Tuesday Jul 21, 2009

Sun T5440 Oracle BI EE World Record Performance

Oracle BI EE Sun SPARC Enterprise T5440 World Record Performance

The Sun SPARC Enterprise T5440 server running the new 1.6 GHz UltraSPARC T2 Plus processor delivered world record performance on Oracle Business Intelligence Enterprise Edition (BI EE) tests using Sun's ZFS.
  • The Sun SPARC Enterprise T5440 server with four 1.6 GHz UltraSPARC T2 Plus processors delivered the best single system performance of 28K concurrent users on the Oracle BI EE benchmark. This result used Solaris 10 with Solaris Containers and the Oracle 11g Database software.

  • The benchmark demonstrates the scalability of Oracle Business Intelligence Cluster with 4 nodes running in Solaris Containers within single Sun SPARC Enterprise T5440 server.

  • The Sun SPARC Enterprise Server T5440 server with internal SSD and the ZFS file system showed significant I/O performance improvement over traditional disk for Business Intelligence Web Catalog activity.

Performance Landscape

System Processors Users
Chips Cores Threads GHz Type
1 x Sun SPARC Enterprise T5440 4 32 256 1.6 UltraSPARC T2 Plus 28,000
5 x Sun Fire T2000 1 8 32 1.2 UltraSPARC T1 10,000

Results and Configuration Summary

Hardware Configuration:

    Sun SPARC Enterprise T5440
      4 x 1.6 GHz UltraSPARC T2 Plus processors
      256 GB
      STK2540 (6 x 146GB)

Software Configuration:

    Solaris 10 5/09
    Oracle BIEE 10.1.3.4 64-bit
    Oracle 11g R1 Database

Benchmark Description

The objective of this benchmark is to highlight how Oracle BI EE can support pervasive deployments in large enterprises, using minimal hardware, by simulating an organization that needs to support more than 25,000 active concurrent users, each operating in mixed mode: ad-hoc reporting, application development, and report viewing.

The user population was divided into a mix of administrative users and business users. A maximum of 28,000 concurrent users were actively interacting and working in the system during the steady-state period. The tests executed 580 transactions per second, with think times of 60 seconds per user, between requests. In the test scenario 95% of the workload consisted of business users viewing reports and navigating within dashboards. The remaining 5% of the concurrent users, categorized as administrative users, were doing application development.

The benchmark scenario used a typical business user sequence of dashboard navigation, report viewing, and drill down. For example, a Service Manager logs into the system and navigates to his own set of dashboards viz. .Service Manager.. The user then selects the .Service Effectiveness. dashboard, which shows him four distinct reports, .Service Request Trend., .First Time Fix Rate., .Activity Problem Areas., and .Cost Per completed Service Call . 2002 till 2005. . The user then proceeds to view the .Customer Satisfaction. dashboard, which also contains a set of 4 related reports. He then proceeds to drill-down on some of the reports to see the detail data. Then the user proceeds to more dashboards, for example .Customer Satisfaction. and .Service Request Overview.. After navigating through these dashboards, he logs out of the application

This benchmark did not use a synthetic database schema. The benchmark tests were run on a full production version of the Oracle Business Intelligence Applications with a fully populated underlying database schema. The business processes in the test scenario closely represents a true customer scenario.

Key Points and Best Practices

Since the server has 32 cores, we created 4 x Solaris Containers with 8 cores dedicated to each of the containers. And a total of four instances of BI server + Presentation server (collectively referred as an 'instance' here onwards) were installed at one instance per container. All the four BI instances were clustered using the BI Cluster software components.

The ZFS file system was used to overcome the 'Too many links' error when there are ~28,000 concurrent users. Earlier the file system has reached UFS limitation of 32767 sub-directories (LINK_MAX) with ~28K users online -- and there are thousands of errors due to the inability to create new directories beyond 32767 directories within a directory. Web Catalog stores the user profile on the disk by creating at least one dedicated directory for each user. If there are more than 25,000 concurrent users, clearly ZFS is the way to go.

See Also:

Oracle Business Intelligence Website,  BUSINESS INTELLIGENCE has other results

Disclosure Statement

Oracle Business Intelligence Enterprise Edition benchmark, see http://www.oracle.com/solutions/business_intelligence/resource-library-whitepapers.html for more. Results as of 7/20/09.

Sun T5440 World Record SAP-SD 4-Processor Two-tier SAP ERP 6.0 EP 4 (Unicode)

Sun SPARC Enterprise T5440 Server World Record Four Processor performance result on Two-tier SAP ERP 6.0 Enhancement Pack 4 (Unicode) Standard Sales and Distribution (SD) Benchmark

  • World Record performance result with four processors on the two-tier SAP ERP 6.0 enhancement pack 4 (unicode) standard sales and distribution (SD) benchmark as of July 21, 2009.
  • The Sun SPARC Enterprise T5440 Server with four 1.6GHz UltraSPARC-T2 Plus processors (32 cores, 256 threads)achieved 4,720 SAP SD Benchmark users running SAP ERP application release 6.0 enhancement pack 4 benchmark with unicode software, using Oracle10g database and Solaris 10 OS.
  • Sun SPARC Enterprise T5440 Server with four 1.6GHz UltraSPARC T2 Plus processors beats IBM System 550 by 26% using Oracle10g and Solaris 10 even though they both use the same number of processors.
  • Sun SPARC Enterprise T5440 Server with four 1.6GHz UltraSPARC T2 Plus processors beats HP ProLiant DL585 G6 using Oracle10g and Solaris 10 with the same number of processors.
  • This benchmark result highlights the optimal performance of SAP ERP on Sun SPARC Enterprise servers running the Solaris OS and the seamless multilingual support available for systems running SAP applications.
  • In January 2009, a new version, the Two-tier SAP ERP 6.0 Enhancement Pack 4 (Unicode) Standard Sales and Distribution (SD) Benchmark, was released. This new release has higher cpu requirements and so yields from 25-50% fewer users compared to the previous Two-tier SAP ERP 6.0 (non-unicode) Standard Sales and Distribution (SD) Benchmark. 10-30% of this is due to the extra overhead from the processing of the larger character strings due to Unicode encoding. Refer to SAP Note for more details (https://service.sap.com/sap/support/notes/1139642 Note: User and password for SAP Service Marketplace required).
  • Unicode is a computing standard that allows for the representation and manipulation of text expressed in most of the world's writing systems. Before the Unicode requirement, this benchmark used ASCII characters meaning each was just 1 byte. The new version of the benchmark requires Unicode characters and the Application layer (where ~90% of the cycles in this benchmark are spent) uses a new encoding, UTF-16, which uses 2 bytes to encode most characters (including all ASCII characters) and 4 bytes for some others. This requires computers to do more computation and use more bandwidth and storage for most character strings. Refer to SAP Note for more details (https://service.sap.com/sap/support/notes/1139642 Note: User and password for SAP Service Marketplace required).

Performance Landscape

SAP-SD 2-Tier Performance Table (in decreasing performance order).

SAP ERP 6.0 Enhancement Pack 4 (Unicode) Results
(New version of the benchmark as of January 2009)

System OS
Database
Users SAP
ERP/ECC
Release
SAPS SAPS/
Proc
Date
Sun SPARC Enterprise T5440 Server
4xUltraSPARC T2 Plus@1.6GHz
256 GB
Solaris 10
Oracle10g
4,720 2009
6.0 EP4
(Unicode)
25,830 6,458 21-Jul-09
HP ProLiant DL585 G6
4xAMD Opteron 8439 SE @2.8Hz
64 GB
Windows Server 2008
Enterprise Edition
SQL Server 2008
4,665 2009
6.0 EP4
(Unicode)
25,530 6,383 10-Jul-09
HP ProLiant BL685c G6
4xAMD Opteron Processor 8435 @2.6GHz
64 GB
Windows Server 2008
Enterprise Edition
SQL Server 2008
4,422 2009
6.0 EP4
(Unicode)
24,230 6,058 29-May-09
IBM System 550
4xPower6@5GHz
64 GB
AIX 6.1
DB2 9.5
3,752 2009
6.0 EP4
(Unicode)
20,520 5,130 16-Jun-09
HP ProLiant DL585 G5
4xAMD Opteron Processor 8393 SE@3.1GHz
64 GB
Windows Server 2008
Enterprise Edition
SQL Server 2008
3,430 2009
6.0 EP4
(Unicode)
18,730 4,683 24-Apr-09
HP ProLiant BL685 G6
4xAMD Opteron Processor 8389 @2.9GHz
64 GB
Windows Server 2008
Enterprise Edition
SQL Server 2008
3,118 2009
6.0 EP4
(Unicode)
17,050 4,263 24-Apr-09
NEC Express5800
4xIntel Xeon Processor X7460@2.66GHz
64 GB
Windows Server 2008 Enterprise Edition
SQL Server 2008
2,957 2009
6.0 EP4
(Unicode)
16,170 4,043 28-May-09
Dell PowerEdge M905
4xAMD Opteron Processor 8384@2.7GHz
96 GB
Windows Server 2003 Enterprise Edition
SQL Server 2005
2,129 2009
6.0 EP4
(Unicode)
11,770 2,943 18-May-09

Complete benchmark results may be found at the SAP benchmark website http://www.sap.com/benchmark.

Results and Configuration Summary

Hardware Configuration:

    One, Sun SPARC Enterprise T5440 Server
      4 x 1.6 GHz UltraSPARC T2 Plus processors (4 processors / 32 cores / 256 threads)
      256 GB memory
      3 x STK2540 each with 12 x 73GB/15KRPM disks

Software Configuration:

    Solaris 10
    SAP ECC Release: 6.0 Enhancement Pack 4 (Unicode)
    Oracle10g
SAE (Strategic Applications Engineering) and ISV-E (ISV Engineering) have submitted the following result for the SAP-SD 2-Tier benchmark. It was approved and published by SAP.

Certified Results

    Performance:
    4720 benchmark users
    SAP Certification:
    2009026

Benchmark Description

The SAP Standard Application SD (Sales and Distribution) Benchmark is a two-tier ERP business test that is indicative of full business workloads of complete order processing and invoice processing, and demonstrates the ability to run both the application and database software on a single system. The SAP Standard Application SD Benchmark represents the critical tasks performed in real-world ERP business environments.

SAP is one of the premier world-wide ERP application providers, and maintains a suite of benchmark tests to demonstrate the performance of competitive systems on the various SAP products.

See Also

Sun SPARC Enterprise T5440 Server Benchmark Details

Disclosure Statement

Two-tier SAP Sales and Distribution (SD) standard SAP ERP 6.0 2005/EP4 (Unicode) application benchmarks as of 07/21/09: Sun SPARC Enterprise T5440 Server (4 processors, 32 cores, 256 threads) 4,720 SAP SD Users, 4x 1.6 GHz UltraSPARC T2 Plus, 256 GB memory, Oracle10g, Solaris10, Cert# 2009026. HP ProLiant DL585 G6 (4 processors, 24 cores, 24 threads) 4,665 SAP SD Users, 4x 2.8 GHz AMD Opteron Processor 8439 SE, 64 GB memory, SQL Server 2008, Windows Server 2008 Enterprise Edition, Cert# 2009025. HP ProLiant BL685c G6 (4 processors, 24 cores, 24 threads) 4,422 SAP SD Users, 4x 2.6 GHz AMD Opteron Processor 8435, 64 GB memory, SQL Server 2008, Windows Server 2008 Enterprise Edition, Cert# 2009021. IBM System 550 (4 processors, 8 cores, 16 threads) 3,752 SAP SD Users, 4x 5 GHz Power6, 64 GB memory, DB2 9.5, AIX 6.1, Cert# 2009023. HP ProLiant DL585 G5 (4 processors, 16 cores, 16 threads) 3,430 SAP SD Users, 4x 3.1 GHz AMD Opteron Processor 8393 SE, 64 GB memory, SQL Server 2008, Windows Server 2008 Enterprise Edition, Cert# 2009008. HP ProLiant BL685 G6 (4 processors, 16 cores, 16 threads) 3,118 SAP SD Users, 4x 2.9 GHz AMD Opteron Processor 8389, 64 GB memory, SQL Server 2008, Windows Server 2008 Enterprise Edition, Cert# 2009007. NEC Express5800 (4 processors, 24 cores, 24 threads) 2,957 SAP SD Users, 4x 2.66 GHz Intel Xeon Processor X7460, 64 GB memory, SQL Server 2008, Windows Server 2008 Enterprise Edition, Cert# 2009018. Dell PowerEdge M905 (4 processors, 16 cores, 16 threads) 2,129 SAP SD Users, 4x 2.7 GHz AMD Opteron Processor 8384, 96 GB memory, SQL Server 2005, Windows Server 2003 Enterprise Edition, Cert# 2009017. Sun Fire X4600M2 (8 processors, 32 cores, 32 threads) 7,825 SAP SD Users, 8x 2.7 GHz AMD Opteron 8384, 128 GB memory, MaxDB 7.6, Solaris 10, Cert# 2008070. IBM System x3650 M2 (2 Processors, 8 Cores, 16 Threads) 5,100 SAP SD users,2x 2.93 Ghz Intel Xeon X5570, DB2 9.5, Windows Server 2003 Enterprise Edition, Cert# 2008079. HP ProLiant DL380 G6 (2 processors, 8 cores, 16 threads) 4,995 SAP SD Users, 2x 2.93 GHz Intel Xeon x5570, 48 GB memory, SQL Server 2005, Windows Server 2003 Enterprise Edition, Cert# 2008071. SAP, R/3, reg TM of SAP AG in Germany and other countries. More info www.sap.com/benchmark

1.6 GHz SPEC CPU2006 - Rate Benchmarks

UltraSPARC T2 and T2 Plus Systems

Improved Performance Over 1.4 GHz

Reported 07/21/09

Significance of Results

Results are presented for the SPEC CPU2006 rate benchmarks run on the new 1.6 GHz Sun UltraSPARC T2 and Sun UltraSPARC T2 Plus processors based systems. The new processors were tested in the Sun CMT family of systems, including the Sun SPARC Enterprise T5120, T5220, T5240, T5440 servers and the Sun Blade T6320 server module.

SPECint_rate2006

  • The Sun SPARC Enterprise T5440 server, equipped with four 1.6 GHz UltraSPARC T2 Plus processor chips, delivered 57% and 37% better results than the best 4-chip IBM POWER6+ based systems on the SPEC CPU2006 integer throughput metrics.

  • The Sun SPARC Enterprise T5240 server equipped with two 1.6 GHz UltraSPARC T2 Plus processor chips, produced 68% and 48% better results than the best 2-chip IBM POWER6+ based systems on the SPEC CPU2006 integer throughput metrics.

  • The single-chip 1.6 GHz UltraSPARC T2 processor-based Sun CMT servers produced 59% to 68% better results than the best single-chip IBM POWER6 based systems on the SPEC CPU2006 integer throughput metrics.

  • On the four-chip Sun SPARC Enterprise T5440 server, when compared versus the 1.4 GHz version of this server, the new 1.6 GHz UltraSPARC T2 Plus processor delivered performance improvements of 25% and 20% as measured by the SPEC CPU2006 integer throughput metrics.

  • The new 1.6 GHz UltraSPARC T2 Plus processor, when put into the 2-chip Sun SPARC Enterprise T5240 server, delivered improvements of 20% and 17% when compared to the 1.4 GHz UltraSPARC T2 Plus processor based server, as measured by the SPEC CPU2006 integer throughput metrics.

  • On the single-chip Sun Blade T6320 server module, Sun SPARC Enterprise T5120 and T5220 servers, the new 1.6 GHz UltraSPARC T2 processor delivered performance improvements of 13% to 17% over the 1.4 GHz version of these servers, as measured by the SPEC CPU2006 integer throughput metrics.

  • The Sun SPARC Enterprise T5440 server, equipped with four 1.6 GHz UltraSPARC T2 Plus processor chips, delivered a SPECint_rate_base2006 score 3X the best 4-chip Itanium based system.

  • The Sun SPARC Enterprise T5440 server, equipped with four 1.6 GHz UltraSPARC T2 Plus processors, delivered a SPECint_rate_base2006 score of 338, a World Record score for 4-chip systems running a single operating system instance (i.e. SMP, not clustered).

SPECfp_rate2006

  • The Sun SPARC Enterprise T5440 server, equipped with four 1.6 GHz UltraSPARC T2 Plus processor chips, delivered 35% and 22% better results than the best 4-chip IBM POWER6+ based systems on the SPEC CPU2006 floating-point throughput metrics.

  • The Sun SPARC Enterprise T5240 server, equipped with two 1.6 GHz UltraSPARC T2 Plus processor chips, produced 40% and 27% better results than the best 2-chip IBM POWER6+ based systems on the SPEC CPU2006 floating-point throughput metrics.

  • The single 1.6 GHz UltraSPARC T2 processor based Sun CMT servers produced between 24% and 18% better results than the best single-chip IBM POWER6 based systems on the SPEC CPU2006 floating-point throughput metrics.

  • On the four chip Sun SPARC Enterprise T5440 server, the new 1.6 GHz UltraSPARC T2 Plus processor delivered performance improvements of 20% and 17% when compared to 1.4 GHz processors in the same system, as measured by the SPEC CPU2006 floating-point throughput metrics.

  • The new 1.6 GHz UltraSPARC T2 Plus processor, when put into a Sun SPARC Enterprise T5240 server, delivered an improvement of 12% when compared to the 1.4 GHz UltraSPARC T2 Plus processor based server as measured by the SPEC CPU2006 floating-point throughput metrics.

  • On the single processor Sun Blade T6320 server module, Sun SPARC Enterprise T5120 and T5220 servers, the new 1.6 GHz UltraSPARC T2 processor delivered a performance improvement over the 1.4 GHz version of these servers of between 11% and 10% as measured by the SPEC CPU2006 floating-point throughput metrics.

  • The Sun SPARC Enterprise T5440 server, equipped with four 1.6 GHz UltraSPARC T2 Plus processor chips, delivered a peak score 3X the best 4-chip Itanium based system, and base 2.9X, on the SPEC CPU2006 floating-point throughput metrics.

Performance Landscape

SPEC CPU2006 Performance Charts - bigger is better, selected results, please see www.spec.org for complete results. All results as of 7/17/09.

In the tables below
"Base" = SPECint_rate_base2006 or SPECfp_rate_base2006
"Peak" = SPECint_rate2006 or SPECfp_rate2006

SPECint_rate2006 results - 1 chip systems

System Processors Base
Copies
Performance Results Comments
Cores/
Chips
Type MHz Base Peak
Supermicro X8DAI 4/1 Xeon W3570 3200 8 127 136 Best Nehalem result
HP ProLiant BL465c G6 6/1 Opteron 2435 2600 6 82.1 104 Best Istanbul result
Sun SPARC T5220 8/1 UltraSPARC T2 1582 63 89.1 97.0 New
Sun SPARC T5120 8/1 UltraSPARC T2 1582 63 89.1 97.0 New
Sun Blade T6320 8/1 UltraSPARC T2 1582 63 89.2 96.7 New
Sun Blade T6320 8/1 UltraSPARC T2 1417 63 76.4 85.5
Sun SPARC T5120 8/1 UltraSPARC T2 1417 63 76.2 83.9
IBM System p 570 2/1 POWER6 4700 4 53.2 60.9 Best POWER6 result

SPECint_rate2006 - 2 chip systems

System Processors Base
Copies
Performance Results Comments
Cores/
Chips
Type MHz Base Peak
Fujitsu CELSIUS R670 8/2 Xeon W5580 3200 16 249 267 Best Nehalem result
Sun Blade X6270 8/2 Xeon X5570 2933 16 223 260
A+ Server 1021M-UR+B 12/2 Opteron 2439 SE 2800 12 168 215 Best Istanbul result
Sun SPARC T5240 16/2 UltraSPARC T2 Plus 1582 127 171 183 New
Sun SPARC T5240 16/2 UltraSPARC T2 Plus 1415 127 142 157
IBM Power 520 4/2 POWER6+ 4700 8 101 124 Best POWER6+ peak
IBM Power 520 4/2 POWER6+ 4700 8 102 122 Best POWER6+ base
HP Integrity rx2660 4/2 Itanium 9140M 1666 4 58.1 62.8 Best Itanium peak
HP Integrity BL860c 4/2 Itanium 9140M 1666 4 61.0 na Best Itanium base

SPECint_rate2006 - 4 chip systems

System Processors Base
Copies
Performance Results Comments
Cores/
Chips
Type MHz Base Peak
SGI Altix ICE 8200EX 16/4 Xeon X5570 2933 32 466 499 Best Nehalem result
Note: clustered, not SMP
Tyan Thunder n4250QE 24/4 Opteron 8439 SE 2800 24 326 417 Best Istanbul result
Sun SPARC T5440 32/4 UltraSPARC T2 Plus 1596 255 338 360 New.  World record for
4-chip SMP
SPECint_rate_base2006
Sun SPARC T5440 32/4 UltraSPARC T2 Plus 1414 255 270 301
IBM Power 550 8/4 POWER6+ 5000 16 215 263 Best POWER6 result
HP Integrity BL870c 8/4 Itanium 9150N 1600 8 114 na Best Itanium result

SPECfp_rate2006 - 1 chip systems

System Processors Base
Copies
Performance Results Comments
Cores/
Chips
Type MHz Base Peak
Supermicro X8DAI 4/1 Xeon W3570 3200 8 102 106 Best Nehalem result
HP ProLiant BL465c G6 6/1 Opteron 2435 2600 6 65.2 72.2 Best Istanbul result
Sun SPARC T5220 8/1 UltraSPARC T2 1582 63 64.1 68.5 New
Sun SPARC T5120 8/1 UltraSPARC T2 1582 63 64.1 68.5 New
Sun Blade T6320 8/1 UltraSPARC T2 1582 63 64.1 68.5 New
Sun Blade T6320 8/1 UltraSPARC T2 1417 63 58.1 62.3
SPARC T5120 8/1 UltraSPARC T2 1417 63 57.9 62.3
SPARC T5220 8/1 UltraSPARC T2 1417 63 57.9 62.3
IBM System p 570 2/1 POWER6 4700 4 51.5 58.0 Best POWER6 result

SPECfp_rate2006 - 2 chip systems

System Processors Base
Copies
Performance Results Comments
Cores/
Chips
Type MHz Base Peak
ASUS TS700-E6 8/2 Xeon W5580 3200 16 201 207 Best Nehalem result
A+ Server 1021M-UR+B 12/2 Opteron 2439 SE 2800 12 133 147 Best Istanbul result
Sun SPARC T5240 16/2 UltraSPARC T2 Plus 1582 127 124 133 New
Sun SPARC T5240 16/2 UltraSPARC T2 Plus 1415 127 111 119
IBM Power 520 4/2 POWER6+ 4700 8 88.7 105 Best POWER6+ result
HP Integrity rx2660 4/4 Itanium 9140M 1666 4 54.5 55.8 Best Itanium result

SPECfp_rate2006 - 4 chip systems

System Processors Base
Copies
Performance Results Comments
Cores/
Chips
Type MHz Base Peak
SGI Altix ICE 8200EX 16/4 Xeon X5570 2933 32 361 372 Best Nehalem result
Tyan Thunder n4250QE 24/4 Opteron 8439 SE 2800 24 259 285 Best Istanbul result
Sun SPARC T5440 32/4 UltraSPARC T2 Plus 1596 255 254 270 New
Sun SPARC T5440 32/4 UltraSPARC T2 Plus 1414 255 212 230
IBM Power 550 8/4 POWER6+ 5000 16 188 222 Best POWER6+ result
HP Integrity rx7640 8/4 Itanium 2 9040 1600 8 87.4 90.8 Best Itanium result

Results and Configuration Summary

Test Configurations:


Sun Blade T6320
1.6 GHz UltraSPARC T2
64 GB (16 x 4GB)
Solaris 10 10/08
Sun Studio 12, Sun Studio 12 Update 1, gccfss V4.2.1

Sun SPARC Enterprise T5120/T5220
1.6 GHz UltraSPARC T2
64 GB (16 x 4GB)
Solaris 10 10/08
Sun Studio 12, Sun Studio 12 Update 1, gccfss V4.2.1

Sun SPARC Enterprise T5240
2 x 1.6 GHz UltraSPARC T2 Plus
128 GB (32 x 4GB)
Solaris 10 5/09
Sun Studio 12, Sun Studio 12 Update 1, gccfss V4.2.1

Sun SPARC Enterprise T5440
4 x 1.6 GHz UltraSPARC T2 Plus
256 GB (64 x 4GB)
Solaris 10 5/09
Sun Studio 12 Update 1, gccfss V4.2.1

Results Summary:



T6320 T5120 T5220 T5240 T5440
SPECint_rate_base2006 89.2 89.1 89.1 171 338
SPECint_rate2006 96.7 97.0 97.0 183 360
SPECfp_rate_base2006 64.1 64.1 64.1 124 254
SPECfp_rate2006 68.5 68.5 68.5 133 270

Benchmark Description

SPEC CPU2006 is SPEC's most popular benchmark, with over 7000 results published in the three years since it was introduced. It measures:

  • "Speed" - single copy performance of chip, memory, compiler
  • "Rate" - multiple copy (throughput)

The rate metrics are used for the throughput-oriented systems described on this page. These metrics include:

  • SPECint_rate2006: throughput for 12 integer benchmarks derived from real applications such as perl, gcc, XML processing, and pathfinding
  • SPECfp_rate2006: throughput for 17 floating point benchmarks derived from real applications, including chemistry, physics, genetics, and weather.

There are "base" variants of both the above metrics that require more conservative compilation, such as using the same flags for all benchmarks.

See here for additional information.

Key Points and Best Practices

Result on this page for the Sun SPARC Enterprise T5120 server were measured on a Sun SPARC Enterprise T5220. The Sun SPARC Enterprise T5120 and Sun SPARC Enterprise T5220 are electronically equivalent. A SPARC Enterprise 5120 can hold up to 4 disks, and a T5220 can hold up to 8. This system was tested with 4 disks; therefore, results on this page apply to both the T5120 and the T5220.

Know when you need throughput vs. speed. The Sun CMT systems described on this page provide massive throughput, as demonstrated by the fact that up to 255 jobs are run on the 4-chip system, 127 on 2-chip, and 63 on 1-chip. Some of the competitive chips do have a speed advantage - e.g. Nehalem and Istanbul - but none of the competitive results undertake to run the large number of jobs tested on Sun's CMT systems.

Use the latest compiler. The Sun Studio group is always working to improve the compiler. Sun Studio 12, and Sun Studio 12 Update 1, which are used in these submissions, provide updated code generation for a wide variety of SPARC and x86 implementations.

I/O still counts. Even in a CPU-intensive workload, some I/O remains. This point is explored in some detail at http://blogs.sun.com/jhenning/entry/losing_my_fear_of_zfs.

Disclosure Statement

SPEC, SPECint, SPECfp reg tm of Standard Performance Evaluation Corporation. Competitive results from www.spec.org as of 16 July 2009.  Sun's new results quoted on this page have been submitted to SPEC.
Sun Blade T6320 89.2 SPECint_rate_base2006, 96.7 SPECint_rate2006, 64.1 SPECfp_rate_base2006, 68.5 SPECfp_rate2006;
Sun SPARC Enterprise T5220/T5120 89.1 SPECint_rate_base2006, 97.0 SPECint_rate2006, 64.1 SPECfp_rate_base2006, 68.5 SPECfp_rate2006;
Sun SPARC Enterprise T5240 172 SPECint_rate_base2006, 183 SPECint_rate2006, 124 SPECfp_rate_base2006, 133 SPECfp_rate2006;
Sun SPARC Enterprise T5440 338 SPECint_rate_base2006, 360 SPECint_rate2006, 254 SPECfp_rate_base2006, 270 SPECfp_rate2006;
Sun Blade T6320 76.4 SPECint_rate_base2006, 85.5 SPECint_rate2006, 58.1 SPECfp_rate_base2006, 62.3 SPECfp_rate2006;
Sun SPARC Enterprise T5220/T5120 76.2 SPECint_rate_base2006, 83.9 SPECint_rate2006, 57.9 SPECfp_rate_base2006, 62.3 SPECfp_rate2006;
Sun SPARC Enterprise T5240 142 SPECint_rate_base2006, 157 SPECint_rate2006, 111 SPECfp_rate_base2006, 119 SPECfp_rate2006;
Sun SPARC Enterprise T5440 270 SPECint_rate_base2006, 301 SPECint_rate2006, 212 SPECfp_rate_base2006, 230 SPECfp_rate2006;
IBM p 570 53.2 SPECint_rate_base2006, 60.9 SPECint_rate2006, 51.5 SPECfp_rate_base2006, 58.0 SPECfp_rate2006;
IBM Power 520 102 SPECint_rate_base2006, 124 SPECint_rate2006, 88.7 SPECfp_rate_base2006, 105 SPECfp_rate2006;
IBM Power 550 215 SPECint_rate_base2006, 263 SPECint_rate2006, 188 SPECfp_rate_base2006, 222 SPECfp_rate2006;
HP Integrity BL870c 114 SPECint_rate_base2006;
HP Integrity rx7640 87.4 SPECfp_rate_base2006, 90.8 SPECfp_rate2006.

Sun Blade T6320 World Record SPECjbb2005 performance

Significance of Results

The Sun Blade T6320 server module equipped with one UltraSPARC T2 processor running at 1.6 GHz delivered a World Record single-chip result while running the SPECjbb2005 benchmark.

  • The Sun Blade T6320 server module powered by one 1.6 GHz UltraSPARC T2 processor delivered a result of 229576 SPECjbb2005 bops, 28697 SPECjbb2005 bops/JVM when running the SPECjbb2005 benchmark.
  • The Sun Blade T6320 server module (with one 1.6 GHz UltraSPARC T2 processor) demonstrated 2.6X better performance than the IBM System p 570 with one 4.7 GHz POWER6 processor.
  • The Sun Blade T6320 server module (with one 1.6 GHz UltraSPARC T2 processor) demonstrated 3% better performance than the Fujitsu TX100 result which used one 3.16 GHz Intel Xeon X3380 processor.
  • The Sun Blade T6320 server module (with one 1.6 GHz UltraSPARC T2 processor) demonstrated 7% better performance than the IBM x3200 result which used one 3.16 GHz Xeon X3380 processor.
  • The Sun Blade T6320 server module running the 1.6 GHz UltraSPARC T2 processor delivered 20% better performance than a Sun SPARC Enterprise T5120 with the 1.4 GHz UltraSPARC T2 processor.
  • The Sun Blade T6320 used the OpenSolaris 2009.06 operation system and the Java HotSpot(TM) 32-Bit Server, Version 1.6.0_14 Performance Release JVM to obtain this leading result.

Performance Landscape

SPECjbb2005 Performance Chart (ordered by performance)

bops: SPECjbb2005 Business Operations per Second (bigger is better)

System Processors Performance
Chips Cores Threads GHz Type SPECjbb2005
bops
SPECjbb2005
bops/JVM
Sun Blade T6320 1 8 64 1.6 UltraSPARC T2 229576 28697
Fujitsu TX100 1 4 4 3.16 Intel Xeon 223691 111846
IBM x3200 M2 1 4 4 3.16 Intel Xeon 214578 107289
Fujitsu RX100 1 4 4 3.16 Intel Xeon 211144 105572
IBM x3350 1 4 4 3.0 Intel Xeon 194256 97128
Sun SE T5120 1 8 64 1.4 UltraSPARC T2 192055 24007
IBM p 570 1 2 4 4.7 POWER6 88089 88089

Complete benchmark results may be found at the SPEC benchmark website http://www.spec.org.

Results and Configuration Summary

Hardware Configuration:

    Sun Blade T6320
      1 x 1.6 GHz UltraSPARC T2 processor
      64 GB

Software Configuration:

    OpenSolaris 2009.06
    Java HotSpot(TM) 32-Bit Server, Version 1.6.0_14 Performance Release

Benchmark Description

SPECjbb2005 (Java Business Benchmark) measures the performance of a Java implemented application tier (server-side Java). The benchmark is based on the order processing in a wholesale supplier application. The performance of the user tier and the database tier are not measured in this test. The metrics given are number of SPECjbb2005 bops (Business Operations per Second) and SPECjbb2005 bops/JVM (bops per JVM instance).

Key Points and Best Practices

  • Enhancements to the JVM had a major impact on performance.
  • Each JVM executed in the FX scheduling class to improve performance by reducing the frequency of context switches.
  • Each JVM bound to a separate processor containing 1 core to reduce memory access latency using the physical memory closest to the processor.

See Also

Disclosure Statement

SPEC, SPECjbb reg tm of Standard Performance Evaluation Corporation. Results as of 7/17/2009 on http://www.spec.org. SPECjbb2005, Sun Blade T6320 229576 SPECjbb2005 bops, 28697 SPECjbb2005 bops/JVM; IBM p 570 88089 SPECjbb2005 bops, 88089 SPECjbb2005 bops/JVM; Fujitsu TX100 223691 SPECjbb2005 bops, 111846 SPECjbb2005 bops/JVM; IBM x3350 194256 SPECjbb2005 bops, 97128 SPECjbb2005 bops/JVM; Sun SPARC Enterprise T5120 192055 SPECjbb2005 bops, 24007 SPECjbb2005 bops/JVM.

New SPECjAppServer2004 Performance on the Sun SPARC Enterprise T5440

One Sun SPARC Enterprise T5440 server with four UltraSPARC T2 Plus processors at 1.6GHz delivered a single-system World Record result of 7661.16 SPECjAppServer2004 JOPS@Standard using Oracle WebLogic Server, a component of Oracle Fusion Middleware, together with Oracle Database 11g.

  • This benchmark used the Oracle WebLogic 10.3.1 Application Server and Oracle Database 11g Enterprise Edition. This benchmark result proves that the Sun SPARC Enterprise T5440 server using the UltraSPARC T2 Plus processor performs as an outstanding J2EE application server as well as an Oracle 11g OLTP database server.
  • The Sun SPARC Enterprise T5440 server (four 1.6 GHz UltraSPARC T2 Plus chips) running as the application server delivered 6.4X better performance than the best published single application server result from the IBM p 570 system based on the 4.7 GHz POWER6 processor.
  • The Sun SPARC Enterprise T5440 server (four 1.6 GHz UltraSPARC T2 Plus chips) demonstrated 73% better performance than the HP DL580 G5 result of 4410.07 SPECjAppServer2004 JOPS@Standard, which used four 2.66 GHz Intel 6-core Xeon processors.
  • The Sun SPARC Enterprise T5440 server (four 1.6 GHz UltraSPARC T2 Plus chips) demonstrated 2.3X better performance than the HP DL580 G5 result of 3339.94 SPECjAppServer2004 JOPS@Standard, which used four 2.93 GHz Intel 4-core Xeon processors.
  • One Sun SPARC Enterprise T5440 server (four 1.6 GHz UltraSPARC T2 Plus chips) demonstrated 1.9X better performance than the Dell PowerEdge R610 result of 3975.13 SPECjAppServer2004 JOPS@Standard, which used two 2.93 GHz Intel 4-core Xeon processors.
  • One Sun SPARC Enterprise T5440 server (four 1.6 GHz UltraSPARC T2 Plus chips) demonstrated 5% better performance than the Dell PowerEdge R610 result of 7311.50 SPECjAppServer2004 JOPS@Standard, which used two Dell R610 systems each with two 2.93 GHz Intel 4-core Xeon processors.
  • These results were obtained using Sun Java SE 6 Update 14 Performance Release on the Sun SPARC Enterprise T5440 server and running the Solaris 10 5/09 Operating Environment.
  • The Sun SPARC Enterprise T5440 server used Solaris Containers technology to consolidate 7 Oracle Weblogic application server instances to achieve this result.
  • Oracle Fusion Middleware provides a family of complete, integrated, hot pluggable and best-of-breed products known for enabling enterprise customers to create and run agile and intelligent business applications. Oracle WebLogic Server’s on-going, record-setting Java application server performance demonstrates why so many customers rely on Oracle Fusion Middleware as their foundation for innovation.

Performance Landscape

SPECjAppServer2004 Performance Chart as of 7/20/2009. Complete benchmark results may be found at the SPEC benchmark website http://www.spec.org. SPECjAppServer2004 JOPS@Standard (bigger is better)

Vendor SPECjApp-Server2004
JOPS@Standard
J2EE Server DB Server
Sun 7661.16 1x Sun SPARC Enterprise T5440
32 cores, 4 chips, 1.6 GHz US-T2 Plus
Oracle WebLogic 10.3.1
1x Sun SPARC Enterprise T5440
32 cores, 4 chips, 1.4 GHz US-T2 Plus
Oracle 11g DB 11.1.0.7
Dell 7311.50 2x PowerEdge R610
16 cores, 4 chips, 2.93 Xeon X5570
Oracle WebLogic 10.3
1x PowerEdge R900
24 cores, 4 chips @ 2.66 Xeon X7460
Oracle 11g DB 11.1.0.7
Sun 6334.86 1x Sun SPARC Enterprise T5440
32 cores, 4 chips, 1.4 GHz US-T2 Plus
Oracle WebLogic 10.3
1x Sun SPARC Enterprise T5440
32 cores, 4 chips, 1.4 GHz US-T2 Plus
Oracle 11g DB 11.1.0.7
Dell 4794.33 2x PowerEdge 2950
16 cores, 4 chips, 3.3 Xeon X5470
Oracle WebLogic 10.3
1x PowerEdge R900
24 cores, 4 chips, 2.66 Xeon X7460
Oracle 11g DB 11.1.0.6
HP 4410.07 1x ProLiant DL580 G5
24 cores, 4 chips, 2.66 GHz Xeon X7460
Oracle WebLogic 10.3
1x ProLiant DL580 G5
24 cores, 4 chips, 2.66 GHz Xeon X7460
Oracle 11g DB 11.1.0.6
HP 3975.13 1x Dell PowerEdge R610
8 cores, 2 chips, 2.93 GHz Xeon X5570
Oracle WebLogic 10.3
1x PowerEdge R900
24 cores, 4 chips, 2.66 GHz Xeon X7460
Oracle 11g DB 11.1.0.7
IBM 1197.51 1x IBM System p 570
4 cores, 2 chips, 4.7 GHz POWER6
WebSphere Application Server V6.1
1x IBM p5 550
4 cores, 2 chips, 2.1 GHz POWER5+
IBM DB2 Universal Database 9.1

Results and Configuration Summary

Application Server:
    Sun SPARC Enterprise T5440
      4 x 1.6 GHz 8-core UltraSPARC T2 Plus
      256 GB memory
      2 x 10GbE XAUI NIC
      2 x 32GB SATA SSD
      Solaris 10 5/09
      Solaris Containers
      Oracle WebLogic 10.3.1 Application Server - Standard Edition
      Oracle Fusion Middleware
      JDK 1.6.0_14 Performance Release

Database Server:

    Sun SPARC Enterprise T5440
      4 x 1.4 GHz 8-core UltraSPARC T2 Plus
      256 GB memory
      6 x Sun StorageTek 2540 FC Array
      4 x Sun StorageTek 2501 FC Expansion Array
      Solaris 10 5/09
      Oracle Database Enterprise Edition Release 11.1.0.7

Benchmark Description

SPECjAppServer2004 (Java Application Server) is a multi-tier benchmark for measuring the performance of Java 2 Enterprise Edition (J2EE) technology-based application servers. SPECjAppServer2004 is an end-to-end application which exercises all major J2EE technologies implemented by compliant application servers as follows:
  • The web container, including servlets and JSPs
  • The EJB container
  • EJB2.0 Container Managed Persistence
  • JMS and Message Driven Beans
  • Transaction management
  • Database connectivity
Moreover, SPECjAppServer2004 also heavily exercises all parts of the underlying infrastructure that make up the application environment, including hardware, JVM software, database software, JDBC drivers, and the system network. The primary metric of the SPECjAppServer2004 benchmark is jAppServer Operations Per Second (JOPS) which is calculated by adding the metrics of the Dealership Management Application in the Dealer Domain and the Manufacturing Application in the Manufacturing Domain. There is NO price/performance metric in this benchmark.

Key Points and Best Practices

  • 7 Oracle WebLogic server instances on the Sun SPARC Enterprise T5440 server were hosted in separate Solaris Containers to demonstrate consolidation of multiple application servers.
  • Each appserver container was bound to a separate processor set each containing 4 cores. This was done to improve performance by reducing memory access latency using the physical memory closest to the processors. The default set was used for network & disk interrupt handling.
  • The Oracle WebLogic application servers were executed in the FX scheduling class to improve performance by reducing the frequency of context switches.
  • The Oracle database processes were run in 4 processor sets using the psrset utility and executed in the FX scheduling class. This was done to improve perfomance by reducing memory access latency and reducing conext switches.
  • Oracle Log Writer process run in a separate processor set containing 1 core and run in the RT scheduling class. This was done to insure that the Log Writer had the most efficient use of cpu resources.
  • Enhancements to the JVM had a major impact on performance.
  • The Sun SPARC Enterprise T5440 used 2x 10GbE NICs for network traffic from the driver systems.

See Also

Disclosure Statement

SPECjAppServer2004, Sun SPARC Enterprise T5440 (4 chips, 32 cores) 7661.16 SPECjAppServer2004 JOPS@Standard; HP DL580 G5 (4 chips, 24 cores) 4410.07 SPECjAppServer2004 JOPS@Standard; HP DL580 G5 (4 chips, 16 cores) 3339.94 SPECjAppServer2004 JOPS@Standard; Two Dell PowerEdge 2950 (4 chips, 16 cores) 4794.33 SPECjAppServer2004 JOPS@Standard; Dell PowerEdge R610 (2 chips, 8 cores) 3975.13 SPECjAppServer2004 JOPS@Standard; Two Dell PowerEdge R610 (4 chips, 16 cores) 7311.50 SPECjAppServer2004 JOPS@Standard; IBM p570 (2 chips, 4 cores) 1197.51 SPECjAppServer2004 JOPS@Standard; SPEC, SPECjAppServer reg tm of Standard Performance Evaluation Corporation. Results from http://www.spec.org as of 7/20/09

Monday Jul 20, 2009

Sun T5440 SPECjbb2005 Beats IBM POWER6 Chip-to-Chip

A Sun SPARC Enterprise T5440 server equipped with four UltraSPARC T2 Plus processors running at 1.6GHz, delivered a result of 841380 SPECjbb2005 bops, 26293 SPECjbb2005 bops/JVM when running the SPECjbb2005 benchmark.

  • One Sun SPARC Enterprise T5440 (four 1.6GHz UltraSPARC T2 Plus chips, 4RU) demonstrated 5% better performance than the IBM Power 570 (16RU) result of 798752 SPECjbb2005 bops using eight 4.7 GHz POWER6 chips. The IBM system requires twice the number of processor chips and the system requires 4 times more space than the T5440.
  • One Sun SPARC Enterprise T5440 (four 1.6GHz UltraSPARC T2 Plus chips, 4RU) has 2.3 times better power/performance than the IBM Power 570 (16RU) that used eight 4.7 GHz POWER6 chips.
  • Sun's 1.6GHz UltraSPARC T2 Plus Processor is over 2.3x performance of 4.7 GHz IBM POWER6 processor.
  • One Sun SPARC Enterprise T5440 (four 1.6GHz UltraSPARC T2 Plus chips) demonstrated 21% better performance when compared to the Sun SPARC Enterprise T5440 result of 692736 SPECjbb2005 bops using four 1.4GHz UltraSPARC T2 Plus chips.
  • The Sun SPARC Enterprise T5440 used OpenSolaris 2009.06 and the Sun JDK 1.6.0_14 Performance Release to obtain this result.

Performance Landscape

SPECjbb2005 Performance Chart (ordered by performance)

bops : SPECjbb2005 Business Operations per Second (bigger is better)

System Processors Performance
Chips Cores Threads GHz Type bops bops/JVM
HP DL585 G6 4 24 24 2.8 AMD Opteron 937207 234302
Sun SPARC Enterprise T5440 4 32 256 1.6 US-T2 Plus 841380 26293
IBM Power 570 8 16 32 4.7 POWER6 798752 99844
Sun SPARC Enterprise T5440 4 32 256 1.4 US-T2 Plus 692736 21648

Complete benchmark results may be found at the SPEC benchmark website http://www.spec.org.

Results and Configuration Summary

Hardware Configuration:

    Sun SPARC Enterprise T5440
      4 x 1.6 GHz UltraSPARC T2 Plus processors
      256 GB

Software Configuration:

    OpenSolaris 2009.06
    Java HotSpot(TM) 32-Bit Server, Version 1.6.0_14 Performance Release

Benchmark Description

SPECjbb2005 (Java Business Benchmark) measures the performance of a Java implemented application tier (server-side Java). The benchmark is based on the order processing in a wholesale supplier application. The performance of the user tier and the database tier are not measured in this test. The metrics given are number of SPECjbb2005 bops (Business Operations per Second) and SPECjbb2005 bops/JVM (bops per JVM instance).

Key Points and Best Practices

  • Enhancements to the JVM had a major impact on performance.
  • Each JVM executed in the FX scheduling class to improve performance by reducing the frequency of context switches.
  • Each JVM bound to a separate processor containing 1 core to reduce memory access latency using the physical memory closest to the processor.

See Also

Disclosure Statement:

SPECjbb2005 Sun SPARC Enterprise T5440 (4 chips, 32 cores) 841380 SPECjbb2005 bops, 26293 SPECjbb2005 bops/JVM. Results submitted to SPEC. HP DL585 G5 (4 chips, 24 cores) 937207 SPECjbb2005 bops, 234302 SPECjbb2005 bops/JVM. IBM Power 570 (8 chips, 16 cores) 798752 SPECjbb2005 bops, 99844 SPECjbb2005 bops/JVM. Sun SPARC Enterprise T5440 (4 chips, 32 cores) 692736 SPECjbb2005 bops, 21648 SPECjbb2005 bops/JVM. SPEC, SPECjbb reg tm of Standard Performance Evaluation Corporation. Results from www.spec.org as of 7/20/09

Sun watts were measured on the system during the test.

IBM p 570 8P (4 building blocks) power specifications calculated as 80% of maximum input power reported 7/8/09 in “Facts and Features Report”: ftp://ftp.software.ibm.com/common/ssi/pm/br/n/psb01628usen/PSB01628USEN.PDF

New CMT results coming soon....

Many new CMT results will be coming soon!   A few postings within the hour and more coming throughout the day tomorrow morning!

Please check back often to see the latest.

Wednesday Jun 10, 2009

Using Solaris Resource Management Utilities to Improve Application Performance

The SPECjAppServer2004 benchmark is a very complex benchmark produced by the Standard Performance Evaluation Corporation (SPEC). Servers measured with this benchmark exercise all major Java 2 Enterprise Edition (J2EE) technologies, including transaction management, database connectivity, web containers, and Enterprise JavaBeans. The benchmark heavily exercises the hardware, software, and network, as hundreds or thousands of JOPS (jAppServerOperationsPerSecond) are loaded onto Systems Under Test (SUTs).

This article introduces some of the Solaris resource management utilities that are used for this benchmark. These utilities may be useful to system managers who are responsible for complex servers. The author has applied these features to improve performance when using multiple instances of J2EE application server software with the SPECjAppServer2004 benchmark.

In SPECjAppServer2004 benchmark results submitted by Sun Microsystems, you can find references to Solaris Resource Management features such as Containers, Zones, Processor sets, and Scheduling classes. The recently published results for the  Sun Fire T5440 and the Sun Fire T5140 servers use many of these features.

Solaris Resource Management utilities are used to provide isolation of applications and better management of system resources. There are a number of publications which describe many of the features and benefits. The  Sun Solaris Container Administration Guide and  Sun Zones Blueprint are two of many sources of good information.

Solaris Containers

Looking at the first benchmark publication listed above, the Sun Fire T5440 server was configured with 8 Solaris Containers where each container or zone was setup to host a single application server instance. By hosting an application server instance in a container, the memory and network resources used by that instance are virtually isolated from the memory and network resources used by other instances running in separate containers.

While running the application software in a zone does not directly increase performance, using Containers with this benchmark workload makes it easier to manage multiple J2EE instances. When combined with the techniques below, using Solaris Containers can be an effective environment to help improve application performance.

Note that many Solaris performance utilities can be used to monitor and report process information for the configured zones, such as prstat with the -Z option.

Processor Sets

The System Administration Guide for Solaris Containers discusses use of Resource Pools to partition machine resources. A resource pool is a configuration mechanism used to implement a processor set and possibly combine with a scheduling class to configure with a zone. When configuring a resource pool, the administrator will specify the min and max cpu resources for the pool and the system will create the processor set with this information. The Resource Pool can then be configured with a specific zone using the zonecfg(1M) utility. However, in some scenarios, it is possible that the processor IDs selected for the resource pool may span multiple cpu chips, and thus may not make most efficient use of caches or access to local memory.

For the configurations in the published results, each Solaris Container was bound to a unique processor set, where each processor set was composed of 4 UltraSPARC T2 Plus cores. Since each UltraSPARC T2 Plus core consists of 8 hardware strands, each cpu chip was partitioned into two processor sets of 32 processor IDs. The processor sets were created by specifying the 32 processor ids as an argument to the psrset (1M) command as shown in the following example:

% psrset -c 32-63

The command above instructs Solaris to create a processor set using virtual processor numbers 32 thru 63 from 4 cores of an UltraSPARC T2 Plus cpu chip. With a total of four UltraSPARC T2 Plus cpu chips, the Sun Fire T5440 system was configured to use 7 processor sets of 4 cores each. The remaining 4 cores (virtual processor numbers 0-31) remained in the default processor set, as there must be at least 1 virtual processor ID in the default set.

Looking at the Sun Fire T5440 System Architecture , each  UltraSPARC T2 Plus cpu chip has 4 MB of L2 cache shared by all 8 cores in the chip. Each UltraSPARC T2 Plus cpu also has direct links to 16 DIMM slots of local memory with access to the remaining or remote memory DIMMs using an External Coherency Hub. Data references to local memory generally have slightly faster access as any data access through an External Coherency Hub will incur a small added latency as Denis indicates. This combination of CPU hardware and physically local memory is treated by Solaris as a Locality Group. Solaris attempts to allocate physical memory pages from the same locality group associated with the CPU executing the application process/thread. To help reduce latency for data accesses by an application, processor sets are a simple and effective means to co-locate data accesses within an L2 cache and a Locality Group boundary.

To use a Container with a specific processor set requires binding the processes running in the Container to the specified processor set. This can be done using the pgrep and psrset commands. Use pgrep -z ZONENAME to obtain the list of process IDs currently running in the specified zone. Then use psrset -b PSET PID to bind a process ID obtained earlier using pgrep to the specified processor set as shown in the following example:

% for PID in `pgrep -z ZONENAME`;  do psrset -b PSET_ID $PID;  done

Scheduling Class

Solaris offers a number of different process scheduling classes to execute user processes which are administered using the utilities dispadmin(1M) and priocntl(1M). The default is the Time Sharing or TS scheduling class. However many benchmark results have made use of the Fixed Priority or FX scheduling class. The dispadmin command can be used to list the classes supported on the system with associated priority and time quantim parameters. Processes normally running in the TS class can be run in the FX class using the priocntl command with either of the following methods:

% priocntl -e -c FX <COMMAND> <ARGS>

or

% priocntl -s -c FX -i pid <PID>

The first case executes a command starting in the FX class and the second case changes the scheduling class of a running process using the process ID.

The following article FX for Databases discusses this subject for the Database application space in some detail.  Similar considerations apply to J2EE application software. Running the application server instances in the FX scheduling class has shown to reduce the number of context switches and help improve overall throughput. 

Additional Sources:

Solaris™ Internals: Solaris 10 and OpenSolaris Kernel Architecture Second Edition by Richard McDougall and Jim Mauro

Solaris Best Practices

Disclosure:

SPEC, SPECjAppServer reg tm of Standard Performance Evaluation Corporation. Results from www.spec.org  as of 6/10/09.


Wednesday Jun 03, 2009

Wide Variety of Topics to be discussed on BestPerf

A sample of the various Sun and partner technologies to be discussed:
OpenSolaris, Solaris, Linux, Windows, vmware, gcc, Java, Glassfish, MySQL, Java, Sun-Studio, ZFS, dtrace, perflib, Oracle, DB2, Sybase, OpenStorage, CMT, SPARC64, X64, X86, Intel, AMD

About

BestPerf is the source of Oracle performance expertise. In this blog, Oracle's Strategic Applications Engineering group explores Oracle's performance results and shares best practices learned from working on Enterprise-wide Applications.

Index Pages
Search

Archives
« April 2014
SunMonTueWedThuFriSat
  
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
   
       
Today