WRF Benchmark: X6275 Beats Power6

Significance of Results

Oracle's Sun Blade X6275 cluster is 28% faster than the IBM POWER6 cluster on Weather Research and Forecasting (WRF) continental United Status (CONUS) benchmark datasets. The Sun Blade X6275 cluster used a Quad Data Rate (QDR) InfiniBand connection along with Intel compilers and MPI.

  • On the 12 km CONUS data set, the Sun Blade X6275 cluster was 28% faster than the IBM POWER6 cluster at 512 cores.

  • The Sun Blade X6275 cluster with 768 cores (one full Sun Blade 6048 chassis) was 47% faster than 1024 cores of the IBM POWER6 cluster (multiple racks).

  • On the 2.5 km CONUS data set, the Sun Blade X6275 cluster was 21% faster than the IBM POWER6 cluster at 512 cores.

  • The Sun Blade X6275 cluster with 768 cores (on full Sun Blade 6048 chassis) outperforms the IBM Power6 cluster with 1024 cores by 28% on the 2.5 km CONUS dataset.

Performance Landscape

The performance in GFLOPS is shown below on multiple datasets.

Weather Research and Forecasting
CONUS 12 KM Dataset
Cores Performance in GFLOPS
Sun
X6275
Intel
Whitebox
IBM
POWER6
Cray
XT5
SGI TACC
Ranger
Blue
Gene/P
8 17.5 19.8 17.0
10.2

16 38.7 37.5 33.6 21.4 20.1 10.8
32 71.6 73.3 66.5 40.4 39.8 21.2 5.9
64 132.5 131.4 117.2 75.2 77.0 37.8
128 235.8 232.8 209.1 137.4 114.0 74.5 20.4
192 323.6





256 405.2 415.1 363.1 243.2 197.9 121.0 37.4
384 556.6





512 691.9 696.7 542.2 392.2 375.2 193.9 65.6
768 912.0






1024

618.5 634.1 605.9 271.7 108.5
1700



840.1


2048





175.6

All cores used on each node which participates in each run.

Sun X6275 - 2.93 GHz X5570, InfiniBand
Intel Whitebox - 2.8 GHz GHz X5560, InfiniBand
IBM POWER6 - IBM Power 575, 4.7 GHz POWER6, InfiniBand, 3 frames
Cray XT5 - 2.7 GHz AMD Opteron (Shanghai), Cray SeaStar 2.1
SGI - best of a variety of results
TACC Ranger - 2.3 GHz AMD Opteron (Barcelona), InfiniBand
Blue Gene/P - 850 MHz PowerPC 450, 3D-Torus (proprietary)

Weather Research and Forecasting
CONUS 2.5 KM Dataset
Cores Performance in GFLOPS
Sun
X6275
SGI
8200EX
Blue
Gene/L
IBM
POWER6
Cray
XT5
Intel
Whitebox
TACC
Ranger
16 35.2






32 69.6

64.3


64 140.2

130.9
147.8 24.5
128 278.9 89.9
242.5 152.1 290.6 87.7
192 400.5





256 514.8 179.6 8.3 431.3 306.3 535.0 145.3
384 735.1





512 973.5 339.9 16.5 804.4 566.2 1019.9 311.0
768 1367.7





1024
721.5 124.8 1067.3 1075.9 1911.4 413.4
2048
1389.5 241.2
1849.7 3251.1
2600




4320.6
3072
1918.7 350.5
2651.3

4096
2543.5 453.2
3288.7

6144
3057.3 642.3
4280.1

8192
3569.7 820.4
5140.4

18432

1238.0



Sun X6275 - 2.93 GHz X5570, InfiniBand
SGI 8200EX - 3.0 GHz E5472, InfiniBand
Blue Gene/L - 700 MHz PowerPC 440, 3D-Torus (proprietary)
IBM POWER6 - IBM Power 575, 4.7 GHz POWER6, InfiniBand, 3 frames
Cray XT5 - 2.4 GHz AMD Opteron (Shanghai), Cray SeaStar 2.1
Intel Whitebox - 2.8 GHz GHz X5560, InfiniBand
TACC Ranger - 2.3 GHz AMD Opteron (Barcelona), InfiniBand

Results and Configuration Summary

Hardware Configuration:

48 x Sun Blade X6275 server modules, 2 nodes per blade, each node with
2 Intel Xeon X5570 2.93 GHz processors, turbo enabled, ht disabled
24 GB memory
QDR InfiniBand

Software Configuration:

SUSE Linux Enterprise Server 10 SP2
Intel Compilers 11.1.059
Intel MPI 3.2.2
WRF 3.0.1.1
WRF 3.1.1
netCDF 4.0.1

Benchmark Description

The Weather Research and Forecasting (WRF) Model is a next-generation mesoscale numerical weather prediction system designed to serve both operational forecasting and atmospheric research needs. WRF is designed to be a flexible, state-of-the-art atmospheric simulation system that is portable and efficient on available parallel computing platforms. It features multiple dynamical cores, a 3-dimensional variational (3DVAR) data assimilation system, and a software architecture allowing for computational parallelism and system extensibility.

There are two fixed-size benchmark cases.

Single domain, medium size 12KM Continental US (CONUS-12K)

  • 425x300x35 cell volume
  • 48hr, 12km resolution dataset from Oct 24, 2001
  • Benchmark is a 3hr simulation for hrs 25-27 starting from a provided restart file
  • Iterations output at every 72 sec of simulation time, with the computation cost of each time step ~30 GFLOP

Single domain, large size 2.5KM Continental US (CONUS-2.5K)

  • 1501x1201x35 cell volume
  • 6hr, 2.5km resolution dataset from June 4, 2005
  • Benchmark is the final 3hr simulation for hrs 3-6 starting from a provided restart file; the benchmark may also be performed (but seldom reported) for the full 6hrs starting from a cold start
  • Iterations output at every 15 sec of simulation time, with the computation cost of each time step ~412 GFLOP

See Also

Disclosure Statement

WRF, see http://www.mmm.ucar.edu/wrf/WG2/bench/, results as of 3/8/2010.

Comments:

Significance of Benchmarketing.
Nice result but why does one always compare apples with oranges. It's easy to outperform 3 year old (and even older) technology. If you compare with todays POWER7 technology the result would be reversed. POWER7 delivers (at 4.0GHz) ~32 GFLOPS per core and ~256 per chip where the X5570 delivers (at 2.93GHz) ~12 GFLOPS per core and 46 GFLOPS per chip. It would be nice to see the energy-usage comparison between these two when configured for comparable performance.
Thanks.

Posted by Rene Veltman on April 08, 2010 at 10:08 PM PDT #

Post a Comment:
Comments are closed for this entry.
About

BestPerf is the source of Oracle performance expertise. In this blog, Oracle's Strategic Applications Engineering group explores Oracle's performance results and shares best practices learned from working on Enterprise-wide Applications.

Index Pages
Search

Archives
« April 2014
SunMonTueWedThuFriSat
  
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
   
       
Today