Sun Fire X2270 MSC/Nastran Vendor_2008 Benchmarks

Significance of Results

The I/O intensive MSC/Nastran Vendor_2008 benchmark test suite was used to compare the performance on a Sun Fire X2270 server when using SSDs internally instead of HDDs.

The effect on performance from increasing memory to augment I/O caching was also examined. The Sun Fire X2270 server was equipped with Intel QC Xeon X5570 processors (Nehalem). The positive effect of adding memory to increase I/O caching is offset to some degree by the reduction in memory frequency with additional DIMMs in the bays of each memory channel on each cpu socket for these Nehalem processors.

  • SSDs can significantly improve NASTRAN performance especially on runs with larger core counts.
  • Additional memory in the server can also increase performance, however in some systems additional memory can decrease memory GHz so this may offset the benefits of increased capacity.
  • If SSDs are not used striped disks will often improve performance of IO-bound MCAE applications.
  • To obtain the highest performance it is recommended that SSDs be used and servers be configured with the largest memory possible without decreasing memory GHz. One should always look at the workload characteristics and compare against this benchmark to correctly set expectations.

SSD vs. HDD Performance

The performance of two striped 30GB SSDs was compared to two striped 7200 rpm 500GB SATA drives on a Sun Fire X2270 server.

  • At the 8-core level (maximum cores for a single node) SSDs were 2.2x faster for the larger xxocmd2 and the smaller xlotdf1 cases.
  • For 1-core results SSDs are up to 3% faster.
  • On the smaller mdomdf1 test case there was no increase in performance on the 1-, 2-, and 4-cores configurations.

Performance Enhancement with I/O Memory Caching

Performance for Nastran can often be increased by additional memory to provide additional in-core space to cache I/O and thereby reduce the IO demands.

The main memory was doubled from 24GB to 48GB. At the 24GB level one 4GB DIMM was placed in the first bay of each of the 3 CPU memory channels on each of the two CPU sockets on the Sun Fire X2270 platform. This configuration allows a memory frequency of 1333MHz.

At the 48GB level a second 4GB DIMM was placed in the second bay of each of the 3 CPU memory channels on each socket. This reduces the memory frequency to 1066MHz.

Adding Memory With HDDs (SATA)

  • The additional server memory increased the performance when running with the slower SATA drives at the higher core levels (e.g. 4- & 8-cores on a single node)
  • The larger xxocmd2 case was 42% faster and the smaller xlotdf1 case was 32% faster at the maximum 8-core level on a single system.
  • The special I/O intensive getrag case was 8% faster at the 1-core level.

Adding Memory With SDDs

  • At the maximum 8-core level (for a single node) the larger xxocmd2 case was 47% faster in overall run time.
  • The effects were much smaller at lower core counts and in the tests at the 1-core level most test cases ran from 5% to 14% slower with the slower CPU memory frequency dominating over the added in-core space available for I/O caching vs. direct transfer to SSD.
  • Only the special I/O intensive getrag case was an exception running 6% faster at the 1-core level.

Increasing performance with Two Striped (SATA) Drives

The performance of multiple striped drives was also compared to single drive. The study compared two striped internal 7200 rpm 500GB SATA drives to a singe single internal SATA drive.

  • On a single node with 8 cores, the largest test xx0cmd2 was 40% faster, a smaller test case xl0tdf1 was 33% faster and even the smallest test case mdomdf1 case was 12% faster.

  • On 1-core the added boost in performance with striped disks was from 4% to 13% on the various test cases.

  • One 1-core the special I/O-intensive test case getrag was 29% faster.

Performance Landscape

Times in table are elapsed time (sec).


MSC/Nastran Vendor_2008 Benchmark Test Suite

Test Cores Sun Fire X2270
2 x X5570 QC 2.93 GHz
2 x 7200 RPM SATA HDDs
Sun Fire X2270
2 x X5570 QC 2.93 GHz
2 x SSDs
48 GB
1067MHz
24 GB
2 SATA
1333MHz
24 GB
1 SATA
1333MHz
Ratio (2xSATA):
48GB/
24GB
Ratio:
2xSATA/
1xSATA
48 GB
1067MHz
24 GB
1333MHz
Ratio:
48GB/
24GB
Ratio (24GB):
2xSATA/
2xSSD

vlosst1 1 133 127 134 1.05 0.95 133 126 1.05 1.01

xxocmd2 1
2
4
8
946
622
466
1049
895
614
631
1554
978
703
991
2590
1.06
1.01
0.74
0.68
0.87
0.87
0.64
0.60
947
600
426
381
884
583
404
711
1.07
1.03
1.05
0.53
1.01
1.05
1.56
2.18

xlotdf1 1
2
4
8
2226
1307
858
912
2000
1240
833
1562
2081
1308
1030
2336
1.11
1.05
1.03
0.58
0.96
0.95
0.81
0.67
2214
1315
744
674
1939
1189
751
712
1.14
1.10
0.99
0.95
1.03
1.04
1.11
2.19

xloimf1 1 1216 1151 1236 1.06 0.93 1228 1290 0.95 0.89

mdomdf1 1
2
4
987
524
270
913
485
237
983
520
269
1.08
1.08
1.14
0.93
0.93
0.88
987
524
270
911
484
250
1.08
1.08
1.08
1.00
1.00
0.95

Sol400_1
(xl1fn40_1)
1 2555 2479 2674 1.03 0.93 2549 2402 1.06 1.03

Sol400_S
(xl1fn40_S)
1 2450 2302 2481 1.06 0.93 2449 2262 1.08 1.02

getrag
(xx0xst0)
1 778 843 1178 0.92 0.71 771 817 0.94 1.03

Results and Configuration Summary

Hardware Configuration:
    Sun Fire X2270
      1 2-socket rack mounted server
      2 x 2.93 GHz QC Intel Xeon X5570 processors
      2 x internal striped SSDs
      2 x internal striped 7200 rpm 500GB SATA drives

Software Configuration:

    O/S: Linux 64-bit SUSE SLES 10 SP 2
    Application: MSC/NASTRAN MD 2008
    Benchmark: MSC/NASTRAN Vendor_2008 Benchmark Test Suite
    HP MPI: 02.03.00.00 [7585] Linux x86-64
    Voltaire OFED-5.1.3.1_5 GridStack for SLES 10

Benchmark Description

The benchmark tests are representative of typical MSC/Nastran applications including both SMP and DMP runs involving linear statics, nonlinear statics, and natural frequency extraction.

The MD (Multi Discipline) Nastran 2008 application performs both structural (stress) analysis and thermal analysis. These analyses may be either static or transient dynamic and can be linear or nonlinear as far as material behavior and/or deformations are concerned. The new release includes the MARC module for general purpose nonlinear analyses and the Dytran module that employs an explicit solver to analyze crash and high velocity impact conditions.

  • As of the Summer '08 there is now an official Solaris X64 version of the MD Nastran 2008 system that is certified and maintained.
  • The memory requirements for the test cases in the new MSC/Nastran Vendor 2008 benchmark test suite range from a few hundred megabytes to no more than 5 GB.

Please go here for a more complete description of the tests.

Key Points and Best Practices

For more on Best Practices of SSD on HPC applications also see the Sun Blueprint:
http://wikis.sun.com/display/BluePrints/Solid+State+Drives+in+HPC+-+Reducing+the+IO+Bottleneck

Additional information on the MSC/Nastran Vendor 2008 benchmark test suite.

  • Based on the maximum physical memory on a platform the user can stipulate the maximum portion of this memory that can be allocated to the Nastran job. This is done on the command line with the mem= option. On Linux based systems where the platform has a large amount of memory and where the model does not have large scratch I/O requirements the memory can be allocated to a tmpfs scratch space file system. On Solaris X64 systems advantage can be taken of ZFS for higher I/O performance.

  • The MSC/Nastran Vendor 2008 test cases don't scale very well, a few not at all and the rest on up to 8 cores at best.

  • The test cases for the MSC/Nastran module all have a substantial I/O component where 15% to 25% of the total run times are associated with I/O activity (primarily scratch files). The required scratch file size ranges from less than 1 GB on up to about 140 GB. Performance will be enhanced by using the fastest available drives and striping together more than one of them or using a high performance disk storage system, further enhanced as indicated here by implementing the Lustre based I/O system. High performance interconnects such as Infiniband for inter node cluster message passing as well as I/O transfer from the storage system can also enhance performance substantially.

See Also

Disclosure Statement

MSC.Software is a registered trademark of MSC. All information on the MSC.Software website is copyrighted. MSC/Nastran Vendor 2008 results from http://www.mscsoftware.com and this report as of June 9, 2009.

Comments:

You can take the advantage of SSD only when the test scales up to at least 4 cores. Is it because otherwise the memory requirements are no more than 10GB and most of the I/O time is absorbed by I/O cache?

Posted by Joshua on June 17, 2009 at 03:57 AM PDT #

Below 4 cores the IO demands are not very great for this workload, so one shouldn't expect a big boost in performance. Other workloads or applications will benefit from SSDs even on 1-4 core counts if they have more IO.

Posted by 1234core on June 17, 2009 at 07:35 AM PDT #

Post a Comment:
Comments are closed for this entry.
About

BestPerf is the source of Oracle performance expertise. In this blog, Oracle's Strategic Applications Engineering group explores Oracle's performance results and shares best practices learned from working on Enterprise-wide Applications.

Index Pages
Search

Archives
« April 2014
SunMonTueWedThuFriSat
  
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
   
       
Today