle Solaris Zones, for a total of eight, one for each E-Business Application server and one for each Oracle Database 11g instance.

    • The PeopleSoft application was run in a dedicated Dynamic Domain (PDom) consisting of 8 SPARC M6 processors and 4 TB of memory. The PDom was split into two Oracle VM Server for SPARC (LDoms) environments one of 6 chips and 3 TB of memory, reserved for the Web and Application Server tiers, and a second one of 2 chips and 1 TB of memory, reserved for the Database tier. Two PeopleSoft Application Servers, a Web Server instance, and a single Oracle Database 11g instance were each executed in their respective and exclusive Oracle Solaris Zone.

    • The Oracle Database 12c Decision Support workload was run in a Dynamic Domain consisting of 16 SPARC M6 processors and 8 TB of memory.

  • All the Oracle Applications and Database instances were running at high level of performance and concurrently in a virtualized environment. Running three Enterprise level application environments on a single SPARC M6-32 server offers centralized administration, simplified physical layout, high availability and security features (as each PDom and LDom runs its own Oracle Solaris operating system copy physically and logically isolated from the other environments), enabling the coexistence of multiple versions Oracle Solaris and application software on a single physical server.

  • Dynamic Domains and Oracle VM Server for SPARC guests were configured with independent direct I/O domains, allowing for fast and isolated I/O paths, providing secure and high performance I/O access.

Performance Landscape

Oracle E-Business Test using Oracle Database 11g
SPARC M6-32 PDom, 8 SPARC M6 Processors, 4 TB Memory
Total Online Users Weighted Average
Response Time (sec)
90th Percentile
Response Time (s)
14,660 0.81 0.88
Multiple Online Modules X-Large Configuration (HR Self-Service, Order Management, iProcurement, Customer Service, Financial)

PeopleSoft HR Self-Service Online Plus Payroll Batch using Oracle Database 11g
SPARC M6-32 PDom, 8 SPARC M6 Processors, 4 TB Memory
HR Self-Service Payroll Batch
Elapsed (min)
Online Users Average User
Search / Save
Time (sec)
Transactions
per Second
34,000 1.11 / 0.77 113 29.7

Payroll Batch Only
Elapsed (min)
21.17

Oracle Database 12c Decision Support Query Test
SPARC M6-32 PDom, 16 SPARC M6 Processors, 8 TB Memory
Parallelism
Chips Used
Rows Processing Rate
(rows/s)
Scaling Normalized to 1 Chip
16 319,981,734 15.9
8 162,545,303 8.1
4 80,943,271 4.0
2 40,458,329 2.0
1 20,086,829 1.0

Configuration Summary

System Under Test:

SPARC M6-32 server with
32 x SPARC M6 processors (3.6 GHz)
16 TB memory

Storage Configuration:

6 x Sun Storage 2540-M2 each with
8 x Expansion Trays (each tray equipped with 12 x 300 GB SAS drives)
7 x Sun Server X3-2L each with
2 x Intel Xeon E5-2609 2.4 GHz Processors
16 GB Memory
4 x Sun Flash Accelerator F40 PCIe 400 GB cards
Oracle Solaris 11.1 (COMSTAR)
1 x Sun Server X3-2L with
2 x Intel Xeon E5-2609 2.4 GHz Processors
16 GB Memory
12 x 3 TB SAS disks
Oracle Solaris 11.1 (COMSTAR)

Software Configuration:

Oracle Solaris 11.1 (11.1.10.5.0), Oracle E-Business
Oracle Solaris 11.1 (11.1.10.5.0), PeopleSoft
Oracle Solaris 11.1 (11.1.9.5.0), Decision Support
Oracle Database 11g Release 2, Oracle E-Business and PeopleSoft
Oracle Database 12c Release 1, Decision Support
Oracle E-Business Suite 12.1.3
PeopleSoft Human Capital Management 9.1 FP2
PeopleSoft PeopleTools 8.52.03
Oracle Java SE 6u32
Oracle Tuxedo, Version 10.3.0.0, 64-bit, Patch Level 043
Oracle WebLogic Server 11g (10.3.4)

Oracle Dynamic Domains (PDoms) resources:


Oracle E-Business PeopleSoft Oracle DSS
Processors 8 8 16
Memory 4 TB 4 TB 8 TB
Oracle Solaris 11.1 (11.1.10.5.0) 11.1 (11.1.10.5.0) 11.1 (11.1.9.5.0)
Oracle Database 11g 11g 12c
Oracle VM for SPARC /
Oracle Solaris Zones
4 LDom / 8 Zones 2 LDom / 4 Zones None
Storage 7 x Sun Server X3-2L 1 x Sun Server X3-2L
(12 x 3 TB SAS )
2 x Sun Storage 2540-M2 / 2501 pairs
4 x Sun Storage 2540-M2/2501 pairs

Benchmark Description

This benchmark consists of three different applications running concurrently. It shows that large, enterprise workloads can be run on a single system and without performance impact between application environments.

The three workloads are:

  • Oracle E-Business Suite Online

    • This test simulates thousands of online users executing transactions typical of an internal Enterprise Resource Processing, including 5 application modules: Customer Service, Human Resources Self Service, Procurement, Order Management and Financial.

    • Each database tier uses a database instance of about 600 GB in size, and supporting thousands of application users, accessing hundreds of objects (tables, indexes, SQL stored procedures, etc.).

    • The application tier includes multiple web and application server instances, specifically Apache Web Server, Oracle Application Server 10g and Oracle Java SE 6u32.

  • PeopleSoft Human Capital Management

    • This test simulates thousands of online employees, managers and Human Resource administrators executing transactions typical of a Human Resources Self Service application for the Enterprise. Typical transactions are: viewing paychecks, promoting and hiring employees, updating employee profiles, etc.

    • The database tier uses a database instance of about 500 GB in size, containing information for 500,480 employees.

    • The application tier for this test includes web and application server instances, specifically Oracle WebLogic Server 11g, PeopleSoft Human Capital Management 9.1 and Oracle Java SE 6u32.

  • Decision Support Workload using the Oracle Database.

    • The query processes 30 billion rows stored in the Oracle Database, making heavy use of Oracle parallel query processing features. It performs multiple aggregations and summaries by reading and processing all the rows of the database.

Key Points and Best Practices

Oracle E-Business Environment

The Oracle E-Business Suite setup consisted 4 Oracle E-Business environments running 5 online Oracle E-Business modules simultaneously. The Oracle E-Business environments were deployed on 4 Oracle VM for SPARC, respectively 2 for the Application tier and 2 for the Database tier. Each LDom included 2 SPARC M6 processor chips. The Application LDom was further split into 2 Oracle Solaris Zones, each one containing one Oracle E-Business Application instance. Similarly, on the Database tier, each LDom was further divided into 2 Oracle Solaris Zones, each containing an Oracle Database instance. Applications on the same LDom shared a 10 GbE network link to connect to the Database tier LDom. Each Application in a Zone was connected to its own dedicated Database Zone. The communication between the two Zones was implemented via Oracle Solaris 11 virtual network, which provides high performance, low latency transfers at memory speed using large frames (9000 bytes vs typical 1500 bytes frames).

The Oracle E-Business setup made use of the Oracle Database Shared Server feature in order to limit memory utilization, as well as the number of database Server processes. The Oracle Database configuration and optimization was substantially out-of-the-box, except for proper sizing the Oracle Database memory areas (System Global Area and Program Global Area).

In the Oracle E-Business Application LDom handling Customer Service and HR Self Service modules, 28 Forms servers and 8 OC4J application servers were hosted in the two separate Oracle Solaris Zones, for a total of 56 forms servers and 16 applications servers.

All the Oracle Database server processes and the listener processes were executed in the Oracle Solaris FX scheduler class.

PeopleSoft Environment

The PeopleSoft Application Oracle VM for SPARC had one Oracle Solaris Zone of 12 cores containing the web tier and two Oracle Solaris Zones of 28 cores each containing the Application tier. The Database tier was contained in an Oracle VM for SPARC consisting of one Oracle Solaris Zone of 24 cores. One and a half cores, in the Application Oracle VM, were dedicated to network and disk interrupt handling.

All database data files, recovery files and Oracle Clusterware files for the PeopleSoft test were created with the Oracle Automatic Storage Management (Oracle ASM) volume manager for the added benefit of the ease of management provided by Oracle ASM integrated storage management solution.

In the application tier, 5 PeopleSoft domains with 350 application servers (70 per each domain) were hosted in the two separate Oracle Solaris Zones for a total of 10 domains with 700 application server processes.

All PeopleSoft Application processes and Web Server JVM instances were executed in the Oracle Solaris FX scheduler class.

Oracle Decision Support Environment

The decision support workload showed how the combination of a large memory (8 TB) and a large number of processors (16 chips comprising 1536 virtual CPUs) together with Oracle parallel query facility can linearly increase the performance of certain decision support queries as the number of CPUs increase.

The large memory was used to cache the entire 30 billion row Oracle table in memory. There are a number of ways to accomplish this. The method deployed in this test was to allocate sufficient memory for Oracle's "keep cache" and direct the table to the "keep cache."

To demonstrate scalability, it was necessary to ensure that the number of Oracle parallel servers was always equal to the number of available virtual CPUs. This was accomplished by the combination of providing a degree of parallelism hint to the query and setting both parallel_max_servers and parallel_min_servers to the number of virtual CPUs.

The number of virtual CPUs for each stage of the scalability test was adjusted using the psradm command available in Oracle Solaris.

See Also

Disclosure Statement

Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 09/22/2013.

Oracle E-Business Suite R12 extra-large multiple-online module benchmark, SPARC M6-32, SPARC M6, 3.6 GHz, 8 chips, 96 cores, 768 threads, 4 TB memory, 14,660 online users, average response time 0.81 sec, 90th percentile response time 0.88 sec, Oracle Solaris 11.1, Oracle Solaris Zones, Oracle VM for SPARC, Oracle E-Business Suite 12.1.3, Oracle Database 11g Release 2, Results as of 9/20/2013.

SPARC T5-8 Delivers World Record Single Server SPECjEnterprise2010 Benchmark, Utilizes Virtualized Environment

Oracle produced a world record single-server SPECjEnterprise2010 benchmark result of 36,571.36 SPECjEnterprise2010 EjOPS using one of Oracle's SPARC T5-8 servers for both the application and the database tier. Oracle VM Server for SPARC was used to virtualize the system to achieve this result.

  • The 8-chip SPARC T5 processor based server is 3.3x faster than the 8-chip IBM Power 780 server (POWER7+ processor based).

  • The SPARC T5-8 has 4.4x better price performance than the IBM Power 780, a POWER7+ processor based server (based on hardware plus software configuration costs). The price performance of the SPARC T5-8 server is $40.68 compared to the IBM Power 780 at $177.41. The IBM Power 780, POWER7+ based system has 1.2x better performance per core, but this did not reduce the total software and hardware cost to the customer. As shown by this comparison, performance-per-core is a poor predictor of characteristics relevant to customers. The SPARC T5-8 virtualized price performance was also less than the low-end IBM PowerLinux 7R2 at $62.26.

  • The SPARC T5-8 server ran the Oracle Solaris 11.1 operating system and used Oracle VM Server for SPARC to consolidate ten Oracle WebLogic application server instances and one database server instance to achieve this result.

  • This result demonstrated sub-second average response times for all SPECjEnterprise2010 transactions and represents JEE 5.0 transactions generated by 299,000 users.

  • The SPARC T5-8 server requires only 8 rack units, the same as the space of the IBM Power 780. In this configuration IBM has a hardware core density of 4 cores per rack unit which contrasts with the 16 cores per rack unit for the SPARC T5-8 server. This again demonstrates why performance-per-core is a poor predictor of characteristics relevant to customers.

  • The application server used Oracle Fusion Middleware components including the Oracle WebLogic 12.1 application server and Java HotSpot(TM) 64-Bit Server VM on Solaris, version 1.7.0_25. The database server was configured with Oracle Database 12c Release 1.

  • The SPARC T5-8 server is 2.8x faster than a non-virtualized IBM POWER7+ based server result (one server for application and one server for database), the IBM PowerLinux 7R2 achieved 13,161.07 SPECjEnterprise2010 EjOPS.

Performance Landscape

SPECjEnterprise2010 Performance Chart
Only Three Virtualized Results (App+DB on 1 Server) as of 9/23/2013
Submitter EjOPS* Chips per Server Java EE Server & DB Server
App DB
Oracle 36,571.36 5 3 1 x SPARC T5-8
8 chips, 128 cores, 3.6 GHz SPARC T5
Oracle WebLogic 12c (12.1.2)
Oracle Database 12c (12.1.0.1)
Oracle 27,843.57 4 4 1 x SPARC T5-8
8 chips, 128 cores, 3.6 GHz SPARC T5
Oracle WebLogic 12c (12.1.1)
Oracle Database 11g (11.2.0.3)
IBM 10,902.30 4 4 1 x IBM Power 780
8 chips, 32 cores, 4.42 GHz POWER7+
WebSphere Application Server V8.5
IBM DB2 Universal Database 10.1

* SPECjEnterprise2010 EjOPS (bigger is better)

Complete benchmark results are at the SPEC website, SPECjEnterprise2010 Results.

Configuration Summary

Oracle Summary

Application and Database Server:

1 x SPARC T5-8 server, with
8 x 3.6 GHz SPARC T5 processors
2 TB memory
9 x 10 GbE dual-port NIC
6 x 8 Gb dual-port HBA
Oracle Solaris 11.1 SRU 10.5
Oracle VM Server for SPARC
Oracle WebLogic Server 12c (12.1.2)
Java HotSpot(TM) 64-Bit Server VM on Solaris, version 1.7.0_25
Oracle Database 12c (12.1.0.1)

Storage Servers:

6 x Sun Server X3-2L (12-Drive), with
2 x 2.4 GHz Intel Xeon
16 GB memory
1 x 8 Gb FC HBA
4 x Sun Flash Accelerator F40 PCI-E Card
Oracle Solaris 11.1

2 x Sun Storage 2540-M2 Array
12 x 600 GB 15K RPM SAS HDD

Switch Hardware:

1 x Sun Network 10 GbE 72-port Top of Rack (ToR) Switch

IBM Summary

Application and Database Server:

1 x IBM Power 780 server, with
8 x 4.42 GHz POWER7+ processors
786 GB memory
6 x 10 GbE dual-port NIC
3 x 8 Gb four-port HBA
IBM AIX V7.1 TL2
IBM WebSphere Application Server V8.5
IBM J9 VM (build 2.6, JRE 1.7.0 IBM J9 AIX ppc-32)
IBM DB2 10.1
IBM InfoSphere Optim pureQuery Runtime v3.1.1

Storage:

2 x DS5324 Disk System with
48 x 146 GB 15K E-DDM Disks

1 x v7000 Disk Controller with
16 x 400 GB SSD Disks

Benchmark Description

SPECjEnterprise2010 is the third generation of the SPEC organization's J2EE end-to-end industry standard benchmark application. The new SPECjEnterprise2010 benchmark has been re-designed and developed to cover the Java EE 5 specification's significantly expanded and simplified programming model, highlighting the major features used by developers in the industry today. This provides a real world workload driving the Application Server's implementation of the Java EE specification to its maximum potential and allowing maximum stressing of the underlying hardware and software systems,
  • The web zone, servlets, and web services
  • The EJB zone
  • JPA 1.0 Persistence Model
  • JMS and Message Driven Beans
  • Transaction management
  • Database connectivity
Moreover, SPECjEnterprise2010 also heavily exercises all parts of the underlying infrastructure that make up the application environment, including hardware, JVM software, database software, JDBC drivers, and the system network.

The primary metric of the SPECjEnterprise2010 benchmark is jEnterprise Operations Per Second (SPECjEnterprise2010 EjOPS). The primary metric for the SPECjEnterprise2010 benchmark is calculated by adding the metrics of the Dealership Management Application in the Dealer Domain and the Manufacturing Application in the Manufacturing Domain. There is NO price/performance metric in this benchmark.

Key Points and Best Practices

  • Ten Oracle WebLogic server instances on the SPARC T5-8 server were hosted in 10 separate Oracle Solaris Zones within a separate guest domain on 80 cores (5 cpu chips).
  • The database ran in a separate guest domain consisting of 47 cores (3 cpu chips). One core was reserved for the primary domain.
  • The Oracle WebLogic application servers were executed in the FX scheduling class to improve performance by reducing the frequency of context switches.
  • The Oracle log writer process was run in the FX scheduling class at processor priority 60 to use the Critical Thread feature.

See Also

Disclosure Statement

SPEC and the benchmark name SPECjEnterprise are registered trademarks of the Standard Performance Evaluation Corporation. Results from www.spec.org as of 9/23/2013. SPARC T5-8, 36,571.36 SPECjEnterprise2010 EjOPS (using Oracle VM for SPARC and 5+3 split); SPARC T5-8, 27,843.57 SPECjEnterprise2010 EjOPS (using Oracle Zones and 4+4 split); IBM Power 780, 10,902.30 SPECjEnterprise2010 EjOPS; IBM PowerLinux 7R2, 13,161.07 SPECjEnterprise2010 EjOPS. SPARC T5-8 server total hardware plus software list price is $1,487,792 from http://www.oracle.com as of 9/20/2013. IBM Power 780 server total hardware plus software cost of $1,934,162 based on public pricing from http://www.ibm.com as of 5/22/2013. IBM PowerLinux 7R2 server total hardware plus software cost of $819,451 based on whywebsphere.com/2013/04/29/weblogic-12c-on-oracle-sparc-t5-8-delivers-half-the-transactions-per-core-at-double-the-cost-of-the-websphere-on-ibm-power7/ retrieved 9/20/2013.

SPARC T5-2 Server Beats x86 Server on Oracle Database Transparent Data Encryption

Database security is becoming increasingly important. Oracle Database Advanced Security Transparent Data Encryption (TDE) stops would-be attackers from bypassing the database and reading sensitive information from storage by enforcing data-at-rest encryption in the database layer. Oracle's SPARC T5-2 server outperformed x86 systems when running Oracle Database 12c with Transparent Data Encryption.

  • The SPARC T5-2 server sustained more than 8.0 GB/sec of read bandwidth while decrypting using Transparent Data Encryption (TDE) in Oracle Database 12c. This was the bandwidth available on the system and matched the rate for querying the non-encrypted data.

  • The SPARC T5-2 server achieves about 1.5x higher decryption rate per socket using Oracle Database 12c with TDE than a Sun Server X4-2 system.

  • The SPARC T5-2 server achieves more than double the decryption rate per socket using Oracle Database 12c with TDE than a Sun Server X3-2 system.

Performance Landscape

Table of Size 250 GB Encrypted with AES-128-CFB
Full Table Scan with Degree of Parallelism 128
System Chips Table Data Format SPARC T5-2 Advantage
Clear Encrypted
SPARC T5-2 2 8.4 GB/sec 8.3 GB/sec 1.0
Sun Server X4-2L 2 8.2 GB/sec 5.6 GB/sec 1.5

SPARC T5-2 1 8.4 GB/sec 4.2 GB/sec 1.0
Sun Server X4-2L 1 8.2 GB/sec 2.8 GB/sec 1.5
Sun Server X3-2L 1 8.2 GB/sec 2.0 GB/sec 2.1

Configuration Summary

Systems Under Test:

SPARC T5-2
2 x SPARC T5 processors, 3.6 GHz
256 GB memory
Oracle Solaris 11.1
Oracle Database 12c

Sun Server X3-2L
2 x Intel Xeon E5-2690 processor, 2.90 GHz
64 GB memory
Oracle Solaris 11.1
Oracle Database 12c

Sun Server X4-2L
2 x Intel Xeon E5-2697 v2 processor, 2.70 GHz
256 GB memory
Oracle Solaris 11.1
Oracle Database 12c

Storage:

Flash Storage

Benchmark Description

The purpose of the benchmark is to show the query performance of a database using data encryption to keep the data secure. The benchmark creates a 250 GB table. It is loaded both into a clear text (no encryption) tablespace and an AES-128 encrypted tablespace. Full table scans of the tables were timed.

Key Points and Best Practices

The Oracle Database feature, Transparent Data Encryption (TDE), simplifies the encryption of data within datafiles, preventing unauthorized access to it from the operating system. Transparent Data Encryption allows encryption of the entire contents of a tablespace.

With hardware acceleration of the encryption routines, the SPARC T5-2 server can achieve nearly the same query rate whether the table is encrypted or not up to a limit of about 4 GB/sec per chip.

See Also

Disclosure Statement

Copyright 2013, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 23 September 2013.

Wednesday Sep 25, 2013

SPARC T5-8 Delivers World Record Oracle OLAP Perf Version 3 Benchmark Result on Oracle Database 12c

Oracle's SPARC T5-8 server delivered world record query performance for systems running Oracle Database 12c for the Oracle OLAP Perf Version 3 benchmark.

  • The query throughput on the SPARC T5-8 server is 1.7x higher than that of an 8-chip Intel Xeon E7-8870 server. Both systems had sub-second average response times.

  • The SPARC T5-8 server with the Oracle Database demonstrated the ability to support at least 700 concurrent users querying OLAP cubes (with no think time), processing 2.33 million analytic queries per hour with an average response time of less than 1 second per query. This performance was enabled by keeping the entire cube in-memory utilizing the 4 TB of memory on the SPARC T5-8 server.

  • Assuming a 60 second think time between query requests, the SPARC T5-8 server can support approximately 39,450 concurrent users with the same sub-second response time.

  • The workload uses a set of realistic Business Intelligence (BI) queries that run against an OLAP cube based on a 4 billion row fact table of sales data. The 4 billion rows are partitioned by month spanning 10 years.

  • The combination of the Oracle Database 12cwith the Oracle OLAP option running on a SPARC T5-8 server supports live data updates occurring concurrently with minimally impacted user query executions.

Performance Landscape

Oracle OLAP Perf Version 3 Benchmark
Oracle cube base on 4 billion fact table rows
10 years of data partitioned by month
System Queries/
hour
Users Average Response
Time (sec)
0 sec think time 60 sec think time
SPARC T5-8 2,329,000 700 39,450 <1 sec
8-chip Intel Xeon E7-8870 1,354,000 120 22,675 <1 sec

Configuration Summary

SPARC T5-8:

1 x SPARC T5-8 server with
8 x SPARC T5 processors, 3.6 GHz
4 TB memory
Data Storage and Redo Storage
Flash Storage
Oracle Solaris 11.1 (11.1.8.2.0)
Oracle Database 12c Release 1 (12.1.0.1) with Oracle OLAP option

Sun Server X2-8:

1 x Sun Server X2-8 with
8 x Intel Xeon E7-8870 processors, 2.4 GHz
1 TB memory
Data Storage and Redo Storage
Flash Storage
Oracle Solaris 10 10/12
Oracle Database 12c Release 1 (12.1.0.1) with Oracle OLAP option

Benchmark Description

The Oracle OLAP Perf Version 3 benchmark is a workload designed to demonstrate and stress the ability of the OLAP Option to deliver fast query, near real-time updates and rich calculations using a multi-dimensional model in the context of the Oracle data warehousing.

The bulk of the benchmark entails running a number of concurrent users, each issuing typical multidimensional queries against an Oracle cube. The cube has four dimensions: time, product, customer, and channel. Each query user issues approximately 150 different queries. One query chain may ask for total sales in a particular region (e.g South America) for a particular time period (e.g. Q4 of 2010) followed by additional queries which drill down into sales for individual countries (e.g. Chile, Peru, etc.) with further queries drilling down into individual stores, etc. Another query chain may ask for yearly comparisons of total sales for some product category (e.g. major household appliances) and then issue further queries drilling down into particular products (e.g. refrigerators, stoves. etc.), particular regions, particular customers, etc.

While the core of every OLAP Perf benchmark is real world query performance, the benchmark itself offers numerous execution options such as varying data set sizes, number of users, numbers of queries for any given user and cube update frequency. Version 3 of the benchmark is executed with a much larger number of query streams than previous versions and used a cube designed for near real-time updates. The results produced by version 3 of the benchmark are not directly comparable to results produced by previous versions of the benchmark.

The near real-time update capability is implemented along the following lines. A large Oracle cube, H, is built from a 4 billion row star schema, containing data up until the end of last business day. A second small cube, D, is then created which will contain all of today's new data coming in from outside the world. It will be updated every L minutes with the data coming in within the last L minutes. A third cube, R, joins cubes H and D for reporting purposes much like a view might join data from two tables. Calculations are installed into cube R. The use of a reporting cube which draws data from different storage cubes is a common practice.

Query users are never locked out of query operations while new data is added to the update cube. The point of the demonstration is to show that an Oracle OLAP system can be designed which results in data being no more than L minutes out of date, where L may be as low as just a few minutes. This is what is meant by near real-time analytics.

Key Points and Best Practices

  • Building and querying cubes with the Oracle OLAP option requires a large temporary tablespace. Normally temporary tablespaces would reside on disk storage. However, because the SPARC T5-8 server used in this benchmark had 4 TB of main memory, it was possible to use main memory for the OLAP temporary tablespace. This was accomplished by using a temporary, memory-based file system (TMPFS) for the temporary tablespace datafiles.

  • Since typical business intelligence users are often likely to issue similar queries, either with the same or different constants in the where clauses, setting the init.ora parameter "cursor_sharing" to "force" provides for additional query throughput and a larger number of potential users.

  • Assuming the normal Oracle Database initialization parameters (e.g. SGA, PGA, processes etc.) are appropriately set, out of the box performance for the Oracle OLAP workload should be close to what is reported here. Additional performance resulted from using memory for the OLAP temporary tablespace setting "cursor_sharing" to force.

  • Oracle OLAP Cube update performance was optimized by running update processes in the FX class with a priority greater than 0.

  • The maximum lag time between updates to the source fact table and data availability to query users (what was referred to as L in the benchmark description) was less than 3 minutes for the benchmark environment on the SPARC T5-8 server.

See Also

Disclosure Statement

Copyright 2013, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 09/22/2013.

Sun Server X4-2 Delivers Single App Server, 2-Chip x86 World Record SPECjEnterprise2010

Oracle's Sun Server X4-2 and Sun Server X4-2L servers, using the Intel Xeon E5-2697 v2 processor, produced a world record x86 two-chip single application server SPECjEnterprise2010 benchmark result of 11,259.88 SPECjEnterprise2010 EjOPS. The Sun Server X4-2 ran the application tier and the Sun Server X4-2L was used for the database tier.

  • The 2-socket Sun Server X4-2 demonstrated 16% better performance when compared to the 2-socket IBM X3650 M4 server result of 9,696.43 SPECjEnterprise2010 EjOPS.

  • This result used Oracle WebLogic Server 12c, Java HotSpot(TM) 64-Bit Server 1.7.0_40, Oracle Database 12c, and Oracle Linux.

Performance Landscape

Complete benchmark results are at the SPEC website, SPECjEnterprise2010 Results. The table below shows the top single application server, two-chip x86 results.

SPECjEnterprise2010 Performance Chart
as of 9/22/2013
Submitter EjOPS* Application Server Database Server
Oracle 11,259.88 1x Sun Server X4-2
2x 2.7 GHz Intel Xeon E5-2697 v2
Oracle WebLogic 12c (12.1.2)
1x Sun Server X4-2L
2x 2.7 GHz Intel Xeon E5-2697 v2
Oracle Database 12c (12.1.0.1)
IBM 9,696.43 1x IBM X3650 M4
2x 2.9 GHz Intel Xeon E5-2690
WebSphere Application Server V8.5
1x IBM X3650 M4
2x 2.9 GHz Intel Xeon E5-2690
IBM DB2 10.1
Oracle 8,310.19 1x Sun Server X3-2
2x 2.9 GHz Intel Xeon E5-2690
Oracle WebLogic 11g (10.3.6)
1x Sun Server X3-2L
2x 2.9 GHz Intel Xeon E5-2690
Oracle Database 11g (11.2.0.3)

* SPECjEnterprise2010 EjOPS, bigger is better.

Configuration Summary

Application Server:

1 x Sun Server X4-2
2 x 2.7 GHz Intel Xeon processor E5-2697 v2
256 GB memory
4 x 10 GbE NIC
Oracle Linux 5 Update 9 (kernel-2.6.39-400.124.1.el5uek)
Oracle WebLogic Server 12c (12.1.2)
Java HotSpot(TM) 64-Bit Server VM on Linux, version 1.7.0_40 (Java SE 7 Update 40)

Database Server:

1 x Sun Server X4-2L
2 x 2.7 GHz Intel Xeon E5-2697 v2
256 GB memory
1 x 10 GbE NIC
2 x FC HBA
3 x Sun StorageTek 2540 M2
Oracle Linux 5 Update 9 (kernel-2.6.39-400.124.1.el5uek)
Oracle Database 12c Enterprise Edition Release 12.1.0.1

Benchmark Description

SPECjEnterprise2010 is the third generation of the SPEC organization's J2EE end-to-end industry standard benchmark application. The SPECjEnterprise2010 benchmark has been designed and developed to cover the Java EE 5 specification's significantly expanded and simplified programming model, highlighting the major features used by developers in the industry today. This provides a real world workload driving the Application Server's implementation of the Java EE specification to its maximum potential and allowing maximum stressing of the underlying hardware and software systems.

The workload consists of an end to end web based order processing domain, an RMI and Web Services driven manufacturing domain and a supply chain model utilizing document based Web Services. The application is a collection of Java classes, Java Servlets, Java Server Pages, Enterprise Java Beans, Java Persistence Entities (pojo's) and Message Driven Beans.

The SPECjEnterprise2010 benchmark heavily exercises all parts of the underlying infrastructure that make up the application environment, including hardware, JVM software, database software, JDBC drivers, and the system network.

The primary metric of the SPECjEnterprise2010 benchmark is jEnterprise Operations Per Second ("SPECjEnterprise2010 EjOPS"). This metric is calculated by adding the metrics of the Dealership Management Application in the Dealer Domain and the Manufacturing Application in the Manufacturing Domain. There is no price/performance metric in this benchmark.

Key Points and Best Practices

  • Four Oracle WebLogic server instances were started using numactl binding 2 instances per chip.
  • Two Oracle database listener processes were started and each was bound to a separate chip.
  • Additional tuning information is in the report at http://spec.org.

See Also

Disclosure Statement

SPEC and the benchmark name SPECjEnterprise are registered trademarks of the Standard Performance Evaluation Corporation. Sun Server X4-2, 11,259.88 SPECjEnterprise2010 EjOPS; Sun Server X3-2, 8,310.19 SPECjEnterprise2010 EjOPS; IBM System X3650 M4, 9,696.43 SPECjEnterprise2010 EjOPS. Results from www.spec.org as of 9/22/2013.

Wednesday Jun 12, 2013

SPARC T5-4 Produces World Record Single Server TPC-H @3000GB Benchmark Result

Oracle's SPARC T5-4 server delivered world record single server performance of 409,721 QphH@3000GB with price/performance of $3.94/QphH@3000GB on the TPC-H @3000GB benchmark. This result shows that the 4-chip SPARC T5-4 server is significantly faster than the 8-chip server results from IBM (POWER7 based) and HP (Intel x86 based).

This result demonstrates a complete data warehouse solution that shows the performance both of individual and concurrent query processing streams, faster loading, and refresh of the data during business operations. The SPARC T5-4 server delivers superior performance and cost efficiency when compared to the IBM POWER7 result.

  • The SPARC T5-4 server with four SPARC T5 processors is 2.1 times faster than the IBM Power 780 server with eight POWER7 processors and 2.5 times faster than the HP ProLiant DL980 G7 server with eight x86 processors on the TPC-H @3000GB benchmark. The SPARC T5-4 server also delivered better performance per core than these eight processor systems from IBM and HP.

  • The SPARC T5-4 server with four SPARC T5 processors is 2.1 times faster than the IBM Power 780 server with eight POWER7 processors on the TPC-H @3000GB benchmark.

  • The SPARC T5-4 server costs 38% less per $/QphH@3000GB compared to the IBM Power 780 server with the TPC-H @3000GB benchmark.

  • The SPARC T5-4 server took 2 hours, 6 minutes, 4 seconds for data loading while the IBM Power 780 server took 2.8 times longer.

  • The SPARC T5-4 server executed the first refresh function (RF1) in 19.4 seconds, the IBM Power 780 server took 7.6 times longer.

  • The SPARC T5-4 server with four SPARC T5 processors is 2.5 times faster than the HP ProLiant DL980 G7 server with the same number of cores on the TPC-H @3000GB benchmark.

  • The SPARC T5-4 server took 2 hours, 6 minutes, 4 seconds for data loading while the HP ProLiant DL980 G7 server took 4.1 times longer.

  • The SPARC T5-4 server executed the first refresh function (RF1) in 19.4 seconds, the HP ProLiant DL980 G7 server took 8.9 times longer.

  • The SPARC T5-4 server delivered 6% better performance than the SPARC Enterprise M9000-64 server and 2.1 times better than the SPARC Enterprise M9000-32 server on the TPC-H @3000GB benchmark.

Performance Landscape

The table lists the leading TPC-H @3000GB results for non-clustered systems.

TPC-H @3000GB, Non-Clustered Systems
System
Processor
P/C/T – Memory
Composite
(QphH)
$/perf
($/QphH)
Power
(QppH)
Throughput
(QthH)
Database Available
SPARC T5-4
3.6 GHz SPARC T5
4/64/512 – 2048 GB
409,721.8 $3.94 345,762.7 485,512.1 Oracle 11g R2 09/24/13
SPARC Enterprise M9000
3.0 GHz SPARC64 VII+
64/256/256 – 1024 GB
386,478.3 $18.19 316,835.8 471,428.6 Oracle 11g R2 09/22/11
SPARC T4-4
3.0 GHz SPARC T4
4/32/256 – 1024 GB
205,792.0 $4.10 190,325.1 222,515.9 Oracle 11g R2 05/31/12
SPARC Enterprise M9000
2.88 GHz SPARC64 VII
32/128/256 – 512 GB
198,907.5 $15.27 182,350.7 216,967.7 Oracle 11g R2 12/09/10
IBM Power 780
4.1 GHz POWER7
8/32/128 – 1024 GB
192,001.1 $6.37 210,368.4 175,237.4 Sybase 15.4 11/30/11
HP ProLiant DL980 G7
2.27 GHz Intel Xeon X7560
8/64/128 – 512 GB
162,601.7 $2.68 185,297.7 142,685.6 SQL Server 2008 10/13/10

P/C/T = Processors, Cores, Threads
QphH = the Composite Metric (bigger is better)
$/QphH = the Price/Performance metric in USD (smaller is better)
QppH = the Power Numerical Quantity
QthH = the Throughput Numerical Quantity

The following table lists data load times and refresh function times during the power run.

TPC-H @3000GB, Non-Clustered Systems
Database Load & Database Refresh
System
Processor
Data Loading
(h:m:s)
T5
Advan
RF1
(sec)
T5
Advan
RF2
(sec)
T5
Advan
SPARC T5-4
3.6 GHz SPARC T5
02:06:04 1.0x 19.4 1.0x 22.4 1.0x
IBM Power 780
4.1 GHz POWER7
05:51:50 2.8x 147.3 7.6x 133.2 5.9x
HP ProLiant DL980 G7
2.27 GHz Intel Xeon X7560
08:35:17 4.1x 173.0 8.9x 126.3 5.6x

Data Loading = database load time
RF1 = power test first refresh transaction
RF2 = power test second refresh transaction
T5 Advan = the ratio of time to T5 time

Complete benchmark results found at the TPC benchmark website http://www.tpc.org.

Configuration Summary and Results

Hardware Configuration:

SPARC T5-4 server
4 x SPARC T5 processors (3.6 GHz total of 64 cores, 512 threads)
2 TB memory
2 x internal SAS (2 x 300 GB) disk drives

External Storage:

12 x Sun Storage 2540-M2 array with Sun Storage 2501-M2 expansion trays, each with
24 x 15K RPM 300 GB drives, 2 controllers, 2 GB cache
2 x Brocade 6510 Fibre Channel Switches (48 x 16 Gbs port each)

Software Configuration:

Oracle Solaris 11.1
Oracle Database 11g Release 2 Enterprise Edition

Audited Results:

Database Size: 3000 GB (Scale Factor 3000)
TPC-H Composite: 409,721.8 QphH@3000GB
Price/performance: $3.94/QphH@3000GB
Available: 09/24/2013
Total 3 year Cost: $1,610,564
TPC-H Power: 345,762.7
TPC-H Throughput: 485,512.1
Database Load Time: 2:06:04

Benchmark Description

The TPC-H benchmark is a performance benchmark established by the Transaction Processing Council (TPC) to demonstrate Data Warehousing/Decision Support Systems (DSS). TPC-H measurements are produced for customers to evaluate the performance of various DSS systems. These queries and updates are executed against a standard database under controlled conditions. Performance projections and comparisons between different TPC-H Database sizes (100GB, 300GB, 1000GB, 3000GB, 10000GB, 30000GB and 100000GB) are not allowed by the TPC.

TPC-H is a data warehousing-oriented, non-industry-specific benchmark that consists of a large number of complex queries typical of decision support applications. It also includes some insert and delete activity that is intended to simulate loading and purging data from a warehouse. TPC-H measures the combined performance of a particular database manager on a specific computer system.

The main performance metric reported by TPC-H is called the TPC-H Composite Query-per-Hour Performance Metric (QphH@SF, where SF is the number of GB of raw data, referred to as the scale factor). QphH@SF is intended to summarize the ability of the system to process queries in both single and multiple user modes. The benchmark requires reporting of price/performance, which is the ratio of the total HW/SW cost plus 3 years maintenance to the QphH. A secondary metric is the storage efficiency, which is the ratio of total configured disk space in GB to the scale factor.

Key Points and Best Practices

  • Twelve of Oracle's Sun Storage 2540-M2 arrays with Sun Storage 2501-M2 expansion trays were used for the benchmark. Each contains 24 15K RPM drives and is connected to a single dual port 16Gb FC HBA using 2 ports through a Brocade 6510 Fibre Channel switch.

  • The SPARC T5-4 server achieved a peak IO rate of 33 GB/sec from the Oracle database configured with this storage.

  • Oracle Solaris 11.1 required very little system tuning.

  • Some vendors try to make the point that storage ratios are of customer concern. However, storage ratio size has more to do with disk layout and the increasing capacities of disks – so this is not an important metric when comparing systems.

  • The SPARC T5-4 server and Oracle Solaris efficiently managed the system load of two thousand Oracle Database parallel processes.

  • Six Sun Storage 2540-M2/2501-M2 arrays were mirrored to another six Sun Storage 2540-M2/25001-M2 arrays on which all of the Oracle database files were placed. IO performance was high and balanced across all the arrays.

  • The TPC-H Refresh Function (RF) simulates periodical refresh portion of Data Warehouse by adding new sales and deleting old sales data. Parallel DML (parallel insert and delete in this case) and database log performance are a key for this function and the SPARC T5-4 server outperformed both the IBM POWER7 server and HP ProLiant DL980 G7 server. (See the RF columns above.)

See Also

Disclosure Statement

TPC-H, QphH, $/QphH are trademarks of Transaction Processing Performance Council (TPC). For more information, see www.tpc.org, results as of 6/7/13. Prices are in USD. SPARC T5-4 www.tpc.org/3288; SPARC T4-4 www.tpc.org/3278; SPARC Enterprise M9000 www.tpc.org/3262; SPARC Enterprise M9000 www.tpc.org/3258; IBM Power 780 www.tpc.org/3277; HP ProLiant DL980 www.tpc.org/3285. 

Wednesday May 01, 2013

SPARC T5-8 Delivers Best Single System SPECjEnterprise2010 Benchmark, Beats IBM

Oracle produced a world record single-server SPECjEnterprise2010 benchmark result of 27,843.57 SPECjEnterprise2010 EjOPS using one of Oracle's SPARC T5-8 servers for both the application and the database tier. This result directly compares the 8-chip SPARC T5-8 server (8 SPARC T5 processors) to the 8-chip IBM Power 780 server (8 POWER7+ processor).

  • The 8-chip SPARC T5 processor based server is 2.6x faster than the 8-chip IBM POWER7+ processor based server.

  • Both Oracle and IBM used virtualization to provide 4-chips for application and 4-chips for database.

  • The server cost/performance for the SPARC T5 processor based server was 6.9x better than the server cost/performance of the IBM POWER7+ processor based server. The cost/performance of the SPARC T5-8 server is $10.72 compared to the IBM Power 780 at $73.83.

  • The total configuration cost/performance (hardware+software) for the SPARC T5 processor based server was 3.6x better than the IBM POWER7+ processor based server. The cost/performance of the SPARC T5-8 server is $56.21 compared to the IBM Power 780 at $199.42. The IBM system had 1.6x better performance per core, but this did not reduce the total software and hardware cost to the customer. As shown by this comparison, performance-per-core is a poor predictor of characteristics relevant to customers.

  • The total IBM hardware plus software cost was $2,174,152 versus the total Oracle hardware plus software cost of $1,565,092. At this price IBM could only provide 768 GB of memory while Oracle was able to deliver 2 TB in the SPARC T5-8 server.

  • The SPARC T5-8 server requires only 8 rack units, the same as the space of the IBM Power 780. In this configuration IBM has a hardware core density of 4 cores per rack unit which contrasts with the 16 cores per rack unit for the SPARC T5-8 server. This again demonstrates why performance-per-core is a poor predictor of characteristics relevant to customers.

  • The virtualized SPARC T5 processor based server ran the application tier servers on 4 chips using Oracle Solaris Zones and the database tier in a 4-chip Oracle Solaris Zone. The virtualized IBM POWER7+ processor based server ran the application in a 4-chip LPAR and the database in a 4-chip LPAR.

  • The SPARC T5-8 server ran the Oracle Solaris 11.1 operating system and used Oracle Solaris Zones to consolidate eight Oracle WebLogic application server instances and one database server instance to achieve this result. The IBM system used LPARS and AIX V7.1.

  • This result demonstrated less than 1 second average response times for all SPECjEnterprise2010 transactions and represents JEE 5.0 transactions generated by 227,500 users.

  • The application server used Oracle Fusion Middleware components including the Oracle WebLogic 12.1 application server and Java HotSpot(TM) 64-Bit Server VM on Solaris, version 1.7.0_15. The database server was configured with Oracle Database 11g Release 2.

  • IBM has a non-virtualized result (one server for application and one server for database). The IBM PowerLinux 7R2 achieved 13,161.07 SPECjEnterprise2010 EjOPS which means it was 2.1x slower than the SPARC T5-8 server. The total configuration cost/performance (hardware+software) for the SPARC T5 processor based server was 11% better than the IBM POWER7+ processor based server. The cost/performance of the SPARC T5-8 server is $56.21 compared to the IBM PowerLinux 7R2 at $62.26. As shown by this comparison, performance-per-core is a poor predictor of characteristics relevant to customers.

Performance Landscape

Complete benchmark results are at the SPEC website, SPECjEnterprise2010 Results.

SPECjEnterprise2010 Performance Chart
Only Two Virtualized Results (App+DB on 1 Server) as of 5/1/2013
Submitter EjOPS* Java EE Server & DB Server
Oracle 27,843.57 1 x SPARC T5-8
8 chips, 128 cores, 3.6 GHz SPARC T5
Oracle WebLogic 12c (12.1.1)
Oracle Database 11g (11.2.0.3)
IBM 10,902.30 1 x IBM Power 780
8 chips, 32 cores, 4.42 GHz POWER7+
WebSphere Application Server V8.5
IBM DB2 Universal Database 10.1

* SPECjEnterprise2010 EjOPS (bigger is better)

Configuration Summary

Oracle Summary

Application and Database Server:

1 x SPARC T5-8 server, with
8 x 3.6 GHz SPARC T5 processors
2 TB memory
5 x 10 GbE dual-port NIC
6 x 8 Gb dual-port HBA
Oracle Solaris 11.1 SRU 4.5
Oracle WebLogic Server 12c (12.1.1)
Java HotSpot(TM) 64-Bit Server VM on Solaris, version 1.7.0_15
Oracle Database 11g (11.2.0.3)

Storage Servers:

6 x Sun Server X3-2L (12-Drive), with
2 x 2.4 GHz Intel Xeon
16 GB memory
1 x 8 Gb FC HBA
4 x Sun Flash Accelerator F40 PCI-E Card
Oracle Solaris 11.1

2 x Sun Storage 2540-M2 Array
12 x 600 GB 15K RPM SAS HDD

Switch Hardware:

1 x Sun Network 10 GbE 72-port Top of Rack (ToR) Switch

IBM Summary

Application and Database Server:

1 x IBM Power 780 server, with
8 x 4.42 GHz POWER7+ processors
786 GB memory
6 x 10 GbE dual-port NIC
3 x 8 Gb four-port HBA
IBM AIX V7.1 TL2
IBM WebSphere Application Server V8.5
IBM J9 VM (build 2.6, JRE 1.7.0 IBM J9 AIX ppc-32)
IBM DB2 10.1
IBM InfoSphere Optim pureQuery Runtime v3.1.1

Storage:

2 x DS5324 Disk System with
48 x 146GB 15K E-DDM Disks

1 x v7000 Disk Controller with
16 x 400GB SSD Disks

Benchmark Description

SPECjEnterprise2010 is the third generation of the SPEC organization's J2EE end-to-end industry standard benchmark application. The new SPECjEnterprise2010 benchmark has been re-designed and developed to cover the Java EE 5 specification's significantly expanded and simplified programming model, highlighting the major features used by developers in the industry today. This provides a real world workload driving the Application Server's implementation of the Java EE specification to its maximum potential and allowing maximum stressing of the underlying hardware and software systems,
  • The web zone, servlets, and web services
  • The EJB zone
  • JPA 1.0 Persistence Model
  • JMS and Message Driven Beans
  • Transaction management
  • Database connectivity
Moreover, SPECjEnterprise2010 also heavily exercises all parts of the underlying infrastructure that make up the application environment, including hardware, JVM software, database software, JDBC drivers, and the system network.

The primary metric of the SPECjEnterprise2010 benchmark is jEnterprise Operations Per Second (SPECjEnterprise2010 EjOPS). The primary metric for the SPECjEnterprise2010 benchmark is calculated by adding the metrics of the Dealership Management Application in the Dealer Domain and the Manufacturing Application in the Manufacturing Domain. There is NO price/performance metric in this benchmark.

Key Points and Best Practices

  • Eight Oracle WebLogic server instances on the SPARC T5-8 server were hosted in 8 separate Oracle Solaris Zones to demonstrate consolidation of multiple application servers. The 8 zones were bound to 4 resource pools using 64 cores (4 cpu chips).
  • The database ran in a separate Oracle Solaris Zone bound to a resource pool consisting 64 cores (4 cpu chips). The database shadow processes were run in the FX scheduling class and bound to one of four cpu chips using the plgrp command.
  • The Oracle WebLogic application servers were executed in the FX scheduling class to improve performance by reducing the frequency of context switches.
  • The Oracle log writer process was run in the FX scheduling class at processor priority 60 to use the Critical Thread feature.

See Also

Disclosure Statement

SPEC and the benchmark name SPECjEnterprise are registered trademarks of the Standard Performance Evaluation Corporation. Results from www.spec.org as of 5/1/2013. SPARC T5-8, 27,843.57 SPECjEnterprise2010 EjOPS; IBM Power 780, 10,902.30 SPECjEnterprise2010 EjOPS; IBM PowerLinux 7R2, 13,161.07 SPECjEnterprise2010 EjOPS. Oracle server only hardware list price is $298,494 and total hardware plus software list price is $1,565,092 from http://www.oracle.com as of  5/22/2013. IBM server only hardware list price is $804,931 and total hardware plus software cost of $2,174,152 based on public pricing from http://www.ibm.com as of 5/22/2013. IBM PowerLinux 7R2 server total hardware plus software cost of $819,451 based on public pricing from http://www.ibm.com as of 5/22/2013.

About

BestPerf is the source of Oracle performance expertise. In this blog, Oracle's Strategic Applications Engineering group explores Oracle's performance results and shares best practices learned from working on Enterprise-wide Applications.

Index Pages
Search

Archives
« February 2016
SunMonTueWedThuFriSat
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
     
       
Today